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A B S T R A C T

The mass-univariate approach for functional magnetic resonance imaging (fMRI) analysis remains a widely used statistical tool within neuroimaging. However, this
method suffers from at least two fundamental limitations: First, with sufficient sample sizes there is high enough statistical power to reject the null hypothesis
everywhere, making it difficult if not impossible to localize effects of interest. Second, with any sample size, when cluster-size inference is used a significant p-value only
indicates that a cluster is larger than chance. Therefore, no notion of confidence is available to express the size or location of a cluster that could be expected with
repeated sampling from the population.

In this work, we address these issues by extending on a method proposed by Sommerfeld et al. (2018) (SSS) to develop spatial Confidence Sets (CSs) on clusters found
in thresholded raw effect size maps. While hypothesis testing indicates where the null, i.e. a raw effect size of zero, can be rejected, the CSs give statements on the
locations where raw effect sizes exceed, and fall short of, a non-zero threshold, providing both an upper and lower CS.

While the method can be applied to any mass-univariate general linear model, we motivate the method in the context of blood-oxygen-level-dependent (BOLD) fMRI
contrast maps for inference on percentage BOLD change raw effects. We propose several theoretical and practical implementation advancements to the original
method formulated in SSS, delivering a procedure with superior performance in sample sizes as low as N ¼ 60. We validate the method with 3D Monte Carlo
simulations that resemble fMRI data. Finally, we compute CSs for the Human Connectome Project working memory task contrast images, illustrating the brain regions
that show a reliable %BOLD change for a given %BOLD threshold.
1. Introduction

Over the last three decades, the statistical parametric mapping pro-
cedure (Friston et al., 1994a) for inference of task-fMRI data has pre-
vailed as the international standard within the field of neuroimaging.
Incorporating a mass-univariate statistical approach, functional data at
each voxel is described in terms of experimental conditions and residual
variability included as parameters in a general linear model. From this
model, a group-level statistical parametric map (SPM) of t-statistic’s
contrasting a specified experimental condition relative to a baseline
condition is formed. Using a corrected significance level based on the
theory of random fields to account for the multiple-comparison problem
(Friston et al., 1994b), hypotheses are tested at each voxel independently
and the SPM is finally thresholded to localize brain function. While
simple by nature, this technique has proven immensely powerful and
provided us with the tools to gain deep insight into cognitive function.

There is, however, information that is not captured using the current
fMRI approach to inference. Specifically, for clusterwise inference, the
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cluster-level p-value only conveys information about a cluster’s spatial
extent under the null-hypothesis. Since no information is provided
regarding the statistical significance of each voxel comprising a signifi-
cant cluster, the most we can say is that significant activation has
occurred somewhere inside the cluster (Woo et al., 2014). An implication
of this is that when a large, sprawling cluster covers many anatomical
regions, the precise spatial specificity of the activation is in fact poor.
While a recent effort has attempted to solve this problem by ‘drilling
down’ to find the exact source of activation (Rosenblatt et al., 2018), this
can come at the cost of lower statistical power. A related problem of
cluster inference is that no information is provided about the spatial
variation of significant clusters. For example, if a given fMRI study were
to be repeated many times with new sets of subjects, there would of
course be variation in the size and shape of clusters found, yet the current
statistical results have no way to characterize this variability.

A more pressing issue, perhaps, stems from an age-old paradox caused
by the ‘fallacy of the null hypothesis’ (Rozeboom, 1960). The paradox is
that while statistical models conventionally assume mean-zero noise, in
ation and Discovery, Nuffield Department of Population Health, University of
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reality all sources of noise will never cancel, and therefore improvements
in experimental design will eventually lead to statistically significant
results. Thus, the null-hypothesis will, eventually, always be rejected
(Meehl, 1967). The recent availability of ambitious, large-sample studies
(e.g Human Connectome Project (HCP), N ¼ 1; 200; UK Biobank, N ¼
30; 000 and counting) have exemplified this problem. Analysis of
high-quality fMRI data acquired under optimal noise conditions has been
shown to display almost universal activation across the entire brain after
hypothesis testing, even with stringent correction (Gonzalez-Castillo
et al., 2012).

For the reasons discussed above, alongside further concerns about
misconceptions and the misuse of p-values in statistical testing (Nuzzo,
2014; Wasserstein et al., 2016), there has been a growing consensus
among sections of the neuroimaging community that the statistical re-
sults commonly reported in the literature should be supplemented by
effect estimates (Chen et al., 2017; Nichols et al., 2017). The main
argument put forward supporting raw effect sizes is that they increase
interpretability of the statistical results, highlighting the magnitude of
statistically significant differences and providing another layer of evi-
dence to support the overall scientific conclusions inferred from an fMRI
study. This may also help tackle reproducibility concerns that have
become prominent within the field due to failed attempts in replicating
published neuroimaging results (Poldrack et al., 2017), a problem
aggravated by the ubiquity of underpowered studies in the fMRI litera-
ture where traditional statistical inference methods are unlikely to detect
the majority of meaningful effects (Cremers et al., 2017; Turner et al.,
2018).

In this work, we seek to address all of these issues by applying and
extending a spatial inference method initially proposed by Sommerfeld
et al. (2018) (SSS) to obtain precise confidence statements about where
activation occurs in the brain. Unlike hypothesis testing, our spatial
Confidence Sets (CSs) allow for inference on non-zero raw effect sizes.
While the method can be applied to any parameter in a mass-univariate
general linear model, here we will focus inference on the mean per-
centage BOLD change raw effect. For a cluster-forming threshold c, and a
predetermined confidence level 1� α, the CSs comprise of two sets: the

upper CS (denoted cA þ
c , red voxels in Fig. 1), giving all voxels we can

assert have a percentage BOLD raw effect size truly greater than c; and the

lower CS (cA –

c , blue voxels overlapped by yellow and red in Fig. 1), for
which all voxels outside this set we can assert have a percentage BOLD
raw effect size truly less than c. The upper CS is smaller and nested inside
the lower CS, and the assertion is made with ð1� αÞ100% confidence
holding simultaneously for both regions. Fig. 1 provides an illustration of
the schematic we will use to display the CSs, also showing the point es-

timate set (cA c, yellow voxels overlapped by red) obtained by
Fig. 1. Schematic of the colour-coded regions used to visually represent the Confi
obtained by applying the method to 80 participants contrast data from the Human
threshold at a confidence level of 1 � α ¼ 95%.

2

thresholding the data at c.
With this interpretation, the CSs can be linked to traditional statistical

voxelwise thresholding with control of the familywise error rate (FWE):
In a one-sided t-test, for the set of level α FWE-significant voxels we have
ð1� αÞ100% confidence that the signal is greater than zero. Put another
way, we have ð1� αÞ100% confidence that the voxelwise level α FWE
results are all true positives. The CSs can be viewed as a generalisation of
these methods, except that the confidence statement is no longer relative
to a signal of zero, but to a non-zero signal magnitude c. Users may
choose the threshold c based on prior knowledge of raw effect sizes re-
ported in previous similar studies to their own; since computation of the
CSs is quick, users may also report results for a variety of cluster-forming
thresholds as we do in this work.

