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A B S T R A C T

Oxidative damaged DNA base lesions are repaired through human 8-oxoguanine DNA glycosylase gene (hOGG1)
mediated pathways. A recent report based on the meta-analysis has suggested that the DNA Repair Gene hOGG1
variant Ser326Cys [3p26.2; allele S/C in nucleotide position αHelix2 Ser⇒Cys326] was associated with Lung
Cancer risk in Caucasian population will alter the level Zhong et al., 2012. To the best of our knowledge, there
has not been any such comprehensive in-silico investigation that validates the functional and structural impact of
non-synonymous Lung Cancer Risk Associated Protein Domain (LCRAPD) mutation Ser326Cys (rs1052133) by
molecular dynamics (MD) simulation approach following prediction of hOGG1 protein before and after the
mutation. Further to the native and mutant protein structures, the amino acid residue and its secondary structure
were observed through a solvent accessibility model for protein stability confirmation at the point of mutation.
Taken together, this study suggests that the protein functional and structural studies could be a reasonable
approach for investigating the impact of nsSNPs in future studies. In addition, 4295 patients samples incorporate
with the analysis that genomic data types from cBioPortal. In the result, 4295 cases (91.5%) had alterations in all
genes but the frequency of alterations in our targeted hOGG1 gene was shown with and without case alteration
in the ratio (Logrank Test P-Value: 0.670) Kaplan-Meier by the number of patients at risk of the survival
function.

1. Introduction

DNA repair genes play a crucial role in maintaining the stability and
integrity of the genomic DNA. More than 130 genes are involved in
humans and base excision repair (BER) pathway is one of the five major
DNA repair pathways [1]. The BER pathway repair lesions of the DNA
bases including lesions caused by reactive oxygen species (ROS). The
key enzymes of the BER pathway are DNA glycosylases. The mamma-
lian cells have four major DNA glycosylases, including the human 8-
oxoguanine DNA glycosylase (hOGG1), which primarily recognizes 8-
oxodG but repairs other oxidized purines [2]. The hOGG1 gene is lo-
cated on the short arm of chromosome 3 (3p26.2), synthesizing the
enzyme, which removes 8-oxoguanine, a derivative of a mutagenic base
formed due to ROS. It breaks the glycosidic bond between the modified
base and the sugar moiety, leaving an apurinic/apyrimidinic site in the
DNA, which later on is incised [3]. The base excision repair (BER)
pathway is the real pathway for oxidative DNA damage repair [4]. In

cancer growth, the most imperative harm is brought about by re-
sponsive oxygen species is the oxidation of guanine, adenine, and
thymine. The most stable is 8-hydroxyguanine (8-OH-G) [5] produced
by the oxidation of guanine. 8-OH- G is highly mutagenic because it
mispairs with cytosine and adenine with equal efficiency during DNA
replication. This prompts an expanded recurrence of G:C to T:A trans-
versions that in oncogenes [6] or tumor suppressor genes can prompt
carcinogenesis. The BER pathway recognizes and repairs 8-OH-G fused
into incipient DNA and it expels changed nucleosides from the pool.
The principle BER segments are 8-oxoguanine DNA glycosylase hOGG1
and hMutY homolog (Escherichia coli). The hOGG1 involved in the
immediate repair of 8-oxoguanine DNA glycosylase and MUTYH is in-
cluded in the repair of A: 8-OH-G bungles because of its adenine gly-
cosylase movement [7]. The hOGG1 gene is located in chromosome
3p26.2 and this region of genome has been observed to be altered in
various tumors, especially [8], lung [9], stomach [10], thyroid [11],
laryngeal [12], colorectal [13], and pancreatic malignancy [14],
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indicating the loss of hOGG1 resulting in possible tumorigenesis and
loss of heterozygosity of markers [13]. The hOGG1 protein has two
isoforms, α-hOGG1 (345 amino acids) and isoform β-hOGG1 (424
amino acids). The upstream 316 amino acids are common between both
isoforms, however the C- terminal shows extensive alterations. The
hOGG1 has two key domains; the OGG-N domain containing mi-
tochondrial localization signal (MLS, position 9–26) that adds to the 8-
oxoG-tying pocket and the HhH-GPD domain (a helix-hairpin-helix
structural component followed by a Gly/Pro-rich loop and a preserved
aspartic acid) containing nuclear limitation signal (NLS, 335–342) and
gives both the catalytic [15] and DNA-tying functions of the DNA gly-
cosylase. The hOGG1 gene is highly polymorphic [16] and over 200
SNPs of this gene have previously been identified. (http://www.ncbi.
nlm.nih.gov/projects/SNP). Only few of these SNPs are potentially
functional and have previously been studied for their associations with
cancer susceptibility. The SNP rs1052133 (Ser326Cys) in the hOGG1
gene has been shown to alter amino acid Cys instead of Ser at codon
326 and decrease the enzyme activity. This polymorphism has pre-
viously been linked with increased lung cancer susceptibility [17].
Recently published meta-analysis report further confirmed the asso-
ciation of hOGG1 SNP Ser326Cys with lung cancer risk [18] and has
shown increased susceptibility of lung cancer in Caucasian population.
Therefore, further large-scale analysis of multiple genes expression
datasets might lead to the identification of more representative gene
expression signatures associated with Lung cancer predisposition.
Herein, we integrated one or more independent Lung cancer genes
expression datasets retrospectively, which led to the identification of a
hOGG1 genes that are associated signature associated with lung cancer
systemic deterioration. We have recently [19] published hOGG1 var-
iation (Ser326Cys; rs1052133) for breast cancer by in-silico studies.
However, this study investigated the in silico studies with lung Cancer
associated Ser326Cys (rs1052133) SNP variant in detail. To the best of
our knowledge, there has not been any such comprehensive in silico
investigation that validates the functional and structural impact of the
hOGG1 variation (Ser326Cys; rs1052133).

