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Abstract

Dentistry is confronted with the functional and aesthetic consequences that result from an

increased prevalence of misaligned and discrepant dental occlusal relations in modern

industrialised societies. Previous studies have indicated that a reduction in jaw size in

response to softer and more heavily processed foods during and following the Industrial

Revolution (1,700 CE to present) was an important factor in increased levels of poor dental

occlusion. The functional demands placed on the masticatory system play a crucial role in

jaw ontogenetic development; however, the way in which chewing behaviours changed in

response to the consumption of softer foods during this period remains poorly understood.

Here we show that eating more heavily processed food has radically transformed occlusal

power stroke kinematics. Results of virtual 3D analysis of the dental macrowear patterns of

molars in 104 individuals dating to the Industrial Revolution (1,700–1,900 CE), and 130 of

their medieval and early post-medieval antecedents (1,100–1,700 CE) revealed changes in

masticatory behaviour that occurred during the early stages of the transition towards eating

more heavily processed foods. The industrial-era groups examined chewed with a reduced

transverse component of jaw movement. These results show a diminished sequence of

occlusal contacts indicating that a dental revolution has taken place in modern times, involv-

ing a dramatic shift in the way in which teeth occlude and wear during mastication. Molar

macrowear suggests a close connection between progressive changes in chewing since the

industrialization of food production and an increase in the prevalence of poor dental occlu-

sion in modern societies.

Introduction

An increased prevalence of misaligned and crowded dental arches among industrialised

groups has been attributed to the consumption of a more heavily extraorally processed diet [1,

2]. Developments in food processing technologies and agriculture have effectively removed the

abrasive and fibrous content from the diet of modern humans in industrialised societies [3].
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This replaced the coarser dietary pattern of pre-industrial times [4, 5]. A dietary revolution,

which swept across Europe during the 18th and 19th centuries, began this process alongside

revolutions in industry, agriculture and transportation [6]. By the close of the 19th century,

food production had been transformed into a highly mechanised and large-scale industry pro-

ducing increasingly heavily processed and standardised foods [7–9]. The age of sugar and pro-

cessed food has continued into the 21st century, characterising the eating habits of vast swathes

of the global population, and constituting a marked departure from the foods that were promi-

nent throughout the evolution of hominins [10].

A reduction in jaw dimensions and an increase in poor dental occlusion among modern

groups has been discussed as an adaptive consequence of the reduced dental processing of the

softer diet that emerged during and following the Industrial Revolution (1760–1840 CE) [11–

14]. This is because the upper and lower jaws are highly plastic during development and

growth and are shaped by the demands placed upon the masticatory system, principally during

chewing [15, 16]. In the absence of sufficient alveolar growth, inadequate space for emerging

teeth and disharmonious jaw relationships are anticipated [17–19]. Consequently, it has been

hypothesised that underlying these changes are differences in chewing behaviour when com-

pared to pre-industrial groups [1, 2, 14]. This hypothesis, however, remains to be tested.

Clinical feeding studies indicate that human chewing behaviours adapt to the mechanical

properties of the food consumed, such as toughness and hardness, as well as their extrinsic sur-

face characteristics, such as stickiness, particle size and roughness [20–23]. Different hardness

and toughness properties require different types of jaw movement and tooth-tooth interaction

to effect fracture [24, 25]. As foods became increasingly heavily processed in the modern era,

changes in chewing behaviours would be anticipated and phenotypic changes in craniofacial

structures would be the result. Orthodontic treatment currently focuses on the therapeutic

modification of occlusion once often functionally and aesthetically compromised relationships

have already developed [26]. Groups consuming coarser and biomechanically demanding

food stuffs often exhibit low prevalence rates of malocclusion when compared to industrialised

societies; this has been used as evidence to support artificially inducing the environmental con-

ditions these non-industrialised groups experience during development and growth to reduce

the likelihood of occlusal problems developing [18, 27]. To address the practicalities of the pri-

mary prevention of the development of occlusal problems, differences between the masticatory

behaviours of pre-industrial and industrialised human groups need to be investigated.

In humans, the chewing cycle begins with puncture-crushing cycles in which the teeth

come together in a vertically directed squashing action comparable to the crushing action of a

pestle and mortar [28, 29]. Later in the chewing sequence, as the mass of food is reduced, the

surfaces of the teeth come together more closely in a movement called the power stroke. This

is divided into two phases. In phase I, the later part of jaw closing, the lower molars on the

working side move from a lateral position following an upward, anteriorly and medially

directed trajectory terminating in maximum intercuspation [30]. The lower teeth then follow

an anterior, medially and slightly downward directed movement during phase II of the power

stroke which is followed by jaw opening [30, 31].

During the power stroke, a layer of particles suspended in saliva, likely including a combi-

nation of food particles, abrasives and detached enamel, is present between the tooth surfaces.

This results in the development of dental wear facets, highly polished planar surfaces, at spe-

cific areas of the occlusal surface against which abrasive particles are repeatedly moved across

and trapped against as the dental surfaces slide past one another during the power stroke. Each

wear facet that develops as a result of the masticatory power stroke has a corresponding wear

facet in the teeth of the opposing dental arch [32, 33]. The jaw movements responsible for the

creation of dental wear facets during the chewing cycle can be reconstructed from their
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orientation and inclination [30, 34, 35]. Wear facets have been used to infer the inclination

and orientation of the occlusal portion of the chewing cycles of extinct and extant mammals

[36, 37], and to reconstruct occlusal relationships [34], and to compare the dietary and masti-

catory behaviours of hominids [38–41]. Wear facets may also result from para-masticatory

activities such as bruxism, the repetitive grinding or clenching, or also by the use of teeth as a

third hand [42].

Bread was the principal dietary staple in both the pre-industrial and industrial groups. In

the medieval period, cereals formed up to 80% of calorific intake [43]. Similarly, the lower clas-

ses in the 19th century typically subsisted on a monotonous diet of bread, potatoes, sugar and

sweetened tea [7, 44–46]. Despite this, the physical properties of the bread eaten were dramati-

cally altered by the technological developments in milling that occurred during the Industrial

Revolution. In the medieval period, grains were pulverised to form a coarse mixture contain-

ing all parts of the grain, including a good deal of finely ground bran and most of the germ,

and a high quantity of abrasive particles were retained in the final flour [8, 47]. This resulted in

loaves that were coarse, hard and tough when compared to the bread consumed during the

Industrial Revolution [43]. Developments in grinding and sieving techniques within the mill-

ing process meant that by the close of the 19th century soft white wheaten bread made from

finely milled flour became accessible to all social classes [44]. For this reason, it would be antic-

ipated that chewing behaviours and dental wear patterns in the industrial period would reflect

this shift towards the consumption of softer and more heavily processed dietary staples when

compared to their pre-industrial counterparts.