The motivating data in SSS were longitudinal temperature data in
North America, and the goal was to infer on areas at risk of climate
change. In this work, we are motivated by subject-level fMRI contrast of a
parameter estimate maps, and we seek to infer brain areas where a
substantial raw effect is present in units of percentage BOLD change. In
SSS, the CSs were referred to as ‘Coverage Probability Excursion sets’ –
shortened to ‘CoPE sets.’

The main contributions of this work are modifications to the SSS
method for computing CSs that improve the method’s finite-sample
performance in the context of neuroimaging. In particular, we propose
a combination of theWild t-Bootstrap method and the use of Rademacher
variables (instead of Gaussian variables) for multiplication of the boot-
strapped residuals, which we find substantially improves performance of
the method in moderate sample sizes (e.g. N ¼ 60). We also develop a
linear interpolation method for computing the boundary over which the
bootstrap is applied, and a novel approach for assessing the empirical
coverage of the CSs that reduces upward bias in how the simulation re-
sults are measured. Another contribution here is that we assess the finite-
sample accuracy of the method on synthetic 3D signals that are repre-
sentative of fMRI activation clusters, whereas SSS only considered 2D
images. Altogether, we carry out a range of 3D simulations alongside
smaller 2D simulations to evaluate our proposed methodological modi-
fications and compare our results to the simulations conducted in SSS.
Finally, we apply the method to the Human Connectome Project working
memory task dataset, operating on the subject-level percentage BOLD
change raw effect maps, where we obtain CSs for a variety of cluster-
forming thresholds. Here, the method localizes brain activation in
cognitive regions commonly associated to working memory, determining
with 95% confidence a raw effect of at least 2% BOLD change.

The remainder of this paper is organized as follows. First of all, we
summarize the key theory of CSs before detailing our proposed modifi-
cations. We then describe the settings used for our simulations, and
provide background information about the HCP dataset analyzed in this
dence Sets (CSs) and point estimate set. CSs displayed in the glass brain were
Connectome Project working memory task, using a a c ¼ 2:0% BOLD change



Fig. 2. A demonstration of how the CSs are computed for a realization of the
GLM YðsÞ¼ XβðsÞ þ εðsÞ in one dimension, for each location s. The yellow voxels
cA c are obtained by thresholding the observed group contrast map at threshold
c; this is the best guess of A c, the set of voxels whose true, noise-free raw effect

surpasses c. The red upper CS cA þ
c and blue lower CS cA –

c are computed by
thresholding the signal at cþ k bσðsÞvw and c� k bσðsÞvw, respectively. We have

ð1� αÞ100% confidence that cA þ
c ⊂A c⊂cA –

c , i.e. that cA þ
c (red) is completely
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work. Finally, we report the results of our simulations before presenting
the CSs computed for the HCP data.

2. Theory

2.1. Overview

A comprehensive treatment of the original method, including proofs,
can be found in SSS. Here we develop the method specifically for the
general linear model (GLM) and describe our own enhancements to the
method. While the method can be performed for subject-level inference,
we will motivate the method in the context of a group-level analysis,
describing how the method can be applied to subject-level %BOLD esti-
mate maps in order to obtain group-level CSs making confidence state-
ments about %BOLD effect sizes relating to the entire population from
which the participants were drawn.

For a compact domain S⊂RD, e.g. D ¼ 3, consider the GLM at location
s 2 S,

YðsÞ¼XβðsÞ þ εðsÞ (1)

where YðsÞ is a N � 1 vector of observations at s, X is a N� p design
matrix, βðsÞ is a p� 1 vector of unknown coefficients, and εðsÞ a N� 1
vector of mean-zero errors, independent over observations, and with
each εi having common variance σ2ðsÞ and some unspecified spatial
correlation. (Throughout we use boldface to indicate a vector- or matrix-
valued variable.) In the context of a task-fMRI analysis, YðsÞ is a vector of
subject-level %BOLD response estimate maps obtained by applying a
first-level GLM to each of the N participants functional data.

For a p� 1 contrast vector w, we seek to infer regions of the brain
where a contrast of interest wTβ has exceeded a fixed threshold c.
Particularly, we are interested in the noise-free, population cluster
defined as:

A c ¼
�
s 2 S : wTβðsÞ � c

�
: (2)

Since we are unable to determine this excursion set in practice, our

solution is to find spatial CSs: an upper set cA þ
c and lower set cA –

c that
surround A c for a desired confidence level of, for example, 95%. We
emphasize that these clusters regard the raw units of the signal. Going
forward, we assume that the design matrix X and contrast w have been

carefully chosen so that wTbβ has the interpretation of mean %BOLD
change across the group. For example, in a one-sample group fMRI model
where data Y have %BOLD units, choosing X as a column of 1’s and w ¼
ð1Þ would ensure that wTbβ has units of %BOLD change.1 In this setting,

we wish to obtain an upper CS, cA þ
c , such that we have 95% confidence

all voxels contained in this set have a population raw effect size greater

than, for example, c ¼ 2:0% BOLD change, and a lower CS, cA –

c , such that
we have 95% confidence all voxels outside of this set have a population
raw effect size less than 2.0% BOLD change. Moreover, we desire that the
95% confidence statement holds simultaneously across both CSs at once.
SSS show that a construction of such CSs is possible within the general
linear model framework using the following key result.

2.1.1. Result 1

Consider the general linear model setup described in (1). Let bβ denote

the ordinary least squares estimator of β, bβðsÞ ¼ ðXTXÞ�1XTYðsÞ, and
define v2w ¼ wTðXTXÞ�1w to be the normalised variance of the contrast
estimate.

Then for a constant k, and for upper and lower CSs defined as
1 For examples of how to set up more complex designs and contrasts, see
Figure A.2. in Appendix A section of (Poldrack et al., 2011).

3

cA þ
c : ¼�

s : wTbβðsÞ � cþ k bσðsÞvw�; cA –

c :¼
�
s : wTbβðsÞ � c� k bσðsÞvw�;
the limiting coverage of the CSs is

lim
n→∞

P
�cA þ

c ⊂A c ⊂cA –

c

� ¼ P
�
sup
s2∂A c

��GðsÞ��� k
�
;

where ∂A c denotes the boundary of A c, and G is a smooth Gaussian field
on S with mean zero, unit variance, and with the same spatial correlation
as each εi.

Result 1 is subject to continuity of the relevant fields and some basic
conditions on the increments and moments of the error field ε. A list of
these assumptions, as well as a proof of Result 1, are itemized in SSS.

For a pre-determined confidence level 1� α (e.g. 1 � α ¼ 95%), by
choosing k such that

P
�
sup
s2∂A c

��GðsÞ��� k
�� 1� α; (3)

Result 1 ensures with asymptotic probability of 1� α that cA –

c con-

tains the true A c, and cA þ
c is contained within A c. In practice, k is

determined as the ð1� αÞ100 percentile of the maximum distribution of
the asymptotic absolute error process jGðsÞj over the true boundary set ∂
A c ¼ fs : wTβðsÞ ¼ c g (see Fig. 2). The upper CS taken away from the

lower CS ðcA –

c \ ðcA þ
c Þ

c

Þ can be interpreted analogously to a standard
confidence interval: with a confidence of 1� α, we can assert the true
boundary ∂A c lies within this region. Here, we allude to the classical
frequentist interpretation of confidence, where stated precisely, there is a

probability of 1� α that the region ðcA –

c \ ðcA þ
c Þ

c

Þ computed from a
future experiment fully encompasses the true set boundary ∂A c.