This study deals with the investigation of associations between ge-
netic mutation and phenotypic variation based on algorithms that de-
termine the effect of an amino acid substitution that alters the protein
structure and function using in silico methodology. Molecular dynamics
(MD) simulation studies have proven valuable in increasing the un-
derstanding and gain insight to explore the effect of non-synonymous
polymorphisms (nsSNPs) on the structure of a protein, particularly the
influence of an amino acid change that disturbs the protein–protein
interaction. Various calculations in view of arrangement and structure-
based methodology have been produced to anticipate the effect of
missense transformations on protein function.

The deleterious nsSNPs frequently to predict used computational
procedures such as sorting intolerant (SIFT) [20], PolyPhen2 and
screening for non-acceptable polymorphisms (SNAP) [21] were
exploited. Based on the results of the SIFT, PolyPhen2 and SNAP ana-
lyses, we predicted a three-dimensional (3D) model structure for the
hOGG1 protein domain and compared it with the mutant structure. To
study the structural modifications, the native and mutant protein
structures were predicted and evaluated using the structural assessment
program such as ProSA-web [22]. The ProSA-web Z-score is used to
examine the changes caused due to a mutation in the protein structure.
The 3D confirmation computational method [23] was utilized to check
the mutated site based on the range of scores between native and mu-
tant residues. Furthermore, the computationally predicted hOGG1 do-
main structure carrying Ser326Cys mutation i.e. lung cancer risk as-
sociated protein domain (LCRAPD) with its native protein domain
structure was compared by superimposing the two structures. More-
over, the native and mutant protein domain structures were also ex-
amined for the solvent accessibility and secondary structural arrange-
ments.

2. Materials and methods

2.1. Dataset sources

Zhong et al., 2012 studied the polymorphism in hOGG1 genes
through meta-analysis and validated the association between the
hOGG1 Ser326Cys polymorphism and lung cancer risk. They performed
meta-analysis of 20 studies (8739 cases and 10385 controls) using
STATA version 11.1 stratified by ethnicity, control sources, cell histo-
types, and smoking status [18]. Additional 4295 patients samples in-
corporate with our analysis that genomic data types from the cBioPortal
(http://www.cbioportal.org), which include were in somatic mutations,
DNA copy-number alterations (CNAs), mRNA and microRNA (miRNA)
expression, DNA methylation, protein abundance, and phosphoprotein
abundance.

2.2. Statistical analysis

Fisher's exact test and the Mann-Whitney [24] test implied used to
investigate the categorical and constant variables. We determined and
compared survival curves using the Kaplan-Meier [25] method and log-
rank tests [26]. Cox proportional hazards model was used to analyze
associations between Clinic-Pathological symptoms and patient sur-
vival. Overall survival (OS) data was taken from the cbioportal (http://
www.cbioportal.org). The representation of overall survival was the
time between the procedure date when the tumor specimen was col-
lected and the date of death or last follow-up visit [27].

2.3. Protein structure modeling

The SNP database for the variant rs1052133 (Ser326Cys) in the
hOGG1 gene was searched in the database of single nucleotide poly-
morphism (dbSNP) [28]. Detailed information about the Ser326Cys
SNP was obtained from the Human Genome Variation database
(HGVBASE) regarding the coding regions of the gene and the location of
the mutation. The Protein Database (PDB) database revealed that the
crystallographic structure of hOGG1 protein was available but only for
residues up to #324, however no protein domain matched for the area
where the mutation was located (Ser326Cys). The mutation
(Ser326Cys) was located at position 326, therefore amino acids se-
quences from 296 to 345 were selected for fragment sequence align-
ment and for predicting a 3D protein domain structure of lung cancer
risk associated protein domain (LCRAPD) based on QUARK de novo
algorithm using ab initio method [29]. Consequently, the protein do-
main structure having the variant allele S/C (rs1052133) at codon
position 326 (Ser326Cys) from the hOGG1 gene was structurally pre-
dicted. The QUARK ab initio structural prediction procedure was di-
vided into three steps; multiple feature predictions, fragment genera-
tion starting from our query sequence and decoy structure clustering
along with full-atomic refinement.

