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Abstract: Marine sponges are one of the prolific producers of bioactive natural products with
therapeutic potential. As an important subgenus of Haliclona, Reniera sponges are mainly distributed
in the Mediterranean Sea and Atlantic area, and had been chemically investigated for over four
decades. By an extensive literature search, this review first makes a comprehensive summary of all
natural products from Reniera sponges and their endozoic microbes, as well as biological properties.
Perspectives on strengthening the chemical study of Reniera sponges for new drug-lead discovery are
provided in this work.
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1. Introduction

Marine sponges are widely distributed across oceans and represent one of the most
diverse groups of primitive multicellular aquatic animals in nature. Numerous chemical
investigations have indicated that this marine creature is one of the most attractive sources
of precious natural products with the potential of clinical application [1]. As one of the
important marine sponges found in the Mediterranean Sea and Atlantic area, Reniera was
originally assigned as one genus and later classified to be one subgenus of Haliclona [2].
Morphologically, Reniera sponge has a soft texture and brownish-maroon epidermis, and its
body is soft and fragile and looks like a compressed tree with simple digitate branches and
spicules of various sizes [3]. Meanwhile, this marine sponge harbors a special arrangement
of the flagellated chambers in the incurrent and excurrent canal systems [3]. To the best of
our knowledge, the subgenus Reniera consists of at least 16 species, including R. albescens,
R. coccinea, R. cratera, R. fallaciosa, R. fascigera, R. fragilis, R. fulva, R japonica, R. lacteal,
R. membrana, R. mucosa, R. porosa, R. porrecta, R. reticulata, R. sarai, and R. thomasii [4].
On the basis of an extensive literature search using SciFinder and Dictionary of Natural
Products databases covering up to December 2020, this review comprehensively makes an
overview of all natural products from Reniera sponges and their endozoic microbes, as well
as biological properties.

2. Natural Product Inventory of the Subgenus Reniera

Chemical studies of the marine sponge subgenus Reniera date back to the early 1970s.
Until 2020, as many as 121 natural products had been isolated and characterized from
Reniera sponges and their endozoic microbes. According to their chemical structures, these
biomolecules are grouped into five types including alkaloid, terpenoid, polyketide, sterol,
and cerebroside and ceramide, which are respectively introduced in detail as follows.

2.1. Alkaloids
2.1.1. 3-Alkylpyridiniums

Reniera sponge-derived 3-alkylpryridiniums are inseparable dimers or polymers with
various degrees of polymerization (DP) and different lengths of alkyl chains. Usually,
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polymeric 3-alkylpyridinium salt (Poly-APS) possesses a broad spectrum of biological
properties, including a potent inhibitory effect on acetylcholinesterase and phosphatase 2A,
and cytotoxic, hemoclasis, and proarrhythmogenic activity [5–13]. Moreover, these natural
products had been found to inhibit microfouling, and the proliferation and movement of
susceptible algae and biofilm bacteria [14–16]. The chemical study of Reniera sp. collected
from Pemba Island (Tanzania) afforded three novel cyclic 3-alkylpyridiniums named
njaoaminiums A (1), B (2), and C (3) (Figure 1), of which compound 2 has weak cytotoxicity
against three human tumor cell lines A549 (lung carcinoma), HT29 (colon carcinoma), and
MDA-MB-231 (breast) with GI50 values of 4.1, 4.2, and 4.8 µM, respectively [17]. Two cyclic
poly-APSs (4 and 5) with a respective DP of 29 and 99 were separated and characterized
from the Mediterranean specimen of R. sarai [18]. One search for the chemical synthesis
of poly-APS resulted in the production of three novel analogs APS8 (6), APS12-2 (7), and
APS3 (8), of which compound 8 is a mixture of two polymers with DPs of 10 and 32
covalently linked N-butyl-3-butyl pyridinium units in a 9:1 ratio. Bioassay suggested that
compound 6 exhibited a toxic effect on the non-small cell lung cancer (NSCLC) tumor
cell line but nontoxicity against normal lung fibroblasts [9], while 7 could cause vascular
smooth muscle contraction and a decrease in arterial blood pressure and 8 could block
muscle-type nicotinic acetylcholine receptors (nAChRs) [19,20].
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Figure 1. 3-Alkylpyridiniums 1–5 from the subgenus Reniera and their derivatives 6–8.