Application of Result 1 presents us with two challenges: that the
boundary set ∂A c and the critical value k are both unknown. To solve the

first problem, SSS propose using ∂cA c as a plug-in estimate of ∂A c. There
remain, however, technicalities at to how the boundary is determined in
any non-abstract setting, and in particular in a 3D image. In Section 2.3
we propose our own novel method for boundary estimation. Before that,
we address the second problem, finding the critical value k via a Wild t-
Bootstrap resampling scheme.
within the true A c, and A c is completely within cA �
c (blue). We find the critical

value k from the ð1� αÞ100 percentile of the maximum distribution of the ab-

solute error process over the estimated boundary ∂cA c (green �’s) using the Wild
t-Bootstrap; bσ is the estimated standard deviation and vw is the normalised
contrast variance.
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2.2. The Wild t-Bootstrap method for computation of k

To apply Result 1, we require knowledge of the tail distribution of the
limiting Gaussian field G along the boundary ∂A c. However, the distri-
bution of this field is unknown, because it is dependent on the unknown
spatial correlation of the errors εi. We can approximate the maximum
distribution ofG using the GaussianWild Bootstrap (Chernozhukov et al.,
2013), also known as the GaussianMultiplier Bootstrap, whichmultiplies
residuals by random values to create surrogate instances of the random
errors.

SSS construct G as follows: The standardized residuals,

~εðsÞ ¼ YðsÞ � XbβðsÞ
σðsÞ ; (4)

are multiplied by i.i.d. Gaussian random variables, r�1;…;r�N , summed and
scaled,

G�ðsÞ ¼ 1ffiffiffiffi
N

p
XN
i¼1

r�i ~εiðsÞ; (5)

producing a field G� with approximately the same covariance as each
error εi, where the superscript asterisk (�) indicates these are just one of
many bootstrap realizations. With B bootstrap samples G�, we choose k as
the ð1� αÞ100 percentile of the B suprema sup

s2∂bA c

��G�ðsÞ�� to approxi-

mate the LHS of (3) and apply Result 1 to obtain the CSs.
Up to this point, we have summarized the Gaussian Wild Bootstrap

methodology as proposed in SSS. However, when applying this method
to our own simulations, we consistently found that our coverage results
fell below the nominal level. This was particularly severe for 3D simu-
lations we conducted using a small sample size (N ¼ 60), where our
results in some cases suffered from under-coverage of 40% or more below
the nominal level (see Fig. 8). Hence we made two alterations: First,
while SSS used Gaussian multipliers, we found improved performance
using Rademacher variables, where each ri takes on 1 or -1 with proba-
bility 1/2; others have also reported improved performance with Rade-
macher variables as well (Davidson and Flachaire, 2008). Second, we
implemented a Wild t-Bootstrap (Telschow and Schwartzman, 2019)
method, normalizing the bootstrapped residuals ~εiðsÞ by their standard
deviation bσ�. This detail was omitted in the proof of Result 1 provided in
SSS, where the true standard deviation was assumed to be known. By
taking into account the estimation of the standard deviation via the Wild
t-Bootstrap, we found improved performance for moderate sample sizes.
The Wild t-Bootstrap version of G is

~G
�ðsÞ ¼ 1ffiffiffiffi

N
p

XN
i¼1

r�i
~εiðsÞ
bσ�ðsÞ; (6)

where bσ�ðsÞ is the standard deviation of the present realization of the
bootstrapped residuals r�i ~εiðsÞ. We then determine k as described above

but using ~G
�
instead of G�. Going forward, we refer to this method as the

“Wild t-Bootstrap”, to be contrasted with the original “Gaussian Wild
Bootstrap” method proposed in SSS.

With these two alterations we found a dramatic increase in perfor-
mance for small sample sizes in 3D simulations. Notably, in contrast to
the Gaussian Wild Bootstrap, our simulation results presented in Section
4 suggest that empirical coverage rates for this modified procedure
remain valid, i.e. stay above the nominal level.
2.3. Approximating the boundary on a discrete lattice

In the previous section, we described the ideal Wild t-Bootsrap pro-
cedure used to obtain the maximum distribution of G along the boundary
∂A c in order to apply Result 1. However, in any practical application,
data will be observed on a discrete grid of lattice points at a fixed
4

resolution. Therefore, a key challenge is how to appropriately approxi-
mate the true continuous boundary ∂A c from the lattice representation of
the data.

In SSS, spline-interpolation was used to estimate a 1D boundary at a
resolution greater than their 2D sampled field (SSS, Section 4.1). How-
ever, to apply the method to fMRI data we will work with 3D images, and
estimating a 2D spline boundary for a 3D field is more involved, requiring
careful tuning of the spline basis to accommodate the structure of the 3D
signal. Instead, we choose to use a first-order weighted linear interpo-
lation method to approximate the signal values at estimated locations
along the true, continuous boundary ∂A c, providing a method of
boundary estimation that is less computationally intensive than spline
interpolation. Consider two adjacent points on the lattice, sO and sI, such
that sO lies outside of A c, while sI lies inside A c. By the definition of A c,
wTβðsOÞ < c, and wTβðsIÞ � c. Under the assumption that the component
of the signal between sO and sI increases linearly, we can find the location
s� between sO and sI such that wTβðs�Þ ¼ c, our estimate of where the true
continuous boundary ∂A c crosses between sO and sI. We can then
construct a linear interpolant for the location s�, using weights

m1 ¼ wTβðsIÞ � c
wTβðsIÞ � wTβðsOÞ; m2 ¼ c� wTβðsOÞ

wTβðsIÞ � wTβðsOÞ; (7)

for locations sO and sI, respectively. By construction, applyingm1 and m2

to the contrast image returns the threshold: m1wTβðsOÞ þ m2wTβðsIÞ ¼
wTβðs�Þ ¼ c. Applied to standardized residuals ~εðsOÞ and ~εðsIÞ, we can
likewise obtain the residuals at the estimated continuous boundary point
~εðs�Þ ¼ m1~εðsOÞþ m2~εðsIÞ.

By repeating this procedure for all adjacent points sO and sI that lie on
the lattice either side of ∂A c, we are able to estimate the standardized
residual values at locations that should approximately sample the true
continuous boundary ∂A c, and thus we can apply the ideal Wild t-
Bootstrap procedure outlined in Section 2.2. Of course, in practice we
apply this interpolation method on the observed, noisy data, using the

plug-in estimated boundary ∂cA c.
In the simulation results in Section 4, we assess performance of the

method when the bootstrap procedure is carried out over the true

boundary ∂A c, and the plug-in estimated boundary ∂cA c that must be
used in practice.
2.4. Assessment of continuous coverage on a discrete lattice

In testing the finite-sample validity of our method through simula-
tion, it is imperative that we are able to accurately measure when vio-

lations of the subset condition cA þ
c ⊂A c⊂cA –

c occur. While this may seem
a trivial task, as touched on in the previous section, the boundaries of
each of these three sets can become ambiguous when data are collected
on a discrete lattice.