2.4. Prediction of functional effect of tolerated and deleterious SNPs

Sorting Intolerant from Tolerant (SIFT, version 2) program identi-
fies whether or not an amino acid substitution alters a protein function
and its phenotype. SIFT program can differentiate functionally neutral
and deleterious amino acid alterations and is utilized for polymorphism
and mutagenesis related studies [20]. The SIFT program applies
homologous sequences algorithm for detection and database based on a
conserved sequence score median value 3.00. SIFT scores were classi-
fied as intolerant (0.051–0.10), borderline (0.101–0.20), and tolerant
(0.201–1.00). PolyPhen2 program was used to predict the possible
impact of an amino acid substitution on the structure and function of
the variant protein. PolyPhen 2.0 (http://genetics.bwh.harvard.edu/
pph2/index.shtml) exploits a blend of sequence and structure based
features and uses naive Bayesian classifier for the identification of an
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amino acid substitution and the effect of mutation. In addition, the
SNAP program was used to detect the effect of the variant (Ser326Cys)
on the protein function [30,31]. The SNAP scores (RI>=0 binary)
were translated into binary predictions effects (present/absent) and
along with reliability indices (RI), where the distance from binary de-
termination boundary (0) measures the reliability of the impact [21]. A
damaging signal of a variant will indicate that the mutation is predicted
to be stabilizing, otherwise it will be destabilizing. The ΔΔG values were
measured in kcal/mol. Furthermore, Function Analysis and Selection
Tool for Single Nucleotide Polymorphisms (FASTSNP) was also used, a
web-based server, which allows users to recognize and list SNPs that are
expected to have functional, effects (http://fastsnp.ibms.sinica.edu.tw).

2.5. Prediction of structural impact

Structural impact was performed using Have yOur Protein Defined
(HOPE) program [32], which was developed by the CMBI, department
of Bioinformatics of the Radboud University, USA. The program esti-
mates the impact of a mutation on its structure. The report displays the
functional contacts like metal, DNA, hydrogen bonds, ionic interactions
along with the mutation impacts on the essential contact, structural
areas together with motifs, domains, and trans-membrane domains.
Therefore, it offers the foremost dependable method to acquire data and
explores details across the "actual protein structures" based on anno-
tated information in Universal Protein Resource (UniProt) and utilizes it
by prediction by DAS-servers [33]. The information was obtained using
WHAT IF web, the UniProt database and a series of DAS-servers. The
structural information was obtained from the analysis of PDB ID 2XHI
and annotations about this protein were accomplished from the Uni-
Prot-entry O15527 (OGG1_HUMAN).

2.6. Molecular dynamics simulation

CHARMM-GUI (http://www.charmm-gui.org) [34] is an online
graphical user interface program to evaluate the data and molecular
systems. The molecular dynamics simulations were accomplished with
a 5-fs time period at a continuous temperature of 300K and along with a
constant pressure of 1atm under periodic solvent boundary conditions.
The Chiron program that rapidly minimizes the steric clashes in pro-
teins using short discrete molecular dynamics (DMD) simulations was
used [35], which additionally allowed the comparison of the refined
structures with the predicted protein domain structure to evaluate the
changes. The solvated system was not decreased nor equilibrated. The
MD simulations were performed by employing the biomolecular simu-
lation program CHARMM, widely used for macromolecular mechanic
and dynamic studies, with wide-ranging assessment and management
comprehensive tools for atomic coordinates along with dynamics ex-
trapolations. Such simulations usually are based on two schemes, par-
ticularly, energy minimization and molecular dynamics, which allows
an improved structure and simulated natural motion of biological
macromolecules, respectively. The Gromacs exploits force field for en-
ergy minimization initially by the steepest descent; conjugate gradient
and Limited-reminiscence Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
approaches [36]. The free energy simulations were accomplished with a
small number of explicit solvent water molecules adjacent to the solute
and solvent mass was displayed as a realistic efficient solvent boundary
potential (SSBP). The initial pattern of ions was confirmed using the
Monte Carlo (MC) simulations through the primitive using model with
van der Waals (vdW) interaction. The Particle Mesh Ewald (PME)
methodology [37] was applied for electrostatics, and a 12 Å cutoff for
vdW interactions. About 51M ions provided were in the simulation box
by stating ions (KCl) with focusing C. The mutation (Ser326Cys) was
studied using CCP4 program (QtMG) [38], and energy minimization for
the 3D structures performed using Chiron server [35]. KCl was in-
corporated to neutralize the overall negative charge of the structures
(Jo et al. 2008). A simulation of the whole protein in the water was

acquired by immersing the molecular structures, in a solvent with si-
mulation parameters, as well as energy minimization was performed to
analyze of the structure. A knowledge-based server for protein struc-
tural refinement (KoBaMIN) [39] was used for the SNP variant
rs1052133 (Ser326Cys) of the 3D hOgg1 protein domain structure to
check the energy function along with the solvent environment. The
solvation free energy was indicated as non-polar and electrostatic
contributions; nevertheless the non-polar influence was partitioned into
repulsive and dispersive contributions using exploiting the Weeks.