The aim of this paper is to determine whether changes in chewing behaviour occurred as a

result of the consumption of more heavily processed staple foods during the Industrial Revolu-

tion. A method of three-dimensional dental macrowear pattern analysis [30, 35, 48], Occlusal

Fingerprint Analysis (OFA), was used to compare the molar macrowear patterns and to recon-

struct the occlusal behaviours of individuals from the industrial era (1,700–1,900 CE) and a

pre-industrial group dating to the medieval and early post-medieval periods (1,100–1,700 CE).

Static OFA was used to analyse the molar macrowear patterns [48], and the dynamic OFA [30]

was performed to reconstruct occlusal power stroke kinematics for testing the following null

hypotheses: (1) there are no significant differences in wear facet area proportions, and wear

facet inclinations are consistent in lower second molar macrowear patterns between the pre-

industrial and industrial group; (2) the power stroke trajectories and the development of occlu-

sal contact areas are similar between the two groups; (3) there are no significant differences in

occlusal topography between the groups; (4) potential confounding factors such as age-at-

death and sex of an individual do not impact the molar macrowear patterns observed.

An association between changes in chewing behaviour and the increased prevalence of

poor occlusion evident in industrialised societies may inform functional and preventative

treatments in the context of contemporary dental practice.

Materials and methods

Selection of skeletal assemblages

Specimens were selected from five British cemetery assemblages dating to the medieval and

early post-medieval periods (n = 130) and from four industrial era British cemeteries (n = 103)

(Fig 1). The ethical guidelines for handling human remains outlined by UCL, the University of

Bradford, University of Sheffield and Museum of London were adhered to during data collec-

tion (https://www.ucl.ac.uk/archaeology/research/ethics, https://www.bradford.ac.uk/arch

aeological-forensic-sciences/facilities/barc/BARC_human_remains_policy.pdf, https://www.

sheffield.ac.uk/polopoly_fs/1.573395!/file/Guidelines_for_conduct_in_osteology_labs.pdf,
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https://www.museumoflondon.org.uk/application/files/5714/8129/0350/Museum_of_London_

Policy_for_the_Care_of_Human_Remains.pdf). No permits were required for the described

study beyond the written permissions given by the individual institutions responsible for the

human remains. The study complied with all relevant regulations.

The principal research question sought to identify differences in masticatory behaviours

following the introduction of more heavily processed and softer dietary staples in the industrial

period. Historical and archaeological evidence indicated that the majority of assemblages

selected were largely representative of the average diet and lifestyle in either the medieval, early

post-medieval or industrial periods (Table 1). A range of socioeconomic groups and regions

were represented by the assemblages selected in order to encompass a portion of the social and

dietary variability described within each period across England. The two study groups were

built up as follows:

• Each assemblage was dated to either the medieval and early post-medieval periods (1100–

1700 CE) or the industrial period (1700–1900 CE). Where inhumations at a single cemetery

overlapped both periods, contextual information for each burial had to be adequate to disen-

tangle the earlier from the later burials. The only cemetery selected that required separation

into early and later phases was St Michael’s Litten, Chichester (ESC11), which dated from

1550–1900 CE.

• Sufficient contextual information for each assemblage had to be available to characterise the

general profile of the individuals interred at the site.

Fig 1. Map showing the location of the cemetery assemblages examined in the current research. Assemblages were excavated at towns

and cities across England and represented a variety of burial contexts, including lay cemeteries, those associated with monasteries and a

leper hospital. Cemeteries with an approximate date range are indicated by circa (c.). Contains OS data © Crown copyright [and database

right] [2021].

https://doi.org/10.1371/journal.pone.0261404.g001
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• Most of the assemblages included were selected because they were drawn from cemeteries of

a substantial size (greater than 100 individuals) and likely reflected the average demographic

for the period and region.

• If assemblages from approximately the same geographic region were available in the medie-

val, early post-medieval and industrial periods these assemblages were prioritised.

• The assemblage had to be available for examination within a suitable timeframe for data col-

lection to be completed (September 2017 to September 2019).

• At least five individuals within the assemblage had to satisfy the individual selection criteria

below. Larger assemblages were prioritised to increase the likelihood that this condition

would be met.

Background information on the cemeteries

Many of the individuals examined dating to the medieval period were derived from lay ceme-

teries. The cemetery of All Saint’s Church, Fishergate, was situated south of the medieval city

walls of York on the east side of the River Foss. The occupants of the cemetery were likely civil-

ians drawn from a range of socioeconomic groups. It was likely established in the late 11th cen-

tury and fell out of use shortly after 1585 CE [53]. The skeletons examined from Hereford

Cathedral were derived from the excavation of the area west of the Bishop’s Cloister. Most

burials were probably interred from the 12th to the 16th centuries. The cemetery area might be

associated with the parish of St John. St John’s parish lacked a parish church but included

Table 1. Table showing the assemblages included in the current study and giving details of their locations, size, date and the number of individuals from this collec-

tion that satisfied the inclusion criteria. Individuals from cemeteries dating from 1100–1700 CE formed the pre-industrial group and those from cemeteries dating from

1700–1900 CE formed the industrial group.

Collection Location of

Collection

Dates Cemetery in

Use (CE)

Number Suitable/

Number of

Individuals in

Collection

Type of Group Publications in

which Assemblage

is described

St Michael’s Litten, Chichester (Late) UCL c. 1700–1900 26/300 Urban [49]

St Bride’s Church, Fleet Street St Bride’s

Church

1714–1848 31/227 Urban parish burial

ground

[50]

The Church of St Hilda, Coronation

Street, South Shields

University of

Sheffield

1816–1856 25/114 Urban working-class

group; ship builders

[51]

St Peter’s Wolverhampton University of

Bradford

1800–1853 18/150 Urban; short burial

period

[52]

Industrial Group Total 103

St Michael’s Litten, Chichester (Early) UCL c. 1550–1700 18/300 Urban [49]

All Saint’s Church, Fishergate, York University of

Sheffield

c. 1100–1500 32/547 Lay cemetery [53]

Hereford Cathedral University of

Bradford

c. 1100–1600 42/1200 Lay cemetery

including two large

plague pits

[54]

Box Lane University of

Bradford

c. 1100–1500 7/88 Lay Cemetery [55]

Blackfriars University of

Bradford

1246–1539 9/192 Friary [56]

St James and St Mary

Magdalene, Chichester, West Sussex

University of

Bradford

c. 1100–1600 24/374 Leprosarium and alms

house

[57]

Pre-Industrial Group Total 130

https://doi.org/10.1371/journal.pone.0261404.t001
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small parcels of land across the city, including the city centre. As a result, the burial area would

represent all social classes drawn from across the city [54].