To illustrate this point, consider the configuration of sets displayed in
Fig. 3a. In this instance, suppose the right half of the image corresponds
to A c (green pixels overlapped by yellow), and yellow pixels belong to
cA þ

c . We wish to determine whether the condition cA þ
c ⊂A c has been

violated or not. One may argue that at the resolution for which the data

have been acquired, all pixels that belong to cA þ
c also belong to A c, and

therefore no violation has occurred. However, the example presented in
Fig. 3a has in fact been derived from a 2D simulation conducted at a
higher resolution: this 50� 50 simulation was obtained by down-
sampling a 100� 100 grid by dropping every other pixel. Fig. 3a dis-

plays the sets A c and cA þ
c from the down-sampled, low resolution

simulation, while Fig. 3b shows the same set of results at the original
resolution. In Fig. 3b we see that there has been an upcrossing of the

yellow pixels belonging to cA þ
c over the boundary of the green, and



Fig. 3. Demonstrating the resolution issue for testing the subset condition cA þ
c ⊂A c ⊂cA –

c .

Fig. 3a: Here A c is comprised of the right half of the image (all green and yellow pixels), and cA þ
c is shown as yellow pixels. It appears that cA þ

c ⊂ A c.

Fig. 3b: The same configuration as Fig. 3a at double the resolution. Here, we have enough detail to see that cA þ
c has crossed the boundary ∂A c (yellow seeping into

blue), and the subset condition cA þ
c ⊂A c has been violated.
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therefore the subset condition cA þ
c ⊂A c has been violated. From this

simulation, it is clear that when we conclude that no violation has
occurred in situations like Fig. 3a, our empirical coverage will miss vi-
olations and be positively biased. By an analogous argument the same

issue occurs when testing violations of A c⊂cA –

c .
In SSS this direct comparison of the lattice representation of the three

sets was used to assess coverage in the simulations. While they observed
this phenomenon of missed violations leading to over-coverage, the
proposed solution was to sequentially increase the resolution of the data.
We instead again make use of interpolation.

Since, in simulation, we know the true continuous mean image and
A c, following the method described in Section 2.2 we can obtain weights
m1 and m2 to interpolate between points sO and sI either side of the true,
continuous boundary ∂A c, in order to find a location s* that approxi-
mately lies on the boundary (if the true mean is linear, it would be exactly

on the boundary). To determine if s* 2 cA þ
c , we then re-apply the weights

m1 and m2 and assess whether

wTbβðs*Þ�k bσðs*Þvw¼m1ðwTbβðsOÞ�k bσðsOÞvwÞþm2ðwTbβðsIÞ�k bσðsIÞvwÞ�c:

(8)

If the inequality holds, then by definition s*2cA þ
c . Otherwise, s* 62

cA þ
c , and therefore we can conclude that the subset condition cA þ

c ⊂ A c

has been violated. By checking whether wTbβðs*Þþ kbσðs*Þvw� c, we can

similarly test for a violation of A c⊂cA –

c .
By applying this interpolation scheme to all pairs of lattice points with

one point inside, one outside, the lattice representation of the boundary,
we have devised a method to more accurately assess violations of the

subset condition cA þ
c ⊂A c ⊂cA –

c for configurations similar to Fig. 3a. We
applied this method for testing the subset condition in our simulations
alongside a direct comparison of the lattice representations of the three
sets of interest as was done in SSS. The addition of the weighted inter-
polation method caused a considerable decrease in the empirical
coverage results towards the nominal level in all of our 3D simulations.
Using the direct comparison of the three sets on its own here essentially

determined total empirical coverage (cA þ
c ⊂A c ⊂cA –

c for all simulation
runs), even when using small sample sizes and a low nominal coverage
5

level. This is likely to be because the discrete lattice of observed data
points is relatively less dense inside the true continuous process for
larger, 3D settings, and therefore more violations of the subset condition
are missed if only a direct comparison of the lattice representation of the
CSs is carried out.

3. Methods

3.1. Simulations

In this section we describe the settings used in order to evaluate the
CSs obtained for synthetic data. As a simplified instance of the general
linear model setup described in Section 2.1, we simulate 3000 inde-
pendent samples of the signal-plus-noise model

YiðsÞ¼ μðsÞ þ εiðsÞ; i ¼ 1;…;N

using a range of signals μðsÞ, Gaussian noise structures εiðsÞ with sta-
tionary and non-stationary variance, in two- and three-dimensional re-
gions S. We compute the critical value k, applying the Wild t-Bootstrap
method outlined in Section 2.2 with B ¼ 5000 bootstrap samples to both

the true boundary ∂A c and the plug-in boundary ∂cA c that would be used
in practice. The boundaries were obtained using the interpolation
method outlined in Section 2.3. We then compare the empirical coverage
– the percentage of trials that the true thresholded signal is completely
contained between the upper and lowers CSs (i.e. the number of times for

which cA þ
c ⊂A c⊂cA –

c ) – across the two sets of results, using the assess-
ment method outlined in Section 2.4. In each simulation, we apply the
method for sample sizes of N ¼ 60; 120; 240 and 480, and using three
nominal coverage probability levels 1�α ¼ 0:80;0:90 and 0:95.
3.2. 2D simulations

We analyzed the performance of the CSs on a square region of size
100� 100. For the true underlying signal μðsÞ we considered two
different raw effects: First, a linear ramp that increased from a magnitude
of 1 to 3 in the x-direction while remaining constant in the y-direction
(Fig. 4a). Second, a circular effect, created by placing a circular phantom
of magnitude 3 and radius 30 in the centre of the search region, which



Fig. 4. Linear ramp and circular signals μðsÞ.
Fig. 4a: Signal 1. A linear ramp signal that increases from magnitude of 1–3 in the x-direction.
Fig. 4b: Signal 2. A circular signal with magnitude of 3 and radius of 30, centred within the region and convolved with a 3 voxel FWHM Gaussian kernel.

A. Bowring et al. NeuroImage 203 (2019) 116187
was then smoothed using a 3 voxel FWHM Gaussian kernel (Fig. 4b). If
we were to assume that each voxel had a size of 2mm3, we note that this
would amount to applying smoothing with a 6mm FWHMkernel, a fairly
typical setting used in fMRI analyses.

To each of these signals we added subject-specific Gaussian noise εi,
also smoothed using a 3 voxel FWHM Gaussian kernel, with homoge-
neous and non-homogeneous variance structures: The first noise field
had a spatially constant standard deviation of 1 (Fig. 5a), the second field
had a linearly increasing standard deviation structure in the y-direction
from

ffiffiffiffiffiffiffi
0:5

p
to

ffiffiffiffiffiffiffi
1:5

p
while remaining constant in the x-direction (Fig. 5b).

Thus, the variance of this noise field spatially increased in the y-direction
from 0.5 to 1.5 in a non-linear fashion.