2.1.2. Quinolines and Isoquinolines

Bioassay fractionation of the 2-propanol crude extract of Reniera sp. collected from the
Njao area (Tanzania) afforded eight new polycyclic quinolines and njaoamines A–G and I
(9–16) (Figure 2); compounds 9–14 demonstrated potent cytotoxicity against human tumor
cell lines colon H-T29, lung A-549, and breast MDA-MB-231 with GI50 values ranging from
1.5 to 7.2 µM; and compound 16 had cytotoxic effect on three human tumor cell lines includ-
ing MDA-MB-231 (breast), HT-29 (colon), and NSLC A-549 in the micromolar range [21,22].
Chemical analysis of the similar specimen collected in Isla Grande (Mexico) afforded nine
antimicrobial isoquinolines (17–25), including five monomers renierone (17), 7-methoxy-
1,6-dimethyl-5,8-dihydroisoquinoline-5,8-dione (18), N-formyl-1,2-dihydrorenierone (19),
O-demethylrenierone (20), and mimosamycin (21), and four dimers renieramycins A–D
(22–25) [23,24]. In addition, two new polycyclic isoquinoline dimers, renieramycins E (26)
and F (27), were purified from another Reniera specimen collected from Palau [25].

2.1.3. Macrocyclic Diamines

To the best of our knowledge, all macrocyclic diamine-producing Reniera sponges were
collected from the Mediterranean. Saraines A–C (28–30) (Figure 3) were obtained from
the Mediterranean sponge R. sarai and exhibited a broad spectrum of biological activities,
including insecticidal and acaricidal potency to the arthropoda Macrosiphum euphorbiae
(Thos.), Tetranychus urticae Koch, and Aedes aegypti L.; strong inhibitory effect on Streptococ-
cus agalactiae and AChE; and high hemolysis [26–28]. Chemical synthesis of compound 28
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had first been achieved by Garg and coworkers in 2006 [29]. Isosaraine-1–3 (31–33) were
three new hexahydro-quinolizin-2(6H)-one derivatives and their absolute stereochemistry
was unambiguously determined using the modified Mosher’s method [30–32]. One novel
macrocyclic alkaloid, misenine (34), was purified from unclassified Reniera sponge collected
in the Bay of Naples (Italy) [33]. Unfortunately, no report of their bioactivity has been
published until now.
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2.1.4. Other Alkaloids

A search for antimicrobial substance(s) from an unidentified Reniera sponge from
Isla Grande (Mexico) led to the isolation of one new isoindole-4,7-dione derivative (35)
(Figure 4) [24], which was chemically synthesized through the cycloaddition of a non-
stabilized azomethine ylide and a quinone by Parker and coworkers in 1984 [34]. Chro-
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matography on a column of a cation exchange resin of the n-butanol soluble fraction from
the acetone extracts of the sponge R. cratera afforded one simple nitrogenous compound
2-aminoimidazole (36) [35]. One cyclic depsipeptide renieramide (37) was also isolated
and characterized from Reniera sp. No. 2115 collected on the Island of Santo (Vanuatu) [2].
Bioassay-guided fractionation of the MeOH extract of one marine sponge Haliclona (Re-
niera) sp. collected off Ulleung Island (Korea) led to the discovery of a new sphingosine
(38) together with two lysophosphatidylcholines (39 and 40), which exhibited moderate
cytotoxicity against a panel of five human solid tumor cell lines including A549, SK-OV-3,
SK-MEL-2, XF498, and HCT15 [36].

Molecules 2021, 26, x FOR PEER REVIEW 4 of 10 

 

   
28 29 30 

   (x + y = 6) 
31 32 33 34 

Figure 3. Macrocyclic diamines derivatives 28–34 from the subgenus Reniera. 