Other medieval cemetery assemblages assessed also included monastic burials. The ceme-

tery at Box Lane, Pontefract was likely associated with St John’s Priory, which was founded in

about 1090 CE. Pottery recovered supports burial dates from the 13th to the 14th century. It is

uncertain whether the cemetery served the Cluniac monks themselves or the lay population of

the monastery and the community of nearby settlements. The cemetery included both women

and men, with relatively few children, infants and adolescents, supporting the latter interpreta-

tion. Burials were modest and bodies were likely placed in shrouds without the use of coffins

[55]. The assemblage from Blackfriars, Gloucester was associated with the Dominican Friary

established in 1239 CE. The Blackfriars were known for the relative poverty of their lifestyles

[58]. The burials included the friars themselves, including a priest with his pewter chalice and

paten, in addition to women and high numbers of infants and children. This suggests that ben-

efactors to the Friary and their families were also interred in the burial ground. Furthermore,

it is possible that the friars may have operated a hospital at least until the late 15th century and

hospital patients may have been buried at the Friary [56].

A subset of the medieval material analysed was associated with the medieval leprosarium

and later post-medieval almshouse of St James and St Mary Magdalene, Chichester, likely

dated from the 12th to the 17th centuries. Individuals with leprosy and males were concentrated

in the southwestern portion of the excavation area whilst females, subadults and non-leprous

individuals became more frequent in the northern area of the site. It has been proposed that

the earliest portion of the cemetery is the southwestern portion where the prevalence of leprosy

is greatest [57].

The industrial group was similarly drawn from a wide socioeconomic spectrum and

included London, Chichester and the more northerly industrial centres of Wolverhampton

and South Shields. The Litten cemetery, encountered during the excavation of Eastgate square,

Chichester, was estimated to have been in use from 1100–1850 CE. Although, most burials

date from the 17th-19th centuries. This cemetery likely represented a broad cross-section of

the socioeconomic groups present at Chichester and could be divided between the pre-indus-

trial and industrial groups in the current research using burial type [49]. The earlier burials

within this cemetery were likely contemporaneous with those inhumed at the leprosarium of

St James and St Mary Magdalene, Chichester [59]. The material from St. Bride’s church Lon-

don were derived from within the church and they were accompanied by lead coffin plates giv-

ing name, age and date of death. The first individual was born in 1696 CE and the last in 1852

CE. A large proportion of the individuals interred at St Bride’s were likely workers involved in

trade and crafts along the Thames, but burial records indicate that the status of the individuals

interred varied greatly, ranging from the lord mayor to individuals in poverty. Qualification

for burial at St Bride’s church may have principally depended on location rather than social

status [50]. The assemblage from Coronation Street, South Shields, was associated with the

Church of St Hilda and dated from 1816–1860 CE. Most of the individuals were interred in

less expensive mass-produced coffins indicating that they were probably working class. Vari-

ability in coffin furniture and burial situation suggested the cemetery group occupied a rela-

tively wide range of financial statuses. The richer burials at the site were less ornate, however,

than most other contemporary middle- and upper-class crypts [51]. The assemblage derived

from the excavation of the 19th century overflow burial ground for St Peter’s Collegiate

Church, Wolverhampton, was dated to 1830–1880 CE based on the style of coffin fittings. This

corresponded to a period of rapid urban growth in Wolverhampton as it developed as a

manufacturing centre. Many people were involved in ironmaking and other workshop activi-

ties [52].
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The skeletal assemblages examined were drawn from a range of geographic locations and

social backgrounds within England. Consequently, post-hoc pairwise testing was performed to

determine whether any differences observed between the two groups were particularly driven

by any of the assemblages examined. These factors are explored further in [60].

Selection of specimens and sample demography

Second lower molars were selected for OFA as it has been shown to provide an effective repre-

sentation of masticatory behaviours in primates [61]. OFA can only be effectively applied to

moderately worn teeth because dental wear facet patterns are obliterated at more advanced

stages of wear [39]. Unworn teeth are similarly uninformative. Thus, lower second molars had

to show wear corresponding to Smith score 3 [62] (moderate cusp removal with or without a

maximum of pin-point dentine exposure).

Individuals were prioritised if they had relatively good representation of the dentition, pref-

erably with some representation of both the upper and lower dental arcades. The best-pre-

served side was chosen and in cases of an equivalent state of preservation the right side was

analysed. Dental pathology, including ante-mortem tooth loss and dental caries, was present

in many of the dentitions examined. Carious lesions were marked as present if a cavity involv-

ing the crown was observed on the tooth. The impact of these confounding factors (sidedness,

carious lesions, ante-mortem tooth loss) was previously assessed [60] and considered negligi-

ble for the current study.

Individuals for whom sex and age-at-death estimates could be made were also prioritised.

Sex was estimated by assessing the morphology of the pubic bone, cranium and greater sciatic

notch of the innominate bone [63, 64]. The assemblages in both periods were comprised of a

mixture of males and females (Table 2). Age-at-death was estimated entirely from the skeleton,

in order to make it independent from the development of the dentition. It was based on an

assessment of degenerative changes in the auricular surface of the ilium [65]. This method was

selected because the pubic symphysis was commonly absent or poorly preserved. The pre-

industrial group was dominated by a larger number of individuals from the younger age-at-

death category (Buckberry-Chamberlain score�9) (Table 3). Sex and age-at-death were also

assessed as factors which may have contributed to the variability in wear facet patterns

observed.

To conduct dynamic OFA analysis, one individual was selected from the pre-industrial

group and one from the industrial group to simulate power stroke kinematics. Individuals

Table 2. Sex distribution of the individuals selected from the assemblages examined and used to perform OFA.

Site Indeterminate Female Male

York Barbican 17 8 7

Blackfriars, Gloucester 4 2 3

Box Lane, Pontefract 4 3 0

St James and St Mary Magdalene, Chichester 3 13 8

Hereford Cathedral 16 14 12

Medieval Summary 44 40 30

Coronation Street, South Shields 7 6 12

St Michael’s Litten, Chichester 0 19 27

St Bride’s, London 0 13 18

St Peter’s, Wolverhampton 5 5 8

Industrial Summary 12 43 65

https://doi.org/10.1371/journal.pone.0261404.t002
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were selected with adequate preservation of the upper and lower tooth rows and who pre-

sented lower second molar wear facet patterns characteristic of each period; their wear facet

area proportions approximated the centre values for either the pre-industrial or industrial

group. 3D models of antagonistic upper and lower molar rows were required and generated

using the methods outlined below.

Generation of occlusal models

A dental gypsum model of one of the lower second molars was produced for each individual. The

reflective and lustrous qualities of the enamel rendered the direct generation of 3D models from

the original dental surfaces problematic [66], therefore dental impressions were taken. The molar

row was first gently cleaned using acetone prior to an impression being taken. An impression of

each lower second molar was taken using a two-phase, two-step, putty-wash technique utilising

President1 putty soft and President1 light body polyvinylsiloxane impression materials

(Coltène/Whaledent Inc) [67–69]. Dental casts were made using non-reflective dental die stone

(Suprastone1 dental die stone type IV; Kerr Corporation). Virtual dental models were generated

using a structured light scanning system (GOM ATOS 80 scanner, GOM, Braunschweig, Ger-

many). Data acquired was imported directly into ATOS professional (v 2018 Hotfix 3) and then

converted into a polygonal surface mesh, which could be exported in stl format for analysis.