Altogether, the two underlying signals and two noise sources gave us
four separate trials; across all of the simulations, we obtained Confidence
Sets for the noise-free cluster A c at a cluster-forming threshold of c ¼ 2.
Fig. 5. Stationary and non-stationary standard deviation fields of the noise εiðsÞ.
Fig. 5a: Standard Deviation 1. Stationary variance of 1 across the region.
Fig. 5b: Standard Deviation 2. Non-stationary (linear ramp) standard deviation fie
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3.3. 3D simulations

Four signal types μðsÞ were considered to analyze performance of the
method in three dimensions. The first three of these signals were
generated synthetically on a cubic region of size 100 � 100� 100:
Firstly, a small spherical effect, created by placing a spherical phantom of
magnitude 3 and radius 5 in the centre of the search region, which was
then smoothed using a 3 voxel FWHM Gaussian kernel (Fig. 6a). Sec-
ondly, a larger spherical effect, generated identically to the first effect
with the exception that the spherical phantom had a radius of 30
(Fig. 6b). Lastly, we created an effect by placing four spherical phantoms
of magnitude 3 in the region of varying radii and then smoothing the
entire image using a 3 voxel FWHM Gaussian (Fig. 6c). For each of these
signals, the final image was re-scaled to have a maximum intensity of 3.

Similar to the two-dimensional simulations, for the three signals
ld increasing from
ffiffiffiffiffiffiffi
0:5

p
to

ffiffiffiffiffiffiffi
1:5

p
in the y-direction.



Fig. 6. The four 3D signal types μðsÞ, from top-to-bottom: small sphere, large sphere, multiple spheres, and the UK Biobank full mean image. Note that the colormap
limits for the first three signal types are from 0 to 3, while the colormap limits for the UK Biobank mean image is from �0.4 to 0.5.
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described above we added 3-voxel smoothed Gaussian noise of homo-
geneous and heterogeneous variance structures. The first noise field had
a spatially constant standard deviation of 1, while the second field had a
linearly increasing standard deviation in the z-direction from

ffiffiffiffiffiffiffi
0:5

p
toffiffiffiffiffiffiffi

1:5
p

, while remaining constant in both the x- and y-directions. For all
three effects, we obtained Confidence Sets for the threshold c ¼ 2.

For the final signal type, we took advantage of big data that has been
made available through the UK Biobank in an attempt to generate an
effect that replicated the true %BOLD change induced during an fMRI
task. We randomly selected 4000 subject-level contrast of parameter
estimate result maps from the Hariri Faces/Shapes task-fMRI data
collected as part of the UK Biobank brain imaging study. Full details on
7

how the data were acquired and processed is given in Miller et al. (2016),
Alfaro-Almagro et al. (2018) and the UK Biobank Showcase; information
on the task paradigm is given in Hariri et al. (2002). From these contrast
maps, we computed a group-level full mean (Fig. 6d) and full standard
deviation image. In the final simulation, we used the group-level Biobank
mean image as the true underlying signal μðsÞ for each subject, and the
full standard deviation image was used for the standard deviation of each
simulated subject-specific Gaussian noise field εiðsÞ added to the true
signal. Because of the considerably large sample size of high-quality data
from which these maps have been obtained, we anticipate that both of
these images are highly representative of the true underlying fields that
they approximate. Both images were masked using an intersection of all
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4000 of the subject-level brain masks.
Once again, we smoothed the noise field using a 3 voxel FWHM

Gaussian kernel; since the Biobank maps were written with voxel sizes of
2 mm3, this is analogous to applying 6mm FWHM smoothing to the noise
field of the original data. We obtained Confidence Sets for a threshold of
c ¼ 0:25% BOLD change.

3.4. Application to Human Connectome project data

For a real-data demonstration of the method proposed here, we
computed CSs on 80 participants data from the Unrelated 80 package
released as part of the Human Connectome Project (HCP, S1200 Release).
We applied the method to subject-level contrast maps obtained for the 2-
back vs 0-back contrast from the working memory task results included
with the dataset. To compare the CSs with results obtained from standard
fMRI inference procedures, we also performed a traditional statistical
group-level analysis on the data. A one-sample t-test was carried out in
SPM, using a voxelwise FWE-corrected threshold of p < 0:05 obtained
via permutation test with SPM’s SnPM toolbox. We chose to use the HCP
for its high-quality task-fMRI data, the working memory task specifically
picked for its association with cognitive activations in subcortical net-
works that can not be distinguished by the anatomy. Full details of the
task paradigm, scanning protocol and analysis pipeline are given in Barch
et al. (2013) and Glasser et al. (2013), here we provide a brief overview.

For the working memory task participants were presented with pic-
tures of places, tools, faces and body parts in a block design. The task
consisted of two runs, where on each run a separate block was designated
for each of the image categories, making four blocks in total. Within each
run, for half of the blocks participants undertook a 2-back memory task,
while for the other half a 0-back memory task was used. Eight EVs were
included in the GLM for each combination of picture category and
memory task (e.g. 2-back Place); we compute CSs on the subject-level
contrast images for the 2-back vs 0-back contrast results that con-
trasted the four 2-back related EVs to the four 0-back EVs.

Imaging was conducted on a 3T Siemans Skyra scanner using a
gradient-echo EPI sequence; TR¼ 720ms, TE¼ 33.1ms, 208� 180 mm
FOV, 2.0mm slice thickness, 72 slices, 2.0mm isotropic voxels, and a
multi-band acceleration factor of 8. Preprocessing of the subject-level data
was carried out using tools from FSL and Freesurfer following the ‘fMRI-
Volume’ HCP Pipeline fully described in Glasser et al. (2013). To sum-
marize, the fundamental steps carried out to each individual’s functional
4D time-series data were gradient unwarping, motion correction, EPI
distortion correction, registration of the functional data to the anatomy,
non-linear registration to MNI space (using FSL’s Non-linear Image
Registration Tool, FNIRT), and global intensity normalization. Spatial
smoothing was applied using a Gaussian kernel with a 4mm FWHM.

Modelling of the subject-level data was conductedwith FSL’s FMRIB’s
Improved Linear Model (FILM). The eight working task EVs were
included in the GLM, with temporal derivatives terms added as con-
founds of no interest, and regressors were convolved using FSL’s default
double-gamma hemodynamic response function. The functional data and
GLM were temporally filtered with a high pass frequency cutoff point of
200s, and time series were prewhitened to remove autocorrelations from
the data.

In comparison to a typical fMRI study, the 4 mm FWHM smoothing
kernel size used in the HCP preprocessing pipeline is modest. Because of
this, we applied additional smoothing to the final contrast images to
emulate maps smoothed using a 6mm FWHM Gaussian kernel.

4. Results

4.1. Methodological comparisons

In this work we have proposed two fundamental methodological
changes to the procedures carried out in SSS: in Section 2.2 we suggested
the Wild t-Bootstrap instead of the Gaussian Wild Bootstrap used for SSS,
8

and in Section 2.4 we introduced the interpolation method for assessing
empirical coverage alongside the direct comparison methods used for
SSS. Here, we show the impact of these methodological innovations on
the empirical coverage results from simulations carried out using two
different synthetic signals, the 2D circular signal (Signal 2. in Fig. 4b)
and the 3D large spherical signal (Signal 2. in Fig. 6). The standard de-
viation of the subject-specific Gaussian noise fields εiðsÞ had a stationary
variance of 1 across the region in both simulations (for the 2D case, this
corresponds to Standard Deviation 1. in Fig. 5).