2.7. Normal mode (NM)-Based geometric simulation of hOGG1 domain

The protein conformational changes and normal modes were com-
puted for the LCRAPD (hOGG1) structure through the stringent cluster
normal-mode analysis (RCNMA) module [40]. The NMSim module
primarily obtained the structure based on low-frequency normal modes
and then generated a reliable chemically valid conformation from the
predicted structure [41]. The RCNMA and NMSim programs were in-
corporated with supercomputing cluster with capability of high nodes
clustering. The LCRAPD structure was used for the NM simulation for
before and after the alteration for the biologically relevant conforma-
tional transitions in the hOGG1 protein domain established on the
following fixed parameters: the radius of gyration motions, E-cutoff for
h-bonds (kcal/mol): −1, Hydrophobic cutoff (Å) and method: 0.35,
NMSim No. Of trajectories: 1, No. Of cycles: 1, Side-chain distortions:
0.3, No. Of simulation cycle: 500, output frequency: 1, Nm mode range:
1–50, ROG mode: 1, step size: 0.5. RCNMA cutoff for c-alpha atom (Å):
10. The estimated runtime was 66.84 h (Performing simulation cycle no
of 1-500atoms/1–5). The RMSD and RMSF values were calculated
subsequently superimposing the modeled conformations onto the na-
tive LCRAPD structure.

3. Results

3.1. Genomic alterations associated with hOGG1 - genes in lung
adenocarcinoma

The mRNA versus copy-number shown a box-and-whisker plot to
mRNA expression of a gene plotted in relation to its copy-number al-
teration in each Lung adenocarcinoma dataset sample total from 4295.
Copy-number preserve be either were in homozygously deleted, het-
erozygously deleted, diploid, gained amplification with relatively
number of copies, or amplified. The mRNA-versus-DNA methylation of
a scatter plot of mRNA expression compared with DNA methylation of
genes across from all selected samples. A methylation beta-value is an
estimate for the methylation level of a CpG locus by using the ratio of
intensities between methylated and unmethylated alleles. The hOGG1
protein level versus mRNA scatter plot of protein abundance compared
with mRNA abundance for a gene across all selected samples. In this
study, 4295 cases (91.5%) had alterations in all genes; the frequency of
alterations in our targeted hOGG1 gene was shown with and without
case alteration in the ratio (Logrank Test P-Value: 0.670) by Kaplan-
Meier estimate in Fig. 1A–E. For most alterations were classified as deep
deletions, with a few cases of truncating mutations. For MutyH (51%),
the majority of alterations were amplifications, with a small fraction of
missense mutations. For PTEN (27%) and BRCA1 (22%), the gene
changes included deep deletions and truncating, missense and inframe
mutations.

3.2. MD simulation and solvent accessibility

Point mutation causing amino acid modification may significantly
alter the stability of the protein structure; therefore, protein structural
data provide useful information for a comprehensive understanding of
its functionality. The information about the SNP variant Ser326Cys) in
the hOGG1 gene was obtained from the database of single nucleotide
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polymorphism (dbSNP) (http://www.ncbi.nlm.nih.gov/SNP) [28].
Further information about the coding regions of the gene and the lo-
cation of the Ser326Cys SNP variant was collected from Human
Genome Variation database (HGVBASE) (www.hgvs.org/). The PDB
database search revealed no protein domain matching the hOGG1
protein structure in the area of the Ser326Cys mutation. Crystal-
lographic structure of hOGG1 protein was available for residues up to
324, but not for the area where the variant Ser326Cys was located i.e.
position 326. Hence, sequences from 296 to 345 amino acids in hOGG1
were selected for fragment sequence alignment for the structure pre-
diction based on QUARK de novo algorithm using ab initio method. The
mutant amino acid position was αHelix2-Ser326Cys where Cystine was
the mutant residue instead of Serine. The QUARK de novo algorithm
resulted in ten best models based on the C-score for each model. The
selected model consisted of the largest cluster and showed the best C-
score among the top ten templates generated (Fig. 2A). The protein
structure confirmation and quality of the native protein structure were
obtained by ProSA program (https://prosa.services.came.sbg.ac.at/
prosa.php). The overall quality of the model indicated a Z-score of
−5.36. The predicted LCRAPD before and after the mutation (αHelix2
Ser⇒Cys326) was obtained using SWISS-PORT and CCP4 (QtMG),
showed the best estimated TM-score, 1: 0.4121 ± 0.0833 based on I-

Tasser results (Fig. 2A and 2B). The native and mutant structures of the
LCRAPD were examined based on the RMSD using NOMAD-Ref Gro-
macs and KoBaMIN. The results showed that LCRAPD after Ser326Cys
mutation resulted in higher energy value compared to the native
structure without mutation (Fig. 2C). The KoBaMIN program was used
to minimize the energy of the mutated LCRAPD structure
(−146.850 kJ/mol; score 0.80) compared to the native structure en-
ergy (36.584 kJ/mol; score: −3.33). After energy minimization re-
finements the structure based on the potential of mean force resulted in
0.2452 Å RMSD. The normal mode simulation (NMSim) program was
used for observing the multi-scale modeling of protein conformational
changes in native and mutant protein structures. The RMSD graph was
constructed using Cα atom of LCRAPD structure showing a number of
conformations between the native and the mutant structures. The two
graphs (Fig. 3A and 3B) demonstrate the conformational changes of the
mutant and native LCRAPD structures. The graph 3A indicates the Ca α
atom effect on the RMSD of native and the mutant structures over the
trajectory, whereas the graph 3B exhibits the Ca α atom of these two
structures based on RMSF over the trajectory. The RMSD and RMSF
were calculated by superimposing the modeled conformations onto the
wild LCRAPD structure with respect to the Ca α atoms. The CHARMM
program was used for the MD simulations to observe the consequences