Occlusal fingerprint analysis

Wear facet analysis was performed using GOM Inspect (Version 2018 Hotfix 6) based on the

method of Kullmer et al. [48] (Fig 2). The teeth were consistently orientated in the software

using a gaussian best-fit plane attached to the cervical margin of the tooth [48, 70]. This was cre-

ated by drawing a curve around the cervix of the tooth and selecting an area 0.2mm above and

below the curve. Wear facets on the occlusal surface of each lower second molar were identified,

demarcated and labelled using the terminology of Maier and Schneck [71, 72], modified after

Kullmer et al. [48]. The area and inclination of each wear facet was measured and grouped

according to the phase of the power stroke sequence with which it was associated, either phase I

(divided into buccal phase I and lingual phase I facets) or phase II. Larger teeth at a similar stage

of wear will typically exhibit larger wear facets than smaller teeth. The area associated with each

Table 3. Age-at-Death distribution using the Buckberry-Chamberlain method (2002) of the individuals selected from the assemblages examined and used to per-

form OFA.

Age Category Unknown Younger Older

Buckberry-Chamberlain score - �9 �10

Site

York Barbican 3 25 4

Blackfriars, Gloucester 1 8 0

Box Lane, Pontefract 2 5 0

St James, Chichester 0 24 0

Hereford Cathedral 13 28 1

Medieval Summary 19 90 5

Coronation Street, South Shields 3 11 11

St Michael’s Litten, Chichester 1 35 10

St Bride’s, London 0 15 16

St Peter’s, Wolverhampton 6 7 5

Industrial Summary 10 68 42

https://doi.org/10.1371/journal.pone.0261404.t003
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aspect of the power stroke, therefore, was expressed as a proportion of the total area of the wear

facets across the occlusal surface. Wear facet inclination was measured in relation to the best-fit

plane fitted to a curve drawn around the cervical margin of the tooth. This measurement is

called the dip angle. Tip crushing areas, flat subcircular areas of wear on the cusp tips, have pre-

viously been attributed to the crushing action of the cusp tips in the opposing basins of the

antagonistic teeth during puncture-crushing cycles [36, 39, 40]. These wear areas were, there-

fore, not considered in the current analysis which is concerned with wear facets primarily cre-

ated with an inclination, indicating a horizontal directional component of jaw movement,

during the power stroke. More details about conducting OFA are given in S1 Text.

Differences in wear facet area composition were visualised using a ternary plot. A ternary

plot is a diagram that displays three variables which sum to a constant (1 or 100%). Each axis

corresponds to one of the three variables that form the composition (buccal phase I, lingual

phase I and phase II facet areas). Observations are plotted within the equilateral triangle

formed by the three axes. The ratio of the three variables for a given observation are graphically

displayed based on the position of the plotted point within the triangle and the proximity of

the point to the apex associated with that element of the composition. Ternary diagrams were

produced in R statistical software (v.3.6.1) using the package ‘compositions’.

In addition, the occlusal relief index (ORI) was calculated for each lower second molar,

which provides a measure of the complexity and steepness of occlusal topography [70, 73, 74].

This value was calculated by dividing the 3D area of the occlusal topography above the level of

the central fossa by the 2D area of the molar crown at the deepest point of the central fossa

(Fig 3). The ORI values were compared between the industrial era and the medieval and early

post-medieval periods using an independent sample t-test.

Fig 2. Process of conducting occlusal fingerprint analysis in GOM Inspect. A) Process used to create the reference

plane through the cervix of the tooth. B) Correct alignment of a lower left molar using the cervical reference plane and

mesio-distal axis of the tooth. C) A tooth with the wear facets demarcated using surface curves and colored according

to their functional role during the power stroke: blue indicates buccal phase I, orange corresponds to lingual phase I,

green to phase II and brown is a tip crushing area. The orientation of the tooth is the same as in diagram B. D)

Illustration of how dip angle was calculated. The angle between a best-fit plane fitted to the wear facet and the cervical

reference plane was measured to give the dip angle.

https://doi.org/10.1371/journal.pone.0261404.g002
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Kinematic simulations of the power stroke were conducted using the Occlusal Fingerprint

Analyser software package developed by DFG Research Unit 771 (freely available at https://

www.for771.uni-bonn.de/for771-en/ofa) on one individual from the medieval and early post-

medieval periods and one from the industrial period. It provides a complementary approach

to the static analysis of the molar wear pattern by indicating the directions of occlusal move-

ments involved in wear facet development. The software enables the simulation of the occlusal

phase of the power stroke between antagonistic teeth and can be used to infer the kinematic

relationship between sets of wear facets. The user can set a trajectory pathway for the lower

teeth which approximates their movement during the power stroke. The software detects colli-

sions between the teeth as they come into contact and are deflected along the surface relief of

each other. Contact areas can be recorded and assessed as they develop during the power

stroke enabling comparisons to be made between individuals, groups and taxa. For further

details on the operation of the Occlusal Fingerprint Analyser software refer to Kullmer et al.
[30]. The OFA software data of these two individuals, alongside the data extracted from the

Fig 3. Process for calculating ORI using GOM Inspect. A) The cervical reference plane (green) is translated along the z-axis to the deepest point of the

occlusal surface (red). This is typically the deepest point of the central fossa. B) The polygonal model is then cut at the level of the occlusal plane. C)The 2D area

of the tooth is measured at the level of the occlusal plane. D) The 3D occlusal area is measured from the level of the occlusal plane. The occlusal relief index

(ORI) is the area of D divided by the area of C.

https://doi.org/10.1371/journal.pone.0261404.g003
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wear facet patterns of the lower second molars of the whole sample, led to the development of

theoretical models of power stroke behaviours for the pre-industrial and industrial groups.

Statistical analyses

Wear facet composition in the two study groups was explored statistically using the methods

developed by Aitchison [75] and implemented by Boogaart and Tolosana-Delgado [76] to

overcome the issues with applying conventional statistical approaches to compositional data

i.e. data in which each set of observations sum to 100%. Consequently, the data was subject to

an isometric-log ratio transformation prior to further statistical analysis [77]. The isometric-

log transformed data did not fulfil the assumption of multivariate normality, therefore, wear

facet proportions in the industrial and pre-industrial groups were assessed using Permuta-

tional-MANOVA (PERMANOVA) applied to the Euclidean distance matrix of the data [78,

79]. The test compares the F-statistic generated using the data divided into pre-industrial and

industrial groups with F-statistics values obtained by randomly exchanging observations

between the two study groups (a permutation value of 9999 was selected). If there were no dif-

ferences between the groups, the recorded observations would be exchangeable between the

two groups without impacting the F-statistic value generated; the F-statistic generated using

the actual data split between the two study groups would fall within the range of F-statistic val-

ues generated using the random permutations of the data. Statistical analysis was performed

using the packages ‘RVAideMemoire 0.9–66’ and ‘compositions’ in R statistical software (refer

to S1 Text for code used). The PERMANOVA procedure outlined above was also used to test

the effect of age-at-death and sex on wear facet expression in the two groups.