Empirical coverage results for each of the three confidence levels
1�α ¼ 0:80;0:90 and 0:95 are presented for the 2D circular signal in
Fig. 7 and for the 3D large spherical signal in Fig. 8. In both simulations,
for all methods the bootstrap procedure was carried out over the esti-

mated boundary ∂cA c (as must be done with real data). In each figure, the
green curves highlight the results for the Gaussian Wild Bootstrap and
coverage assessment method that were applied in SSS. The red curves
highlight the results for the Wild t-Bootstrap and interpolation assess-
ment method that we have proposed.

In Figs. 7 and 8, all simulations using the direct comparison assess-
ment (SSS Simulation Assessment) produced results substantially above
the nominal level, converging to almost 100% for both the Gaussian Wild
Bootstrap (green curves) and Wild t-Bootstrap (blue curves) methods
across all three confidence levels. We suspect this is due to the resolution
issue described in Section 2.4, suggesting that this assessment method

missed violations of the coverage condition cA þ
c ⊂A c⊂cA –

c causing a
considerable positive bias in all of these results. Further evidence of this
is suggested by the empirical coverage obtained for simulations using the
interpolation assessment method (BTSN Simulation Assessment, pink
and red curves), which appear to be converging much closer to the
nominal level as is theoretically expected by Result 1.

Considering only the results using the interpolation assessment, in
both figures empirical coverage for the Wild Bootstrap method (pink
curves) came below the nominal level for small sample sizes. For the 2D
circle simulation, the empirical coverage result for 60 subjects was 84.7%
for the nominal target of 1�α ¼ 0:95 (right plot in Fig. 7). For the 3D
spherical simulation this under-coverage was even more severe, where
the corresponding empirical coverage result was 54.9% (right plot in
Fig. 8). In comparison, coverage performance for the Wild t-Bootstrap
method (red curves) was much improved, staying close to the nominal
level in both the 2D and 3D simulations across all sample sizes. While for
the 3D spherical signal the empirical coverage remained slightly above
the nominal target, for the circular signal almost all results lie within the
95% confidence interval of the nominal coverage level. For these reasons,
in the remaining simulation results presented in this section we only
consider the Wild t-Bootstrap method with our proposed interpolation
assessment.

4.2. 2D simulations

Empirical coverage results for each of the three confidence levels
1�α ¼ 0:80;0:90 and 0:95, are presented for the linear ramp signal
(Signal 1. in Fig. 4a) in Fig. 9, and for the circular signal (Signal 2. in
Fig. 4b) in Fig. 10. Results are also presented in tabular format in
Table S1. In both plots, results obtained for simulations applying the

bootstrap procedure over the estimated boundary ∂cA c are displayed
with a solid line, while results for simulations using the true boundary ∂
A c are displayed with a dashed line. We emphasize that when computing
CSs for real data, only the estimated boundary can be used.

For the linear ramp, across all confidence levels we observed valid,
over-coverage for the estimated boundary method, and under-coverage
for the true boundary method. In both cases, the degree of agreement
between our empirical results and the nominal coverage level improved
for larger confidence levels, and as the sample size increased. For
instance, while our estimated boundary empirical results were around
88% when the nominal target level was set at 80% (Fig. 9, left),



Fig. 8. Coverage results for the 3D large spherical signal (Signal 2. in Fig. 6) simulation with homogeneous Gaussian noise. Empirical coverage results are presented
for implementations of the CS method with and without the Wild t-Bootstrap we propose in Section 2.2, and the interpolation schema for assessing simulations results
we propose in Section 2.4. Once again, all simulations using the SSS assessment method quickly converge to close to 100%. Using our proposed assessment method,
the Gaussian Wild bootstrap had severe under-coverage for small sample sizes, while the Wild t-Bootstrap results hover slightly above the nominal level for all
sample sizes.

Fig. 7. Coverage results for the 2D circular signal simulation with homogeneous Gaussian noise (Signal 2., Standard deviation 1. in Fig. 5). Empirical coverage
results are presented for implementations of the CS method with and without the Wild t-Bootstrap we propose in Section 2.2 and the interpolation schema for assessing
simulations results we propose in Section 2.4. All empirical coverage results for simulations using the SSS assessment method are close to 100%, suggesting that this
assessment substantially biases the results upwards. Using our proposed assessment method, while both the Wild t-Bootstrap and Gaussian Wild bootstrap converge to
the nominal level, the Wild t-Bootstrap performed better for small sample sizes.
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corresponding empirical coverage results hovered around 97% for a
nominal target of 95% (Fig. 9, right). Comparing the differences between
the solid and dashed curves, there is also greater harmonization between
the estimated and true boundary results for higher confidence levels. The
method performed similarly regardless of whether homogeneous or
heterogeneous noise was added to the model, evidenced by the minimal
differences between the red and the blue curves for each of the two
boundary methods seen in the plots.

For the circular signal the method performed remarkably well, with
9

almost all our empirical coverage results lying within the 95% confidence
interval of the nominal coverage rate (red and blue curves sandwiched
between black dashed lines for all three plots in Fig. 10). Once again, the
use of homogeneous or heterogeneous noise in the model had minimal
difference on the method’s empirical coverage performance, and in this
setting, our results were virtually identical whether the estimated
boundary or true boundary was used for the bootstrap procedure. This
has made the dashed curves hard to distinguish in the plots, as the solid
curves lie practically on top of them.



Fig. 9. Coverage results for Signal 1., the 2D linear ramp signal. While the true boundary coverage results (dashed curves) fall under the nominal level, results for the
estimated boundary method (solid curves) that must be applied to real data remain above the nominal level. Performance of the method improved for larger con-
fidence levels, and in particular, the estimated boundary results for a 95% confidence level seen in the right plot hover slightly above nominal coverage for all
sample sizes.

Fig. 10. Coverage results for Signal 2., the 2D circular signal. Coverage performance was close to nominal level in all simulations. The method was robust as to
whether the subject-level noise had homogeneous (red curves) or heterogeneous variance (blue curves), or as to whether the estimated boundary (dashed curves) or
true boundary (solid curves) method was used; in all plots, all of the curves lie practically on top of each other.
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4.3. 3D simulations

Empirical coverage results for each of the three confidence levels
1�α ¼ 0:80; 0:90 and 0:95, are presented in Figs. 11–14 respectively for
each of the four signal types (small sphere, large sphere, multiple spheres,
Biobank full mean) displayed in Fig. 6. Results are also presented in
tabular format in Table S2. Once again, results obtained for simulations

applying the bootstrap procedure over the estimated boundary ∂cA c are
displayed with a solid line, and results for simulations using the true
boundary ∂A c are displayed with a dashed line.

Overall, the results for all four signal types were consistent: In gen-
eral, empirical coverage always came above the nominal target level, and
10
the extent of over-coverage diminished when a higher confidence level
was used. Particularly, for a nominal target of 1 � α ¼ 0:95, all of our 3D
empirical coverage results lie between 95% and 98%. The method was
robust as to whether the bootstrap procedure was applied over the true or
estimated boundary, or as to whether the variance of the noise field was
homo- or heterogeneous. The similarity of the empirical coverage results,
in spite of differences in these specific settings, is exhibited in all of the
plots by the uniformity of the red and blues curves (indicating minimal
differences in performance whether the noise had homogeneous or het-
erogeneous variance), and agreement between the solid and dashed
curves (indicating minimal differences in performance whether the true
boundary or estimated boundary was used). In the empirical coverage



Fig. 11. Coverage results for Signal 1., the 3D small spherical signal. For all confidence levels, coverage remained above the nominal level in all simulations, and for a
95% confidence level (right plot), coverage hovered slightly above the nominal level for all sample sizes. The method was robust as to whether the subject-level noise
had homogeneous (red curves) or heterogeneous variance (blue curves), or as to whether the estimated boundary (dashed curves) or true boundary (solid curves)
method was used.