Fig. 1. A-E. (A) The overall number of samples survival of case with and without alteration (Logrank Test P-Value: 0.670). (B) Overview of clinical attributes and a
scatter plot of mutation count versus fraction of genome altered for each case in the TCGA endometrial cancer study. (C) ERBB2 mRNA expression is increased in
samples with DNA amplification, and ERBB2 protein abundance was higher in samples with increased mRNA. A plot showed the relationship between ERBB2 mRNA
abundance and CNA in the ERBB2 gene of Ogg1 in tumors from the selected lung cancer. (D) Different types of lung cancer with alteration shown in a different
frequency (E) The overall survival for the total number of average infected both male and females, A status of the patients condition living and decrease and the
number of samples per patient.
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of the mutation by comparing the native and mutant structures under
solvation. The results indicate that the solvate accumulated successfully
around the LCRAPD structure with water molecules and showed fully
solvated structure with an edge distance of 10.0 (Fig. 3B). The results
showed that the LCRAPD before mutation showed a ΔΔG -1.74 kcal/
mol energy which was stabilizing, however after the Cys326 mutation,
the energy was higher i.e., ΔΔG 2.07 kcal/mol and was destabilizing
(Fig. 3C). The native and mutant LCRAPD structures were also super-
imposed and exhibited an RMSD of 1.04 Å.

3.3. Structural implications of the disease-causing variant

The native and the mutant residues differed in physical and func-
tional properties (Fig. 4A–B). The results showed that the Ser326Cys
mutation varied from the wild residue in specific size, charge, and
hydrophobicity values. Residues in the vicinity of the mutated residue
of Cys when annotated with the UniProt database revealed to be a
binding site, hence, the mutation may perhaps effect the LCRAPD
structure at the site of mutation and will consequently affect the
binding site. The wild residue in the 3D structure was situated in its
preferred secondary structure, which was a turn. However, the mutant
residue altered the secondary structure; and the local conformation

became destabilized and expected to be damaging to the protein. The
Ser326Cys mutation was located in an area known to be splicing var-
iants isoforms "2B and 2C". The mutant Cys residue accompanied along
with other types of residues formerly have been perceived at this lo-
cation in other homologous sequences. The mutant residue was buried
in the core LCRAPD domain and caused a disturbance in the structure.
The wild type and mutant residues also differed in their hydrophobicity
and resulted in the loss of hydrogen bonds of the core region of the
domain, hence will eventually disturb the correct protein folding con-
formation. Support Vector Machine (SVM) was applied for numerous
classification tasks. The SNPs 3D database provides SVM profile score
for the functional effect of deleterious or non-deleterious nsSNPs. The
observed SVM score for the Ser326Cys variant was −0.82 and showed
its molecular effect on the protein structure under salt bridge (Table 1).

3.4. Functional implications of the disease-causing variant

The SNPs have been known to represent the largest number of all
genetic variations. We utilized SNAP method to identify its influence on
the protein functionality. The result if shown as "neutral” will not be
functionally different from the wild type, however if it is "non-neutral"
then the mutant based on the output score will have an impact on the

Fig. 2. A-C. The LCRPD structure modeling validation, energy minimization and refinement
A) The predicted protein structural model was based on sphere model for hOGG1 239–345 amino acid residues (blue and yellow color) the location of mutated
residue is shown in red. The Z-score, which indicates overall model quality was −5.36 for LCRPD (black color). The Z-score plot from different sources (X-ray, NMR)
was distinguished by various colors (X-ray in sandal; NMR in blue). B) The structure of wild type LCRPD structure with αhelix2 Cys326 shown in blue and green
colors, whereas the mutant structure having αhelix2 Ser326 is shown in violet and grey colors. C) The LCRPD structural refinement and energy minimization were
performed using MD simulation where the benchmark distributions is shown in black color, initial structure (146.850 kcal/mol Energy) is shown in red, whereas the
final structure (36.584 kcal/mol Energy) is shown in green color. The RMSD was 0.2452 Å.
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phenotype and perhaps be deleterious (Fig. 5A). The SNAP scores
(RI>=0 binary) translated into binary predictions effects (present/
absent) along with the reliability indices (RI) showed an expected 70%
risk for the hOGG1. In addition, SIFT program was used to examine the
tolerance and intolerance of a substitution form all other SNPs of the
hOGG1 gene from 301 to 345 amino acid residues of LCRAPD and

showed an intolerance index score 0.05 (Table 2). The intolerance
threshold Seq-Rep indicated that the sequence has one of the basic
amino acids, where as a small fraction shows that the site was severely
gapped or unalienable. The SIFT scores were classified as tolerant
(0.201–1.00) or intolerant (0.051–0.10) and borderline (0.101–0.20).
About 45 out of 500 nsSNPs, showed extremely deleterious tolerance