The mean dip angle for each wear facet type (buccal phase I, lingual phase I and phase II) was

calculated for each lower second molar examined. Wear facet dip angle values satisfied the

assumptions of normality and homogeneity of variance (Shapiro-Wilk test p>0.05; Levene’s Test

p>0.05), therefore, differences in dip angle inclination between the two human groups were

tested using the independent sample t-tests. Independent sample t-tests were also used to deter-

mine the effect of sex and age-at-death on wear facet dip angle in each of the human groups.

Results

Static OFA

The wear facet area composition in the molars differs significantly between the two groups

(Permutational Multivariate analysis of variance p<0.05; Fig 4 and Table 4). In the medieval

and early post-medieval group, buccal phase I and lingual phase I wear facet areas occupy a

larger proportion of the total wear facet area than phase II wear facets (mean composition:

buccal phase I 30.88%, lingual phase I 39.84% and phase II 29.27%). The industrial assemblages

possess greater proportions of phase II wear as a consequence of reduced phase I wear regions

(Mean: buccal phase I 26.25%, lingual phase I 34.05% and phase II 39.69%) (Fig 3). The vari-

ance in dental wear facet area proportions does not differ significantly between the two periods

(Permutational homogeneity of multivariate dispersion test p>0.05; Table 5; Standard Devia-

tion: industrial period = 0.45; medieval and early post-medieval Period = 0.40).

No significant differences were found in wear facet area composition between the cemetery

assemblages within the pre-industrial and industrial groups following post-hoc analysis

(Table 6). When comparing the industrial and pre-industrial cemetery assemblages, a signifi-

cant difference was apparent between the Hereford Cathedral assemblage and the industrial-

era St Bride’s and St Michael’s Litten material. The St. Bride’s material also differed signifi-

cantly from the York Barbican, Box Lane and St James’ leprosarium assemblages. The
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industrial portion of the St Michael’s Litten, Chichester, assemblage differed significantly from

the York Barbican, Box Lane and St James’ leprosarium, Chichester, material.

Wear facet dip angles of the lower second molar also differ significantly between the pre-

industrial and industrial groups. Buccal phase I and lingual phase I mean dip angles are signifi-

cantly steeper in the industrial assemblages (Independent sample t-test p<0.05; Fig 5 and

Table 7). Phase II wear facets are as expected also more steeply inclined in the industrial

period. This difference approached significance; however, the null hypothesis could not be

rejected for phase II dip angles as the 95% confidence interval includes the p-value (Table 7).

Significantly greater occlusal relief index (ORI) values were observed in the lower second

molars of individuals dating to the industrial period (Independent sample t-test p<0.05; Fig 5

and Table 8). This indicates that higher relief and topographic complexity across the occlusal

surface characterise the industrial group.

Fig 4. Comparison of dental wear facet patterns between the pre-industrial and industrial groups. Above: Comparison of lower second molar dental wear facet

patterns between the medieval and early post-medieval Periods and the industrial Period. Wear facets are marked as follows: buccal phase I facets are blue, lingual phase

I facets are red, phase II facets are green and tip crushing areas are orange. Note large phase II wear facets in the industrial period relative to buccal phase I wear. In the

earlier periods, lingual phase I wear facets and buccal phase I facets occupy a larger proportion of the overall wear facet area. Below: Ternary plot showing the

relationship between period and relative wear facet area of the lower second molar (composed of buccal phase I (BPI), lingual phase I (LPI) and phase II (PII) facet

areas). The industrial group is displayed as dark grey circles and the medieval and early post-medieval group as light grey circles. The centre value for each period is

represented as a larger filled shape surrounded by 95% confidence regions. The industrial group is represented by a large black circle and the medieval group a white

circle.

https://doi.org/10.1371/journal.pone.0261404.g004

Table 4. Results of the one-way permutational multivariate analysis of variance (PERMANOVA) assessment of the relationship between period and lower second

molar wear facet area composition. The dependent variables being tested are buccal phase I, lingual phase I and phase II wear facet area and the independent variable is

the two modern human groups (either pre-industrial or industrial).

Factor Degrees of Freedom Sum of Squares Mean of Squares F-model R2 p-value Null Hypothesis

pre-Industrial vs Industrial 1 8.56 8.56 19.46 0.08 0.0001 Rejected

Residuals 231 101.62 0.44 0.92

Totals 232 110.19 1.00

Permutation value was set at 9999. Null hypothesis: Wear facet area composition did not significantly differ between the pre-industrial and industrial groups.

https://doi.org/10.1371/journal.pone.0261404.t004
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The data was normally distributed (Shapiro-Wilk test W = 0.99, p = 0.08) and homogeneity

of variance could be assumed (Levene’s test F value = 1.72, p = 0.19). Null hypothesis: ORI did

not differ significantly between the two periods.

Wear facet expression was not found to differ significantly between males and females in

either the pre-industrial or industrial group (S1–S4 Tables in S1 Text).

Age-at-death category had a significant effect upon wear facet composition in the industrial

group. The associated R2 was of a smaller magnitude than that obtained when examining the

period-based influence on wear facet area composition, however (0.05 and 0.09, respectively)

(Table 9). The older age-at-death group had larger proportions of Lingual Phase I wear facets

and smaller proportions of Buccal Phase I and Phase II wear when compared to the younger

age-at-death category. The centre values for the younger age category were BPI 28.69%, LPI

31.13% and PII 40.17%. Centre values for the older age category were BPI 21.84%, LPI 42.21%

and PII 35.95%. Age-at-death could not be explored in the pre-industrial assemblage as the

older age-at-death category was poorly represented in the material examined.

BPI dip angles were significantly less steep in the older age-at-death category (Table 10).

LPI and PII wear facets were slightly more shallowly inclined in the older age-at-death cate-

gory. The effect size of age-at-death on BPI wear facet dip angle was of a smaller magnitude

than the effect size associated with period (maximum -0.50 and 0.84, respectively).

Dynamic OFA

The molars in the pre-industrial group performed a greater lateral displacement during phase I of

the power stroke resulting in a more gradual increase in crown contact area relative to the indus-

trial period (Fig 6 and S1 and S2 Videos). The phase II movement of the pre-industrial individual

took place over an enlarged time segment and involved greater medial displacement of the lower

Table 5. Results of permutational test assessing homogeneity of multivariate dispersions for comparison of wear facet area composition between the pre-industrial

and industrial groups.