Fig. 12. Coverage results for Signal 2., the large 3D spherical signal. Coverage results here were very similar to the results for the small spherical signal shown in
Fig. 11, suggesting that the method is robust to changes in boundary length.
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plots for the small and large spherical signals shown in Figs. 11 and 12, all
of these curves lie virtually on top of each other.

While performance with the multiple spheres and Biobank signals
presented in Figs. 13 and 14 was slightly better when using the true
boundary, the true- and estimated boundary performance converged as
the sample size increased.

4.4. Human Connectome Project

Confidence Sets obtained from applying the method to 80 subjects
contrast data from the Human Connectome Project working memory task
are shown in Fig. 15 and Fig. 16.

In both Figs. 15 and 16, the red upper CS localized brain regions
within the frontal cortex commonly associated to working memory. This
11
included areas of the middle frontal gyrus (left and right; Fig. 15, sagittal
and coronal slices), superior frontal gyrus (left and right, Fig. 16, coronal
slice) anterior insula (left and right; Fig. 15, sagittal and axial slices), as
well as the anterior cingulate (Fig. 16, all slices). In all of the above re-
gions, the method identified clusters of voxels for which we can assert
with 95% confidence there was a percentage BOLD change raw effect
greater than 2:0% (Figs. 15 and 16, bottom plots).

Further brain areas localized by the upper CS were the frontal pole
(left and right; Fig. 15, sagittal and axial slices), supramarginal gyrus (left
and right; Fig. 15, sagittal slice and Fig. 16, coronal and axial slices),
precuneous (Fig. 16, sagittal slice) and cerebellum (Fig. 15, sagittal slice).
While for these areas we can assert with 95% confidence there was a
percentage BOLD change raw effect greater than at least 1:0% (Figs. 15
and 16, top plots), on-the-whole the method only localized areas where



Fig. 13. Coverage results for Signal 3., the multiple spheres signal. Once again, for all confidence levels, coverage remained above the nominal level in all simu-
lations. Here, the true boundary method (dashed curves) performed slightly better than the estimated boundary method (solid curves) in small sample sizes, although
the choice of boundary made less of a difference for a higher confidence level. For a 95% confidence level (right plot), all results hover slightly above nominal coverage
for all sample sizes.

Fig. 14. Coverage results for Signal 4., the UK Biobank full mean signal, where the full standard deviation image was used as the standard deviation of the subject-
level noise fields. Coverage results here were similar to the results for the multiple spheres signal shown in Fig. 13; in small sample sizes, coverage was slightly
improved for the true boundary method (dashed curves) compared to the estimated boundary method (solid curves), however, for a 95% confidence level (right plots),
all results hover slightly above nominal coverage for all sample sizes.
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there was a BOLD change of at least 2:0% in parts of the frontal cortex.
This can be observed by the ‘disappearance’ of the red CSs in brain re-
gions located in the ocipital lobe for the 2:0% BOLD change plots when
compared with the corresponding 1:0% and 1:5% BOLD change plots in
Figs. 15 and 16.

As the percentage BOLD change threshold increases between plots,
there is a shrinking of both the blue lower CSs and red upper CSs. By
using a larger threshold, there are less voxels we can confidently declare
have surpassed this higher level of percentage BOLD change, and thus the
volume of the red upper CSs decreases (in some cases, vanishing). At the
same time, there are more voxels we expect to be able to confidently
declare have fallen below the threshold. Since these are precisely the
12
(grey background) voxels that lie outside of the lower blue CSs, the
volume of the blue lower CSs also decreases.

Finally, in Fig. S1 and Fig. S2 the red upper CSs are compared with the
thresholded t-statistic map (green-yellow voxels) obtained from applying
a traditional one-sample t-test group-analysis to the 80 subjects working
memory task contrast data, using a voxelwise FWE-corrected threshold of
p < 0:05. Differences here highlight how statistical significance may not
translate to practical significance; while over 28,000 voxels were
declared as active in the thresholded t-statistic results, only 4,818 voxels
were contained in the upper CS indicating a percentage BOLD change of
at least 1:0%.



Fig. 15. Slice views of the Confidence Sets for 80 subjects data from the HCP working memory task for c ¼ 1:0%;1:5% and 2:0% BOLD change thresholds. The upper

CS cA þ
c is displayed in red, and the lower CS cA –

c displayed in blue. In yellow is the point estimate set cA c, the best guess from the data of voxels that surpassed the
BOLD change threshold. The red upper CS has localized regions in the frontal gyrus, frontal pole, anterior insula, supramarginal gyrus and cerebellum for which we can
assert with 95% confidence that there has been (at least) a 1:0% BOLD change raw effect.
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5. Discussion

5.1. Spatial inference on %BOLD raw effect size

Thorough interpretation of neuroimaging results requires an appre-
ciation of the practical (as well as statistical) significance of differences
through visualization of raw effect magnitude maps with meaningful
units (Chen et al., 2017). In this work, we have presented a method to
create Confidence Sets for raw effect size maps, providing formal confi-
dence statements on regions of the brain where the %BOLD response
magnitude has exceeded a specified activation threshold, alongside re-
gions where the %BOLD response has not surpassed this threshold. Both
of these statements are made simultaneously, and across the entire brain.
This not only enables researchers to infer brain areas that have responded
to a task, but also allows for inference on areas that did not respond to the
task. In this sense, the method goes beyond statistical hypothesis testing,
where the null-hypothesis of no activation can ‘fail to be rejected’, but
never accepted. By operating on percentage BOLD change units, instead
of t-statistic values, the confidence set maps present a clear and more
direct interpretation of the biophysical changes that occur during a
neuroimaging study, which can be distorted by the thresholded statistic
maps commonly reported at the end of an investigation (Engel and
Burton, 2013). In essence, the CSs synthesize information that is usually
provided separately in a raw effect size and t-statistic map, determining
practically significant effects in terms of effect magnitude, that are also
reliable in terms of statistical significance traditionally given by p-values
in a statistic image. While in this work we have focused on BOLD fMRI,
the methods presented here are applicable to any neuroimaging measure
that can be fit in a group-level GLM.
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The choice of threshold c is ultimately up to the user, and may depend
on the aims of the investigation. Researchers may choose a threshold
based on prior knowledge of raw effect sizes observed in previous similar
studies, and it is likely that localization of larger raw effects will be
possible as sample sizes increase. Obtaining the CSs for the Human
Connectome Project contrast data in this work was computationally
quick, each analysis taking no longer than a couple of minutes. Therefore,
one possible strategy is to evaluate a variety of different c’s on pilot or
historical data before fixing a value to use on a study of interest.
5.2. Analysis of HCP data and simulation results