2.1.4. Other Alkaloids 
A search for antimicrobial substance(s) from an unidentified Reniera sponge from Isla 

Grande (Mexico) led to the isolation of one new isoindole-4,7-dione derivative (35) (Figure 
4) [24], which was chemically synthesized through the cycloaddition of a nonstabilized 
azomethine ylide and a quinone by Parker and coworkers in 1984 [34]. Chromatography 
on a column of a cation exchange resin of the n-butanol soluble fraction from the acetone 
extracts of the sponge R. cratera afforded one simple nitrogenous compound 2-aminoim-
idazole (36) [35]. One cyclic depsipeptide renieramide (37) was also isolated and charac-
terized from Reniera sp. No. 2115 collected on the Island of Santo (Vanuatu) [2]. Bioassay-
guided fractionation of the MeOH extract of one marine sponge Haliclona (Reniera) sp. 
collected off Ulleung Island (Korea) led to the discovery of a new sphingosine (38) to-
gether with two lysophosphatidylcholines (39 and 40), which exhibited moderate cytotox-
icity against a panel of five human solid tumor cell lines including A549, SK-OV-3, SK-
MEL-2, XF498, and HCT15 [36]. 

     
35 36 37 38 39 n = 15 

40 n = 17 

Figure 4. Other alkaloids derivatives 35–40 from the subgenus Reniera. 

2.2. Terpenoids 
Structurally, most of terpenoids produced by Reniera sponges are tetraterpenes ex-

cept the sesquiterpenoid fulvanin 1 (41) (Figure 5) [37]. Interestingly, these tetraterpenes 
are carotenoid analogs, including acetylenic carotenoids (42–43), renieratene (44), isore-
nieratene (45), and renierapurpurin (46) from R. japonica [38,39]. It is noteworthy that two 
symbiotic strains, Flexibacter sps. DK30213 and DK30223, isolated from R. japonica, were 
found to produce zeaxanthin (47), which is one of the commonly used antioxidant agents 
[40]. Two new cytotoxic meroditerpenes, halioxepine B (48) and halioxepine C (49), along 
with halioxepine (50), were isolated from two Indonesian sponges of the genus Haliclona 
(Reniera) and structurally determined by QM/NMR-DFT (quantum mechanics combined 
with nuclear magnetic resonance parameters calculated by density functional theory ap-
proximations) analysis [41]. It is noteworthy that compound 50 had first been synthesized 
and the absolute configuration at position C15 was revised as S [42]. 

N+

HO

OH
N

H O-

Figure 4. Other alkaloids derivatives 35–40 from the subgenus Reniera.

2.2. Terpenoids

Structurally, most of terpenoids produced by Reniera sponges are tetraterpenes ex-
cept the sesquiterpenoid fulvanin 1 (41) (Figure 5) [37]. Interestingly, these tetraterpenes
are carotenoid analogs, including acetylenic carotenoids (42–43), renieratene (44), isore-
nieratene (45), and renierapurpurin (46) from R. japonica [38,39]. It is noteworthy that
two symbiotic strains, Flexibacter sps. DK30213 and DK30223, isolated from R. japonica,
were found to produce zeaxanthin (47), which is one of the commonly used antioxidant
agents [40]. Two new cytotoxic meroditerpenes, halioxepine B (48) and halioxepine C
(49), along with halioxepine (50), were isolated from two Indonesian sponges of the genus
Haliclona (Reniera) and structurally determined by QM/NMR-DFT (quantum mechanics
combined with nuclear magnetic resonance parameters calculated by density functional
theory approximations) analysis [41]. It is noteworthy that compound 50 had first been
synthesized and the absolute configuration at position C15 was revised as S [42].
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2.3. Polyketides
2.3.1. Aromatic Polyketides

Polyketides are one of the major groups of Reniera-derived secondary metabolites,
such as aromatic and aliphatic polyketides. As many as eighteen aromatic polyketides
(51–67) (Figure 6) had been separated from R. fulva and R. mucosa, which were respectively
collected from the Egadi Islands (Italy) and Tarifa Island (Spain) [37,43]. Compounds 52,
53, 56, and 59 possessed in vitro cytotoxicity against P388 mice lymphoma, A549 human
lung carcinoma, HT29 human colon carcinoma, and MEL28 human melanoma cell lines
with the same ED50 values of 5 mg/mL [43]. Moreover, compound 59 exhibited a moderate
inhibitory effect on DHFR (dihydrofolate reductase) with an ED50 value of 3 mg/mL. At
the concentrations from 10−4 to 10−8 M, compounds 61 and 63 were shown to be cytotoxic
to the NCI-H522 nonsmall lung cancer cell line and CCRF-CEM leukemia cell line, while
54 had more selective cytotoxicity against the latter [37].
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2.3.2. Aliphatic Polyketides