Degrees of Freedom Sum of Squares Mean of Squares F-model p-value Null Hypothesis

Pre-Industrial vs. Industrial Group 1 0.23 0.23 1.63 0.21 Not Rejected

Residuals 231 33.24 0.14

Null hypothesis: within group variation did not differ significantly between the two periods. The null hypothesis of homogeneity of dispersion is supported by p>0.05.

https://doi.org/10.1371/journal.pone.0261404.t005

Table 6. Results of post-hoc pairwise comparison using permutational MANOVA of wear facet area between the skeletal assemblages examined.

York Blackfriars Box Lane St James,

Chichester

Coronation

Street

St Michael’s Litten

(pre-industrial)

St Michael’s Litten

(industrial)

Hereford

Cathedral

St

Bride’s

Blackfriars 0.09 NA NA NA NA NA NA NA NA

Box Lane 0.28 0.09 NA NA NA NA NA NA NA

St James, Chichester 0.84 0.10 0.11 NA NA NA NA NA NA

Coronation Street 0.09 0.84 0.10 0.11 NA NA NA NA NA

St Michael’s Litten

(pre-industrial

0.10 0.84 0.06 0.12 0.89 NA NA NA NA

St Michael’s Litten

(industrial

0.00 0.09 0.00 0.00 0.12 0.09 NA NA NA

Hereford Cathedral 0.61 0.28 0.61 0.89 0.11 0.28 0.00 NA NA

St Bride’s 0.00 0.30 0.00 0.00 0.61 0.28 0.28 0.00 NA

St Peter’s 0.09 0.54 0.02 0.09 0.89 0.77 0.21 0.13 0.61

Permutation value was set at 9999.

https://doi.org/10.1371/journal.pone.0261404.t006
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molars when compared to the industrial individual. The industrial-era individual was character-

ised overall by smaller and steeper antagonistic contact areas between molars during a shortened

power stroke sequence when compared to the individual from the pre-industrial group.

Discussion

Dental macrowear patterns in the medieval and early post-medieval

periods and the Industrial Revolution

The study aimed to assess whether the dental occlusal pattern typical of individuals from the

Industrial Revolution indicated changes in the occlusal power stroke when compared to their

Fig 5. Comparison of dip angle and ORI between the pre-industrial and industrial group. Upper row and lower

left: Plots comparing mean dip angle value for the lower second molars for buccal phase I, lingual phase I and phase II

facets between the medieval and early post-medieval periods and the industrial period. The means are represented by

black squares alongside error bars giving 95% confidence intervals. Grey dots visualise the dip angle value for each of

the lower second molars assessed using OFA. Lower right: Plot comparing mean Occlusal Relief Index values for the

lower second molars between the two periods (black squares with 95% confidence intervals). Grey dots visualise each

individual ORI value for the lower second molar targeted by OFA.

https://doi.org/10.1371/journal.pone.0261404.g005
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medieval antecedents. This was framed in terms of the dietary changes that took place during

the Industrial Revolution, which were inferred from archaeological, historical and bioarchaeo-

logical evidence. Nine British cemetery assemblages were included and compared. Evidence

for changes in the power stroke were inferred from the dental wear facet patterns of the lower

second molars using OFA. Significant differences were found between the dental wear facet

patterns of individuals dating from the industrial era and those from the medieval and early

post-medieval periods.

The dental macrowear patterns of the lower second molars of the pre-industrial group are

characterised by significantly greater proportions of buccal phase I and lingual phase I wear

when compared to the industrial group. This indicates differences in chewing behaviours

between the two groups. A greater transverse jaw movement has been associated with the

enlargement of lingual phase I wear facet areas in some modern hunter-gatherers [40]. This

included groups, such as the Khoe-San and Australian Aborigines, who were more reliant on

Table 7. Result of independent sample t-tests comparing mean dip angles of the wear facets of the lower second

molar between the industrial and pre-industrial groups.

Power Stroke Phase Buccal Phase I Lingual Phase I Phase II

Industrial Mean Dip Angle(˚) 29.81 30.58 25.79

Industrial Standard Deviation 9.59 7.22 8.08

Medieval Mean Dip Angle (˚) 22.79 23.08 23.71

Medieval Standard Deviation 7.18 7.35 6.72

t-value 6.19 7.8 2.09

Degrees of Freedom 183.97 220.69 195.23

p valuea <0.001 <0.001 0.038

Effect Size 0.84 1.03 0.28

95% CI Effect Size 0.57 to 1.11 0.75 to 1.30 0.02 to 0.55

Statistical Power 1.00 1.00 0.85

Null Hypothesis Rejected Rejected Not Rejected

a Bonferroni adjusted p-value for 3 tests = 0.017.

Dip angle data was normally distributed (Shapiro Wilk test BPI p-value = 0.29; LPI p-value = 0.15; PII p-

value = 0.64). Null hypothesis: The dip angle values for the wear facets associated with a given phase of the power

stroke did not differ significantly between the two periods.

https://doi.org/10.1371/journal.pone.0261404.t007

Table 8. Result of independent sample t-test examining the effect of period on Occlusal Relief Index (ORI) of the

lower second molar.

Industrial Mean Occlusal Relief Index 1.57

Standard Deviation 0.14

Medieval Mean Occlusal Relief Index 1.48

Standard Deviation 0.12

t-value 5.48

Degrees of Freedom 206.12

p-value <0.0001

Effect size 0.73

95% CI effect size 0.46 to 1.00

Statistical power 1.00

Null Hypothesis Rejected

https://doi.org/10.1371/journal.pone.0261404.t008
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hard and abrasive food stuffs, such as seeds, but also tough plant parts [38, 40]. Larger buccal

phase I wear facet areas in the pre-industrial group are consistent with a prominent and pro-

longed shearing action during the incursive portion of the masticatory stroke [36, 40]. In con-

trast, industrial individuals frequently exhibit more poorly developed phase I wear facets

alongside wear facet patterns dominated by phase II wear. This occlusal situation reflects a

briefer and more vertically directed phase I shearing action, such as designated by small and

steep wear facets, and consistent with the consumption of less abrasive and softer food items

that do not require extensive transverse jaw movements during oral processing [39, 80–82].

Similarly, the OFA kinematic simulations for each period further indicate a reduction in lateral

travel of the lower teeth during the power stroke in the industrial period. Previously assumed

differences in the physical properties of the dietary staples consumed in each period are con-

firmed by the differences in dental wear facet patterns observed in the current study [14].

The variance in dental wear facet patterns did not differ significantly between the two peri-

ods. Nevertheless, variance values are relatively large in both. This might derive from the inclu-

sion of individuals of both higher and lower social status within the pre-industrial and

industrial samples. In the medieval period, the quality and type of bread consumed varied

between social classes. The upper classes ate fine wheaten bread while the lower classes would

consume darker and coarser loaves of rye, barley and oats [43]. For the peasantry, dietary sup-

plements, such as meat, would have formed as little as 20% of the total calories consumed. This

Table 9. Results of Type I PERMANOVA assessing the relationship between age-at-death category (either younger or older) and wear facet area composition in the

industrial material.