Fig. 3. A-D. Protein conformational changes via simulation
A) The graph is showing the Cα atom RMSD of the initial structure over the trajectory obtained for a ROG-guided NMSim for LCRPD structure before and after
mutation. The wild type is shown in green and the mutant type is shown in red color. B) The graph is showing the Cα atom RMSF over the trajectory obtained for a
ROG-guided NMSim for the modeled protein domain before (green) and after (red) mutation. C) The LCRPD structure was shown via MD simulation with truncated
octahedron boundary explicit water solvated molecule and hydrogen atoms. The side chain of a histidine residue was interacting with the hydrogen bond along with
surrounding molecules and the δ nitrogen of the histidine (HSD1-4) was a protonated residue. D) The LCRPD structure before the mutation was αhelix2 Ser→Cys326
(S→C) (blue and green color) (ΔΔG -1.74 kcal/mol), whereas after the destabilizing mutation it was changed αhelix2Cys→Ser326 (C→S) (ΔΔG 2.07 kcal/mol) (violet
and grey color). The two structures (wild and mutant) were superimposed showing RMSD 1.04.

Fig. 4. A-B. The superimposed native and mutant LCRPD structures with different orientations
A-B) The mutant (green) and wild type (violet) LCRPD structures with particular residue shown in yellow (wild type, αhelix2 CYS,) and grey (mutant type, αhelix2
SER).
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index score 0.00, 3 showed 0.02 score and other 3 had a 0.04 score,
whereas the other 39 had 0.01 score signifying that the SNP in the
hOGG1 gene will have an impact on the protein function. Furthermore,
the PolyPhen program also predicted that the amino acid substitution
would probably have an impact on the structure and function of the
protein when 12 nsSNPs protein sequences were analyzed. The results
were based on the position-specific independent score (PSIC) differ-
ences (PSIC SD;≥ 1.5 w) interpreting that an amino acid substitution is
considered to be damaging and most likely will have an impact. Our
results showed that out of the 12 nsSNPs, five (rs1805373, rs55667729,
rs9824261, rs1052133 and rs1052134) were damaging with PSIC SD
score≥ 2.5, twenty with PSIC SD score≥ 2.0 and one with PSIC SD
score≥ 0.01 and were also shown to be deleterious following SIFT
analysis. Based on the PSIC SD as well as SIFT scores, one of the nsSNPs
rs1052133 that showed SIFT damaging score 0.05 and PSIC score 1.2,
was selected for further analysis. Furthermore, to identify the nsSNP
showing a functional effect, FASTSNP was also applied for exploring the
nsSNPs influence on the protein's cellular and molecular function such
as transcription and splice regulation. The prioritizing method was used
for SNPs in transcripts filtering. There were 21 transcript SNPs how-
ever, only one transcript (ID: ENST00000344629; Refseq mRNA) was
selected. The result of first filtration showed 30 SNPs in 5′-Upstream, 8
SNPs in 5′-UTR, 74 SNPs in intronic 4 SNPs in 3′-UTR, 38 SNPs in 3′-
downstream and 12 SNPs in the coding region. The functional sig-
nificance of hOGG1 nsSNPs is also shown in the Table 3.

3.5. Impact of Ser326Cys mutation on the protein stability

To observe the thermodynamic protein stability changes as a result
of the Ser326Cys mutation in the protein, PopMuSic-2.0 was utilized
based on the statistical potentials of linear sequence coefficients to
determine the solvent accessibility model following the alternation. The
results showed that altering amino acid Ser to Cys at position 326 will

cause excessive folding free energy (ΔΔG=0.64 kcal/mol) in the mu-
tant structure compared to the native LCRAPD structure
(ΔΔG=0.01 kcal/mol). The mutation caused a significant (r2= 0.8)
disturbance in the protein folding particularly in the region of the
mutation and resulted in noticeable stability changes. The solvent ac-
cessibility (Acc) modeling altered LCRAPD structure, indicating that the
Acc for the mutant (Ser326Cys) was 39.01 (31%) whereas for the native
structure it was 30.82 (30%) (Fig. 5B–C). The structural weakness was
considerably higher than the normal, indicating that a mutant site may
alter the proper function of a protein when it becomes un-stabilized.