In our analysis of the HCP working memory task-fMRI dataset, we
have primarily focused on activated areas localized by the red upper CS.
However, the confidence set maps in Figs. 15 and 16 also quantify the
spatial precision of the point estimate ‘best guess from the data’ activa-
tion clusters. While so far we have described the confidence sets in terms
of the red and blue upper and lower CSs, we now highlight that the set
difference between the upper and lowers CSs acts as a confidence region
itself; with 95% confidence, we can assert that the boundary of the point
estimate set (raw effect size> threshold; yellow voxels overlapped by red
in Figs. 15 and 16) is completely contained within this region. The set
difference region, visualized by blue and yellow voxels (but not red) in
Figs. 15 and 16, therefore anticipates how the point estimate clusters may
fluctuate if the experiment was to be repeated again. From this
perspective, the vast areas of the brain covered by blue in Figs. 15 and 16
demonstrate the high level of uncertainty in localizing a raw effect size
of, for example, 1.0% BOLD change, despite the large sample size of N ¼
80 used for the HCP. The regions of greatest uncertainty were sub-



Fig. 16. Further slice views of the Confidence Sets. Here, we see that the red upper CS has also localized regions in the anterior cingulate, superior front gyrus,
supramarginal gyrus, and precuneous for which we can assert with 95% confidence that there has been (at least) a 1:0% BOLD change raw effect.

A. Bowring et al. NeuroImage 203 (2019) 116187
cortical areas, covered by expansive clusters of blue as seen in the axial
slices displayed in Fig. 15 and sagittal slices in Fig. 16. Large intersubject
variability here may be explained by the high multi-band acceleration
factor used in the HCP scanning protocol, which is generally more suited
for scanning the cortex (Smith et al., 2013).

'For the 2D simulations, the method achieved close to nominal
coverage for the circular signal, but performed less well for the ramp
signal, obtaining under-coverage for the true boundary method and over-
coverage for the estimated boundary method. We believe differences in
the circle and ramp results are not due to changes in the signal shape per
se, but instead are caused by differences in the slope of each shape close
to the true boundary ∂A c. Since the linear ramp signal has a shallower
gradient at the true boundary compared to the circle, local changes in the
observed signal around the boundary are dominated by changes in the
noise. Since the noise is more wavey than the signal, the linear interpo-
lation method for obtaining the boundary is likely to be less accurate for
the ramp, causing toomany violations of the subset condition, whichmay
explain the under-coverage for the true boundary results seen here.

For the 3D simulations, the method obtained over-coverage in all of
our results. Here, the degree of over-coverage was consistently larger for
the smaller confidence level of 1�α ¼ 0:80 in comparison to the larger
confidence level of 1 � α ¼ 0:95. Notably, the over-coverage was also
more severe for signals with a longer boundary, such as the multiple
spheres and Biobank signals, when compared to the Small Sphere signal
that had a shorter boundary length. One possible reason for this is that
our proposed method for assessing coverage may still be missing in-

stances where violations of the subset condition cA þ
c ⊂A c⊂ cA –

c occur,
causing the results to be slightly positively biased. While our assessment
method reduces the influence of grid coarseness by sampling locations on
the true continuous boundary ∂Ac, ultimately we can still only assess
coverage at a discrete set of points on a continuous process. For signals
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with a longer boundary length, the set of sampled locations obtained
with the interpolation method is relatively less dense within the true
continuous boundary, and thus it is more likely violations of the subset
condition are missed. Over-coverage for smaller confidence levels may
also be explained by this, as theoretically more violations should occur
here, but these may be missed due to inaccuracies caused by the
discreteness of the lattice. This line of reasoning is consistent with Sec-
tion 4.4 of SSS, where it was shown that coverage approached the
nominal level as the resolution of the grid was increased.

5.3. Methodological innovations

In this work, we have advanced on the original methods applied in
SSS. From a theoretical standpoint, we have proposed a Wild t-Bootstrap
method (dividing bootstrap residuals by bootstrap standard deviation) to
compute the critical quantile value k. We have also introduced an
interpolation scheme for obtaining the boundary and assessing the
simulation coverage results to reduce the influence of grid coarseness. In
Section 4.1, we demonstrated that applying the assessment method in
SSS could lead to empirical coverage of close to 100%, suggesting that
this method may considerably bias the simulation results upwards. When
using our proposed assessment, the Wild Bootstrap method suffered from
under-coverage, most severely for small sample sizes in the 3D setting of
the large spherical signal presented in Fig. 8. This was greatly remedied
by the Wild t-Bootstrap method, for which empirical results stayed close
to the nominal target independent of sample size.

Our simulations using the original procedures may not seem consis-
tent with the simulation results published in Fig. 5 of SSS, where
empirical coverage stayed close to the nominal target. However, the
signal-plus-noise models investigated to test the performance of the CSs
in SSS were much smoother than the synthetic signals considered to
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emulate fMRI data with this effort. By applying a larger degree of
smoothing, the signals used in SSS effectively had a much higher reso-
lution. Because of this, it is likely the resolution issue presented in Fig. 3
was less critical, reducing the positive bias in empirical coverage induced
from using the original simulation assessment procedure. Further evi-
dence for this is provided in Fig. 7 of SSS, where they observed an in-
crease in coverage after repeating their simulations on a coarser lattice.
In our simulation results in Section 4.1, the scale of under-coverage from
using the Gaussian Wild bootstrap method was much more severe for the
3D simulation on the spherical signal in Fig. 8 compared to the 2D cir-
cular signal in Fig. 7. This may explain why the Gaussian Wild bootstrap
method performed relatively well in SSS, as only 2D signals were
considered there.
5.4. Limitations & future work

The principal limitation of this work is one that is intentional and
explicit: Our method is for spatial inference on maps of raw and not
standardized effects, such as Cohen’s d or partial R2 (t- or F-statistics,
which scale with sample size, do not estimate population quantities
and are not suitable for making confidence statements). Even when
scaled to percentage BOLD change, it has been shown that raw effects
can modulate with acquisition parameters such as the scanner field
strength or echo time (UIudag et al., 2009). Users should therefore be
cautious when combining effect estimates from studies using hetero-
geneous acquisition setups, and clearly specify such differences when
reporting the results of any meta-analysis on raw effects. It is also
known that inhomogeneities in the vasculature of the brain is a cause
of variation in the BOLD response. Therefore, we recommend that any
interpretation of %BOLD change inferred from the CSs is referenced
against a variance map or similar image that indicates the most venous
brain regions. We note that each of these points are general compli-
cations of raw effect sizes within fMRI, rather than issues with the
method proposed in this effort per se. Nonetheless, the use of stan-
dardized effect estimates may help to remedy these problems in the
future. The statistical characteristics of standardized effect maps are
fundamentally different to the raw effect images motivating the
method here, and the topic of our current work is to develop CSs for
standardized effect size images.

The need for resampling to conduct inference is another limitation of
this effort, especially given the big data motivation of this work. How-

ever, the bootstrap is only conducted on the estimated boundary, ∂cA c,
not the whole 3D volume, which substantially reduces the computational
burden. For very large datasets, techniques for approximating empirical
distributions can be used to improve the accuracy of the estimation of k
based on a smaller number (e.g. B ¼ 500) of bootstrap samples (Winkler
et al., 2016).
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