Df Sum of Squares Mean of Squares F-model R2 p-value H0

Age-at-death Category 1 2.23 2.23 3.76 0.06 0.027 Rejected

Residuals 57 33.80 0.59 0.94

Total 58 36.03 1.00

Null hypothesis: wear facet area composition did not differ significantly between the younger and older age-at-death categories dating to the industrial period.

https://doi.org/10.1371/journal.pone.0261404.t009

Table 10. Independent sample t-tests assessing age-related differences in dip angle during the industrial period

for BPI, LPI and PII wear facets.

Wear Facet Function BPI LPI PII

Younger Mean (˚) 31.38 31.52 26.94

Standard Deviation 8.34 7.52 8.09

Older Mean (˚) 26.78 28.92 24.8

Standard Deviation 9.76 6.8 8.86

t-value -2.31 -1.75 -1.18

Degrees of Freedom 73.39 82.27 68.01

p value� 0.02 0.08 0.24

Effect Size -0.5 -0.36 -0.26

95% CI Effect Size -0.92 to-0.07 -0.78 to -0.6 -0.68 to 0.16

Statistical Power 0.63 0.38 0.22

H0 Rejected? Not Rejected Not Rejected

�Bonferroni adjusted p-value = 0.017. The data for each variable was normally distributed (Shapiro-Wilk p>0.05)

and exhibited homogeneity of variance (Levene’s test p>0.05). Null hypothesis: dip angle values did not differ

significantly between younger and older age-at-death categories during the industrial period for each of the wear

facet types assessed.

https://doi.org/10.1371/journal.pone.0261404.t010
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was limited to salted meat and bacon, which were more readily available in the autumn once

livestock were fattened otherwise dairy products acted as the ‘white meat’ of the poor [83]. In

contrast, the diets of the upper classes were supplemented daily by either meat or fish. [84]. In

the industrial period, the quantity of meat eaten remained a crucial indicator of social status

with the poorest subsisting on only bread, cheese and potatoes [46]. The middle and upper

classes would often consume meat daily [7]. The contextual information available for most of

the skeletal assemblages examined was not adequate to determine whether social status influ-

enced the variability in the dental wear facet patterns observed in either period. Adequate con-

textual information pertaining to social status was available, however, for the St Michael’s

Litten and St Bride’s assemblages. The relationship between social status and dental wear pat-

terns in these assemblages has been considered in Silvester [60].

The increasingly steep wear facets and greater occlusal relief in the molars of the industrial

group reflects a reduction in the transverse component of the masticatory stroke as well as a

reduction in abrasive particles within the food eaten [38, 62, 85]. This is consistent with the

inferences made using the wear facet area data. The steeper inclination of dip angles in the

industrial period points to a reduction in the demands placed on the masticatory system as die-

tary content became less hard, but also less tough, as a consequence of more intensive food

processing. Similarly, Smith [62] argued that more oblique wear in agriculturalist groups

Fig 6. Development of contact areas during power stroke simulations and proposed chewing models. Left: Stacked

bar charts comparing the development of wear facet areas for power stroke simulations conducted using the Occlusal

Fingerprint Analyser software package. Each collision is broken down into a series of timesteps in which the lower

tooth model attempted to move 0.05mm towards the next point along the estimated power stroke movement

trajectory. The software calculates any collisions that occur between the opposing teeth at each time step. One

individual was selected from the medieval period (SK2033 from York Barbican) and one individual from the industrial

period (SK1010 from Coronation Street). The medieval individual showed an extended power stroke relative to the

industrial individual and a more clearly defined and extended period of exclusively phase II contacts. Right:

Visualisation of the hypothesized differences between the chewing cycles of individuals from the industrial and pre-

industrial group.

https://doi.org/10.1371/journal.pone.0261404.g006
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relative to hunter-gatherers was closely associated with their consumption of more heavily

processed and cooked grains. In addition, clinical feeding studies have found that tougher

foods are more frequently chewed with a larger lateral component of jaw movement, whereas,

soft food, such as modern bread, are characterised by slim drop shaped movements often with

a greater vertical amplitude, when jaw movement is viewed in the frontal plane [86–88]. It can

be hypothesized, therefore, that the extended lateral shift that characterised the chewing action

of the pre-industrial group resulted in greater flattening of the occlusal relief which was further

accelerated by the inclusion of greater quantities of abrasive material within the diet. Further

shifts in food processing technology have resulted in the retention of virtually unworn teeth

late into life among many industrialised groups in the 21st century [3, 89–91].

Additional factors that may have influenced wear facet expression and

limitations of the current study

No significant differences in dental wear facet expression were found between the sexes in the

industrial period. The bulk of the dietary staples consumed in the 18th-19th centuries would

have been consistent between the sexes. Both sexes would have derived most of their calories

from bread, potatoes, vegetables and sweetened tea. Men, within a lower-class urban setting,

however, would receive the majority of meat that could be afforded. Even so, the quantity

would likely be meagre and would therefore be less likely to impact habitual masticatory

behaviours [7, 43, 92]. Similarly, historical accounts indicate that sexual differences in the diets

consumed in the medieval and early post-medieval periods were typically limited to supple-

mentary items [84].

In the industrial period, individuals estimated to be older exhibited slightly greater propor-

tions of lingual phase I wear. Clinical research into the effect of ageing on chewing cycles have

found that older individuals still retain the capacity to adapt to changing food properties,

including food hardness [93–96]. In addition, there was little historical evidence to support

dramatic shifts in the physical properties of the foods eaten in advanced age in either period

[7, 8, 97]. Consequently, largely consistent responses in masticatory parameters would be

anticipated to the softer and more heavily processed foodstuffs consumed in the industrial

period irrespective of age. A smaller R2 value was associated with the differences in wear facet

proportions between age-at-death categories in the industrial period when compared to the R2

value associated with the differences in wear facet proportions between the two periods (Tables

4 and 9). As a result, the different age distributions of the pre-industrial and industrial groups

compared should not have markedly impacted the results of the overall comparison between

the pre-industrial and industrial groups.

The older portion of the industrial assemblage typically exhibited greater cusp reduction

and less obliquely inclined phase I wear facets. As wear advances with increasing age, further

modification of the power stroke is predicted in order to maintain functional masticatory effi-

ciency as occlusal topography provides less of a guiding function [37, 98]. An increase in the

lateral portion of the power stroke might be anticipated with increased age based on observa-

tions of modern hunter-gatherers with extremely advanced tooth wear [3], but, a broader

range of occlusal wear stages and skeletal age-at-death categories would be required to test this

hypothesis further.