4. Discussion

Several severe ailments including cancer are due to oxidative stress.
When the oxidative stress surpasses beyond the usual protective me-
chanism's capability, the reactive oxygen species causes modifications
in the DNA such as d 8-oxo-guanine base alterations that may lead to
carcinogenesis. The carcinogenesis in the lung tissue may be due to
tissue injury where the ROS can react with the DNA and generate
genomic mutations [42]. One of the key mechanisms that preserve the
genomic stability is the base excision repair (BER) and any alterations
in this function will result in 8-OHG lesion accumulations including
other DNA base lesions, which will have an impact on the initiation and
progression of cancer [43]. The hOGG1 is an important enzyme of the
BER pathway because of its role in the initial excision of the regularly
occurring oxidative damage of the DNA 8-OHG base [44]. The hOGG1
is an 8-oxoguanine DNA glycosylase/AP lyase responsible for the
elimination of 8-OHG from DNA [45]. Among the several polymorph-
isms that have been observed in the hOGG1 gene, single nucleotide
polymorphism at codon 326 (Ser326Cys) is the most studied one.
Homozygous carriers of the Ser326Cys variants of the hOGG1 gene have
shown to lessen the repair capacity for the oxidized DNA lesions [46]. It
has been suggested that the Ser326Cys (rs1052133) polymorphism of

Table 1
Structural effects of non-synonymous SNPs.

Molecular Functional Effects of non-synonymous SNPs

Refseq accession SNP SNP ID SVM SVM structure Molecular effect Frequency

NP 002533 P27T rs11548133 −0.04 0.46 On the protein surface –
A25S rs19050550 1.22 0.94 On the protein surface –
R229Q rs1805373 −0.61 −0.46 Hydrogen Bond Lost and Salt Bridge Lost 0.03
A288V rs3219012 0.59 1.16 On the protein surface 0.00
S320T rs1801128 1.21 −1.15 Salt Bridge Lost 0.01
D322N rs3219014 −0.07 −1.06 – –
S326C rs1052133 −0.82 Salt Bridge Lost 0.29

NP 058212 P27T rs11548133 −0.01 0.46 On the protein surface –
A85S rs17050550 1.13 0.94 On the protein surface 0.03
A288V rs3219012 0.70 1.16 On the protein surface 0.00

NP 058213 P27T rs11548133 −0.05 0.54 On the protein surface –
A85S rs17050550 1.24 0.98 On the protein surface –
R229Q rs1805373 −0.68 −0.04 Hydrogen Bond Lost and Salt Bridge Lost 0.03
A288V rs3219012 0.76 1.14 On the protein surface 0.00
Y321H rs3219013 −0.10 – 0.00

NP 058214 P27T rs11548133 −0.06 0.46 On the protein surface –
R229Q rs1805373 −1.02 −0.46 Hydrogen Bond Lost and Salt Bridge Lost 0.03
A288V rs3219012 1.12 1.16 On the protein surface 0.00

NP 058434 P27T rs11548133 −0.35 0.46 On the protein surface –
A85S rs17050550 1.19 0.94 On the protein surface –
R229Q rs1805373 −0.89 −0.25 Hydrogen Bond Lost 0.03

NP 058436 P27T rs11548133 0.23 0.46 On the protein surface –
A85S rs17050550 0.99 0.94 On the protein surface –

NP 058437 P27T rs11548133 −0.04 0.56 On the protein surface –
A85S rs17050550 −0.04 0.46 On the protein surface –
R229Q rs1805373 −0.80 −0.46 Hydrogen Bond Lost and Salt Bridge Lost 0.03
A22V rs3219012 1.00 1.16 On the protein surface 0.00

NP 058438 P27T rs11548133 1.11 0.94 On the protein surface –
R229Q rs1805373 −0.99 −0.46 Salt Bridge Lost 0.03
A288V rs3219012 0.91 1.16 On the protein surface 0.00
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hOGG1is due to the oxidative damaged of DNA and its repair activity
through dominant and additive effects [47]. We have recently reported
the involvement of Ser326Cys genotype and increased risk of breast
cancer in the Saudi individuals and also studied the structural con-
sequences of hOGG1 variant Ser326Cys through structural prediction
and in silico computational analysis [19]. The results further showed
that the variant Ser326Cys probably disrupt the protein structure and
may result in the malfunction of the hOGG1 protein.

Newly, remodeling controls the expressions of many genes are as-
sociated as tumor suppressors in Lung adenocarcinoma [48] and in
other cancers [49]. Importantly, variations in copy number and somatic
mutations in Ogg1 are present in many types of cancer [30] (http://
www.cbioportal.org/public-portal/). Additional considerations are re-
quired to elucidate how hOGG1 contributes to Lung adenocarcinoma
susceptibility. For example, the risk (72Pro) allele of the TP53-
Arg72Pro SNP encodes a protein with weaker apoptotic activity of the
72Arg allele that enables increased survival of DNA-damaged cells
while the risk (326Cys) allele of the Ser326Cys SNP in hOGG1 encodes
a DNA glycosylase with weaker activity in the repair of oxidative

promutagenic base damage, 8-hydroxygua- nine, produced by tobacco
and other carcinogens than that of the 326Ser allele [50].

In this study for the first time the functional and structural impact of
the Ser326Cys variant through in-silico approaches. Based on a recently
published meta-analysis study, the variant Ser326Cys [3p26.2; allele S/
C in nucleotide position αHelix2 Ser⇒Cys326] of hOGG1 gene has
shown that the mutated variant is associated with the increased lung
cancer risk in the Caucasian population [18].

