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Simple Summary: More than 70% of patients with nasopharyngeal carcinoma (NPC) present with
a locoregionally advanced state. Although the initial staging of NPC is primarily based on TNM
staging, there is currently no well-established prognostic marker for NPC. Recently, radiomics has
received considerable research attention as a potential prognostic biomarker for NPC. The aim of
this systematic review and meta-analysis was to comprehensively evaluate the prognostic value of
pretreatment magnetic resonance imaging (MRI)-based radiomics for NPC. The analyzed radiomic
models demonstrated modest prognostic values, with a pooled mean estimated Harrell’s concordance
index (C index) of 0.762. The prognostic models developed using more than eight radiomic features
had significantly higher C-indices than those developed using fewer features. Our findings provide
evidence that MRI-based radiomics may have a modest prognostic role in the treatment of NPC.
However, more consistent study protocols are needed to verify the generalizability of radiomics.

Abstract: Advanced non-metastatic nasopharyngeal carcinoma (NPC) has variable treatment out-
comes. However, there are no prognostic biomarkers for identifying high-risk patients with NPC. The
aim of this systematic review and meta-analysis was to comprehensively assess the prognostic value
of magnetic resonance imaging (MRI)-based radiomics for untreated NPC. The PubMed-Medline
and EMBASE databases were searched for relevant articles published up to 12 August 2021. The
Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis
(TRIPOD) checklist was used to determine the qualities of the selected studies. Random-effects
modeling was used to calculate the pooled estimates of Harrell’s concordance index (C-index) for
progression-free survival (PFS). Between-study heterogeneity was evaluated using Higgins’ inconsis-
tency index (I2). Among the studies reported in the 57 articles screened, 10 with 3458 patients were
eligible for qualitative and quantitative data syntheses. The mean adherence rate to the TRIPOD
checklist was 68.6 ± 7.1%. The pooled estimate of the C-index was 0.762 (95% confidence interval,
0.687–0.837). Substantial between-study heterogeneity was observed (I2 = 89.2%). Overall, MRI-based
radiomics shows good prognostic performance in predicting the PFS of patients with untreated NPC.
However, more consistent and robust study protocols are necessary to validate the prognostic role of
radiomics for NPC.

Keywords: nasopharyngeal carcinoma; radiomics; survival; meta-analysis

1. Introduction

Nasopharyngeal carcinoma (NPC) is an endemic cancer in Southeast Asia and South-
ern China, with an annual incidence rate of 50–80 patients per 1,000,000 population [1].
However, its annual incidence rate in Europe is relatively low at 4.7 patients per 1,000,000
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population [2]. The standard treatment strategy for NPC involves concurrent chemoradia-
tion therapy (CCRT) with or without adjuvant chemotherapy [3]. The prognosis of patients
treated with CCRT is relatively fair, with a five-year overall survival and progression-free
survival (PFS) rate of approximately 72% [4].

Initial cancer staging for NPC is primarily based on TNM staging according to the 8th
edition of the American Joint Committee on Cancer guidelines [5]. Although TNM staging
is currently the gold standard for the prognostication of patients with NPC, recent advances
in quantitative magnetic resonance imaging (MRI) sequences, including diffusion-weighted
MRI and apparent diffusion coefficient [6,7], dynamic contrast enhancement MRI [7,8], and
amide proton transfer imaging [9], have been demonstrated as additional means for the
prognostication of patients with untreated NPC.

Radiomics is the analysis of medical images into high-throughput quantitative data.
This field has recently gained significant attention in oncologic radiology research as an
illustrative example of personalized precision medicine. The underlying hypothesis is that
medical images can reveal important data on tumor phenotypes [10], making radiomics a
computational biomarker. One of the benefits of radiomics in medical imaging is its applica-
bility in routinely acquired MRI sequences, such as T2-weighted (T2) or contrast-enhanced
T1-weighted (CE-T1) MR images, often yielding thousands of quantifiable imaging features.
Zhang et al. investigated the prognostic value of multiparametric MRI-based radiomics
for advanced NPC cases [11] and found that MRI-based radiomics provides improved
prognostication. The prognostic value of radiomics for untreated NPC has been previously
established, further supporting its potential role as a prognostic imaging biomarker [12–14].

Clarifying the evidence on the role of radiomics in the prognostication of NPC will
promote better clinical decision-making for precision medicine. Therefore, the purpose
of this systematic review and meta-analysis was to evaluate the prognostic value of MRI-
based radiomics for NPC. This study indicated that MRI-based radiomics shows good
prognostic performance in predicting the progression-free survival (PFS) of patients with
untreated NPC.

2. Methods

This study was conducted according to the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines [15]. This protocol is registered with
Open Science Framework (OSF) at https://doi.org/10.17605/OSF.IO/7KADY (accessed
date: 17 January 2022).