The individuals examined in the current research only represented a small cross-section of

the potential age-at-death ranges within each assemblage due to the restrictive selection crite-

ria required for the performance of wear facet analysis. OFA can only be effectively applied to

lightly worn teeth [39, 48] and is largely inappropriate for the analysis of wear following the

obliteration of dental wear facets after which only an assessment of the overall inclination of
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the wear plane of the tooth can be made. Faster wear rates meant that only relatively young

individuals could be included from the medieval and early post-medieval periods, to ensure

that wear stages of the lower second molars were comparable between the two periods. For

this reason, the influence of age-at-death on wear expression could not be assessed in the pre-

industrial group.

The current project focused on the occlusal wear facet pattern of the lower second molar.

This decision was driven by work on primates, which has found that the lower second molar

provides an effective representation of masticatory function within one species [62, 99]. In

addition, the first molars were more commonly lost ante-mortem in the assemblages exam-

ined, particularly those dating to the industrial period. Wear facet expression has been previ-

ously shown to differ significantly between the first and second molars in modern hunter-

gatherers [100]. This is likely due to functional differences between the molars from anterior

to posterior, which relate to subtle differences in dental morphology and their position and

inclination in relation to the TMJ [101]. Thus, the wear facet data derived from the current

project can only be directly compared with other research examining lower second molars

[e.g., 41].

Wear facet expression may have been influenced by additional confounding factors which

could not be fully considered as they were beyond the scope of the project. The presence of

occlusal variability can modify masticatory patterns and even restrict the pathways of move-

ment of the mandible that are possible during chewing [102]. The inclination of the molar

teeth in the jaws may also influence the size and inclination of the wear facets that develop due

to differences in how the teeth occlude during the power stroke [103]. Bruxism involving the

repetitive grinding and clenching of the teeth can also modify dental wear facet patterns [104].

Tooth wear alone cannot be used to diagnose bruxism within a bioarchaeological context and

an appropriate methodology to do so requires further development [105]. Clinical dental

research links bruxism with psychosocial stress [106]. Dramatic changes did occur in the social

environment during the industrial era [7], but it is difficult to quantify whether levels of psy-

chosocial stress increased relative to the medieval period [107].

The role of phase II wear facets in the power stroke

The large proportion of phase II wear (>40%) in individuals from the industrial period con-

trast with previous studies that have examined wear facet area proportions in modern hunter-

gatherers and Palaeolithic anatomically modern humans and Neanderthals [38, 40] and the

majority of pre-industrial individuals examined in the current analysis. The role and mode of

formation of phase II wear facets during the power stroke remains debated [108, 109]. In

extant ungulates, large phase II facets have been associated with a more heavily frugivorous

diet [36]. This relationship between increased frugivory and large phase II wear facets was not

apparent in modern hunter-gatherers [40]. Large phase II wear facets may indicate extended

excursive contacts during the power stroke, more consistent with the larger central fossa pres-

ent in great ape lower molars rather than anatomically modern humans [41, 62]. This indicates

that phase II facet areas in industrialising modern humans are likely principally performing a

different role during mastication.

Some authors have associated phase II facets with a grinding function, combining a flat-

angled shearing and crushing action, during phase II of the power stroke [28, 36]. Experimen-

tal observation of bone strain and muscle activity during the power stroke in primates and

dental microwear textures, however, indicated that the forces principally responsible for phase

II facet creation are likely active towards the end of phase I, immediately prior to, and possibly

during, maximum intercuspation [108–110]. Similarly, the peak in contact force also occurred
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during maximum intercuspation during a finite element analysis simulation involving antago-

nist human first molars and their supporting tissues [111]. A similar pattern of jaw adductor

muscle activity was found in a study of EMG profiles during mastication in modern humans.

Peak muscle activity occurred towards the end of phase I just prior to maximum intercuspa-

tion and declined rapidly during jaw opening [112]. Phase II wear facets were also involved

immediately prior to maximum intercuspation during the power stroke simulations con-

ducted for the current project. As a result, a dramatic increase in wear facet contact area

occurred in the individuals examined during the terminal portion of phase I of the power

stroke (Video 1 and 2). This period of mixed phase I and II contacts corresponds with the peak

in jaw adductor muscle activity described in EMG studies of modern humans and other non-

human primates [109, 111, 112].

In this model of food breakdown during phase I of the power stroke, material is cut initially

along the edges of phase I wear facets. In addition, food particles are compressed against phase

II wear facets, formed along the lingual slopes of the buccal cusps far down into central fossa of

the lower molars, during the terminal part of phase I and during maximum intercuspation,

proximate to or during the peak in jaw adductor muscle force. The extensive development of

phase II wear facets when compared to the size of phase I wear facets in the industrial-era may,

therefore, indicate that food breakdown during the power stroke may principally have

occurred as a result of the crushing action against phase II facets during the terminal part of

phase I.

Conclusions

Dentists often desire predictable and stable outcomes for their patients during and following

treatment [113]. Dental practitioners need to be aware of the functional consequences changes

in food properties have had on the masticatory system and craniofacial development over the

past three centuries. The current research highlights the biomechanical feedback loop that

exists between food properties, chewing behaviours and dental wear. The differences inter-

preted in masticatory power stroke between the pre-industrial and industrial groups in the

current study likely underlay the developments in occlusion and craniofacial morphology that

have been previously reported as a result of the dietary changes that accompanied industriali-

sation [2, 14]. A reduction in the lateral component of jaw movement and chewing duration

during and following the Industrial Revolution due to the consumption of an increasingly soft

diet diminished the demands placed on the craniofacial complex during mastication [3, 15,

16]. This may fail to promote craniofacial growth and development to the extent that the hard

and tough ancestral diet of humans did resulting in changes in jaw morphology [14, 114, 115]

and lead to an increase in malocclusion over time [1, 2]. The changes seen in the industrial era

sample in this study reflect the impact of the early stages of the industrialisation of diet on

occlusal wear patterns and chewing kinematics, and may reflect the beginning of contempo-

rary dental behaviours.

As food properties are modified further in the future by both technological changes and

social factors, more frequent and perhaps more marked disturbances related to dental occlu-

sion might be anticipated. Diet in the 21st century have moved increasingly towards ultra-pro-

cessed foods; they form the principal source of dietary calories in the USA and UK [116–118].

These foods are mostly industrial formulations, made from substances extracted from foods

alongside additives, which are designed to be hyper-palatable and ready-to-consume. They are

also often soft, quick to eat and undemanding to chew [119, 120]. An increase in the preva-

lence of diet related diseases has been attributed to the growing reliance on these foods due to

their high levels of unhealthy types of fat, refined starches, free sugars and salt [10]. Little
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consideration has yet been made of their impact on the growth and development of the masti-

catory system. Studies have reported secular trends in the increased prevalence and severity of

malocclusion over the past century, which may reflect the greater uptake of these heavily pro-

cessed foods [121–123]. As a consequence, clinicians may need to be active in the physical

training of the masticatory system to ensure more optimal development in the absence of

appropriate dietary stimuli. Otherwise, negative functional consequences may result if the

masticatory system is not able to adapt to the rapid changes in food properties that are cur-

rently taking place.
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