It has been observed that some point mutations may cause a change
in the amino acid, which will alter the stability of a protein structure.
Hence, the mutant protein's structural information could provide useful
information to understand its functionality. The SNP data for the
Ser326Cys mutation was obtained from databases dbSNP and
HGVBASE, which revealed that the mutation was present in the exonic
region of hOGG1 gene causing a missense modification. Upon the PDB
database search, the hOGG1 protein showed a structural domain up to
only 324 residues. Because our the mutation (Ser326Cys) was located at
residue 326 and there was no hOGG1 protein structural domain avail-
able for that region in database, therefore a protein structural domain

Fig. 5. A-C
A) Effects of single amino acid substitutions on protein function. B–C) The protein stability changes upon mutation.
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spanning the mutant residue (Ser326Cys) at codon position, a 345
amino acid long stretch of peptide sequence starting from 296 to 345
amino acids (LCRAPD) was predicted using QUARK de novo algorithm
[29] followed by the prediction of altered predicted structure using
SWISS-PORT and CCP4 programs. In addition, the NOMAD-Ref Gro-
macs and KoBaMIN programs were used for the native and mutant
protein structures based on the RMSD minimizations energy values.
Once the native protein structure through energy minimization was
performed by KoBaMIN program a pertinent protein domain structure
was generated. The mutation impact on predicted protein structure was
then also observed through the molecular dynamic simulations for
native and mutated structures under appropriate solvent conditions.

The results confirmed the previous claim that the Cys326 residues
may likely be involved in protein function and are the possible candi-
dates for OH-induced modifications and Gαi2 activation [51]. The
functional and structural studies evaluated the effect of the mutated
“Cys” residue and showed that as a result of mutation the size, charge,
and hydrophobicity values of the protein structure were altered. Re-
sidues in the area of the mutated residue (Cys) when annotated in-
dicated to be a binding site; thus as a consequence Ser326Cys mutation
could affect the local structure and the binding site. The local con-
formation was destabilizing because the mutation was located in a re-
gion with known splice variants such as "In isoform 2C” and "In isoform
2B”. It is therefore, expected that the mutation will likely be damaging
to the protein due to the loss of hydrogen bonds and as a result of
alterations in its folding pattern.

The SIFT program in this study was used to observe the effect of
amino acid substitution on protein function. The SIFT predictions were
made on the basis of amino acid conservation among sequence align-
ments of the closely related sequences. The SIFT extrapolations for the
sites from 301 to 345 residues of the LCRAPD structure were studied
and a small fraction showed that the location was severely gapped or

unalienable, therefore a prediction low quality extrapolation was ob-
served at this position, when results were obtained based on previously
acknowledged classification [52]. The SIFT scores for the 500 nsSNPs
indicated that 45 nsSNPs were highly deleterious with tolerance index
score 0.00A. The variation within the functional domain in both oxygen
binding and protein interactive region indicated that it will likely have
an impact on the protein function and structure stability. The results
endorsed that the accurate prediction of a protein stability alterations
due to single amino acid mutations proved to be important to under-
stand the protein's structural and functional effects. Polymorphism in
DNA repair genes may alter protein function and an individual's ability
to repair the damaged DNA; therefore, any error in the DNA repair
efficiency will lead to cause a critical genetic mutagenesis and conse-
quently will result in carcinogenesis [53]. Our results, based on the
coefficients determined by solvent accessibility of the mutated residue
(Ser326Cys), showed that the thermodynamic properties of the protein
stability changes will have an impact on the protein structure and
function. The results yielded excessive-folding free energy
(ΔΔG=0.01 kcal/mol) due to Ser326Cys amino acid alteration com-
pared to the normal folding (Cys326Ser) with free energy
(ΔΔG=0.64 kcal/mol), causing it to be destabilizing. The dataset of
known catalytic sites will be considerably bigger than the normal and
will result in structural changes, hence will affect the function and the
stability of the protein due to Ser326Cys amino acid alteration. Overall
these studies, computationally predicted hOGG1 structure and com-
pared the mutant protein carrying Ser326Cys mutation with the native
protein structure by superimposed. In addition, we also examined the
native and mutant protein structure for solvent accessibility and sec-
ondary structures. As well as limitation parameter of these studies in
future to continue relating to elucidating the role of this SNP in treat-
ment response would be helpful for the better management of this
disease.

Table 2
Protein Functional Impact.
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5. Conclusion

The functional and structural impact of disease causing hOGG1
SNPs variant Ser326Cys was studied using computational as well as
bioinformatics strategies and the predicted normal and mutated protein
structures were compared. Our results proved and confirmed the pre-
viously reported finding related to the Ser326Cys variant through de-
tailed computational and bioinformatics approaches. This study implies
that the current structural and functional prediction procedures used in
this analysis are valuable tools for selecting a set of probable disease-
associated SNPs and to observe their relevance to a particular disease.
Nonetheless, supplementary long-term follow-up investigations may
possibly be a prerequisite to estimate the survival rates that are asso-
ciated with the risk allele.
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