Linear alkynols and alkynones are the most common aliphatic polyketides detected
in the marine sponge R. fulva. Fulvinol (68, Figure 7), a new long-chain diacetylenic
compound, was purified from R. fulva collected at Algeciras Bay (Spain) and found to
possess an inhibitory effect on P-388 mouse lymphoma, A-549 human lung carcinoma,
HT-29 human colon carcinoma, and MEL-28 human melanoma cell lines with the same
ED50 values of 1 µg/mL [44]. One search for secondary metabolites of R. fulva from the
Mediterranean Sea resulted in the isolation of five new acetylenic compounds including
debrorenierin-1 (69), renierin-1 (70), lb-dihydrorenierin-1 (71), renierin-2 (72), and 18-
hydroxyrenierin-2 (73) [45].
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2.3.3. Other Polyketide

One new bicyclic eicosanoid named mucosin (74) (Figure 8) was detected in the acetone
extracts of R. mucosa samples, which had been collected in different areas including Blanes
(Spain), Grotte de Jarr (France), Massalubrense, and Procida (Italy) [46]. Interestingly, this
metabolite contains an unusual bicyclo [4.3.0] nonane skeleton with equilibrium of normal
physiology in mammalian systems.
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2.4. Sterols

To date, a total of 27 sterol derivatives (75–101) (Figure 9) have been obtained and char-
acterized from Reniera sponges. Chemical analysis of one unidentified sample (#063176)
deposited at California Academy of Sciences Museum afforded eleven sterols (74–85) [47],
and another specimen (R. sarai) collected from the Bay of Naples (Italy) resulted in the isola-
tion of ten sterols (87–96) [48]. Using vacuum liquid chromatography (VLC), flash column
chromatography, and preparative thin-layer chromatography (PTLC), β-sitosterol (97) was
purified from ethyl acetate extract of Haliclona (Reneira) fascigera sponge (SPV06/12/13)
collected off Samalona Island (Indonesia) [49]. Along with three alkaloids (38–40), six sterol
analogs 77, 86, and 98–101 were separated from the MeOH extract of the sponge Haliclona
(Reniera) sp. J01U-6 from Ulleung Island (Korea) [36].Molecules 2021, 26, x FOR PEER REVIEW 7 of 10 
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Cerebrosides are a group of glycosphingolipids consisting of a glucose or galactose
residue attached to a ceramide moiety containing one sphingoid base and an amide-linked
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long fatty acyl chain. These amphipathic biomolecules are important components of
tissues and organs in organisms and possess a broad spectrum of biological functions
such as antifungal, antitumor, antiviral, an inhibitory effect on histidine decarboxylase,
and cytotoxicity [50]. Chemical analysis of the n-hexane layer of the MeOH extract of
the same specimen Haliclona (Reniera) sp. J01U-6 collected off the coast of Ulleung Island
(Korea) afforded twenty-one new cerebrosides (101–111, 113–122) together with one known
analog (112), which possess unprecedented unsaturated or saturated long (C15–C28) alkyl
chains (Figure 10) [51,52]. This was the first report on the isolation of isomeric pairs of
glucocerebrosides containing saturated C15 and C19 acyl chains. Lately, the structural
determination of compounds 109–112, 115, 116, 120, and 121 were well established using
fast atom bombardment mass spectrometry (FAB-MS) in positive-ion mode by Hong and
coworkers [53]. In addition, one ceramide (123) was separated from the same sponge
SPV06/12/13 collected off Samalona Island, and its absolute structure was determined by
HyperChem computational techniques [49].
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3. Conclusions and Perspectives

The marine sponge subgenus Reniera is one of the most prolific sources of natural
products possessing various chemical structures and biological properties, such as cytotoxic
poly-APS derivatives, insecticidal and acaricidal sarains A–C (28–30), and antioxidant zeax-
anthin (47). In the recent decade, however, few reports on biological and chemical studies
of Reniera sponge had been published. In comparison with those of other marine sponge
genera such as Agelas [54] and Phyllospongia [55], chemical investigations of Reniera sponges
seem to be less intensive. Therefore, great efforts should be made to carry out global
resource surveys and collections of Reniera sponges and chemical studies using hyphenated
technology, such as GC-MS and LC-MS-NMR. Furthermore, more attention should be paid
on genome mining and the chemical study of symbiotic microorganisms of Reniera sponges
as these microbes are potential producers of bioactive secondary metabolites originally
derived from their hosts [56–58].
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