2.1. Literature Search

The PubMed-MEDLINE and EMBASE databases were searched for relevant original
articles on the use of MRI-based radiomics for predicting the prognosis of patients with
untreated NPC until 12 August 2021. The following search terms were used: [(nasopha-
ryngeal) AND (cancer OR carcinoma OR squamous cell carcinoma OR malignancy OR
tumor) AND (MRI OR MR OR magnetic resonance imaging) AND (radiomics OR radiomic
OR texture) AND (survival OR prognosis)]. Only articles published in English, and those
involving human patients were included. The bibliographies of the selected articles were
further screened to identify other potentially relevant articles.

2.2. Inclusion and Exclusion Criteria

The inclusion criteria were as follows, (1) patients: those with pathologically-confirmed
NPC without prior treatment, including neoadjuvant chemotherapy, definitive chemoradi-
ation, or radiation therapy; (2) index test: MRI with provision for pretreatment radiomic
analysis of primary NPC; (3) reference standard: standards for PFS as determined through
clinical/imaging follow-up; and (4) study design: all observational studies (retrospective
or prospective).

The exclusion criteria were as follows, (1) case reports, review articles, editorials, letters,
and conference abstracts; (2) insufficient data on patients’ survival outcomes; (3) lack of
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data on the radiomic analysis of primary NPC; (4) insufficient details on patient survival
data and Harrell’s concordance index (C-index); and (5) overlapping patient data. Two
reviewers (S.L. and Y.C.) independently selected the appropriate study reports using a
standardized form.

2.3. Data Extraction

The following data were extracted from the included articles in a standardized for-
mat: (a) study characteristics (authors, year of publication, study design, and affiliation);
(b) cohort characteristics (number of included patients, including the numbers of the pa-
tients in the training and validation cohorts, patients’ mean age, sex, cancer stages, and
type of treatment received); (c) MRI protocols (MR pulse sequences used, MR Tesla, man-
ufacturer, and name of scanner); (d) characteristics of radiomic analysis (segmentation
software, segmentation method, radiomic software, feature selection method, number of
selected radiomic features, use of internal or external validation, and type of algorithm);
and (e) model performance metrics (types of models built and their C-indices in the training
and validation cohorts). Radiomic models were chosen for analysis for studies in which
the C-indices of multiple survival models were reported.

2.4. Quality Assessment Based on the TRIPOD Statement and RQS

Two reviewers (S.L. and Y.C.) independently extracted the data from the articles
and performed a quality assessment in consensus. The studies reported in the included
articles were evaluated using the Transparent Reporting of a Multivariable Prediction
Model for Individual Prognosis or Diagnosis (TRIPOD) checklist, which consists of 22 main
criteria with 35 items [16,17]. The type of predictive model was determined as one of the
following: development only (type 1a), development and validation using resampling
(type 1b), random split-sample validation (type 2a), nonrandom split-sample validation
(type 2b), validation using separate data (type 3), or validation only (type 4). To ensure the
robustness of the predictive models, only studies of model type 1b or higher were included.
Furthermore, studies with less than 50% adherence rate to the TRIPOD checklist items
(<18 out of 35 items) were excluded.

Furthermore, the radiomic characteristics of studies were assessed using the Radiomic
Quality Score (RQS). RQS consists of six key domains and measures the robustness of
the radiomic methodology by scoring specific points for each category up to a total of
36 points [18]. Scoring of the specific RQS items was based on a previous report [19]. The
two reviewers (S.L. and Y.C.) independently evaluated RQS and then in consensus.

2.5. Definitions of Prognostic Endpoints

The definitions of PFS, local relapse-free survival, distant metastasis-free survival,
disease-free survival, and failure-free survival were interchangeable among studies; thus,
we collectively defined them as PFS: the interval between the first day of treatment to the
date of disease progression (either locoregional recurrences or distant metastases), death
from any cause, or the date of the last follow-up visit.

2.6. Data Synthesis for Meta-Analysis

The performances of the radiomics models in predicting PFS, measured using the mean
C-indices, were the main outcomes of interest. The C-index measures the prognostic per-
formance of models whose outcomes are time-to-event censored data [20]. Only C-indices
calculated from the validation or test datasets were used. For studies in which more than
one C-index of radiomic models were reported, the one with the highest C-index was
chosen. The 95% confidence intervals (CI) of the associated C-indices were back-calculated
to derive their standard deviations (SD) [21]. C-indices calculated from integrated models
(i.e., radiomic + clinical or other models) were not used in the analysis. The inverse variance
method was used to calculate weights, whereas pooled estimates with their 95% CI were
calculated using DerSimonian–Laird random-effects modeling. Between-study hetero-
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geneity was assessed using Q tests and the Higgins inconsistency index (I2), with I2 > 50%
suggesting heterogeneity [22]. Subgroup meta-regression analyses were performed ac-
cording to the total number of patients, segmentation method used, number of radiomic
features used, external validation, TRIPOD adherence rate, feature selection method, and
radiomic software used. Publication bias was assessed using funnel plots and Egger’s
test [23]. All statistical analyses were performed using R Statistical Software (version 4.1.0,
Vienna, Austria) with ‘metafor’ and ‘meta’ packages [24,25].

3. Results
3.1. Literature Search

A flow diagram of the selection process is depicted in Figure 1. A total of 38 unique
articles were screened based on their titles and abstracts. Nine articles, including five
conference abstracts, three editorials/errata, and one review, were excluded. The full texts
of the remaining 29 articles were then thoroughly reviewed. An additional 12 articles were
excluded because the studies reported in them were not conducted using MRI (n = 1), not
in the field of interest (n = 1), were missing survival information (n = 5), had partially
overlapping cohorts (n = 2), or involved the analysis of TRIPOD type 1a predictive models
(n = 2). Of the two studies with overlapping cohorts, the one with a larger sample size
was selected. Finally, 10 studies that met the eligibility criteria were included for data
synthesis [11,12,26–33].

Cancers 2022, 14, x  4 of 16 
 

 

indices calculated from the validation or test datasets were used. For studies in which 

more than one C-index of radiomic models were reported, the one with the highest C-

index was chosen. The 95% confidence intervals (CI) of the associated C-indices were 

back-calculated to derive their standard deviations (SD) [21]. C-indices calculated from 

integrated models (i.e., radiomic + clinical or other models) were not used in the analysis. 

The inverse variance method was used to calculate weights, whereas pooled estimates 

with their 95% CI were calculated using DerSimonian–Laird random-effects modeling. 

Between-study heterogeneity was assessed using Q tests and the Higgins inconsistency 

index (I2), with I2 > 50% suggesting heterogeneity [22]. Subgroup meta-regression analyses 

were performed according to the total number of patients, segmentation method used, 

number of radiomic features used, external validation, TRIPOD adherence rate, feature 

selection method, and radiomic software used. Publication bias was assessed using funnel 

plots and Egger’s test [23]. All statistical analyses were performed using R Statistical Soft-

ware (version 4.1.0, Vienna, Austria) with ‘metafor’ and ‘meta’ packages [24,25].  

3. Results 

3.1. Literature Search 

A flow diagram of the selection process is depicted in Figure 1. A total of 38 unique 

articles were screened based on their titles and abstracts. Nine articles, including five con-

ference abstracts, three editorials/errata, and one review, were excluded. The full texts of 

the remaining 29 articles were then thoroughly reviewed. An additional 12 articles were 

excluded because the studies reported in them were not conducted using MRI (n = 1), not 

in the field of interest (n = 1), were missing survival information (n = 5), had partially 

overlapping cohorts (n = 2), or involved the analysis of TRIPOD type 1a predictive models 

(n = 2). Of the two studies with overlapping cohorts, the one with a larger sample size was 

selected. Finally, 10 studies that met the eligibility criteria were included for data synthesis 

[11,12,26–33].  

 

Figure 1. A flow diagram of the study selection process. Figure 1. A flow diagram of the study selection process.



Cancers 2022, 14, 653 5 of 14

3.2. Clinical Characteristics and MR Protocols of the Included Studies

The detailed characteristics of the 10 eligible studies are summarized in Table 1. While
one study was a prospective study [31], the others were retrospective studies. Eight
studies were conducted in China [11,27–33], one in Italy [26] and one in the Republic of
Korea [12]. The type of treatment patients received was not reported in two studies [11,27],
whereas the types of treatments received, including a combination of radiation, concurrent
chemoradiation, induction chemotherapy, or adjuvant chemotherapy, were reported in the
other studies. The 1.5 Tesla and 3.0 Tesla MR scanners were used in six [11,26–29,31] and
two studies [12,33], respectively, whereas both the 1.5 and 3.0 Tesla MR scanners were used
in two studies [30,32]. T2 and CE-T1 sequences were used in all but two studies, in which
only CE-T1 [27] and T2 with non-contrast T1 sequences [26] were used.

3.3. Radiomic and Image Analyses

The details of the radiomic and image analyses of the included studies are summarized
in Table 2. Regarding the selection of the region of interest, whole tumors were segmented
in seven studies [11,12,28–30,32,33], whereas only the largest axial slice was segmented
in two studies [26,31]. However, the segmentation method used was not reported in
one study [27]. Regarding feature selection methods, the least absolute shrinkage and
selection operator (LASSO) was used for feature selection in six studies [11,12,27–29,32],
whereas recursive feature elimination [31], stability and correlation-based selection [26],
and minimal redundancy maximum relevance with random forest [30], were used in the
other studies. Except for one study in which feature selection was not applied [33], the
number of radiomic features selected for the prognostic models analyzed in the other
studies ranged from two to 20. Both internal and external validation of the models were
performed in only two studies [30,31]. All studies used machine learning algorithms for the
radiomic analysis except for two studies that used the deep learning [32] and conventional
statistical methods [26].

3.4. Quality Assessment of the Prediction Models Based on the TRIPOD Statement

Among the 35 items of the TRIPOD checklist, the mean ± SD of the reported TRIPOD
items was 24 ± 2.5. The mean adherence rate and SD of the checklist was 68.6 ± 7.1%. Most
importantly, none of the studies presented their titles as ‘developing/validating a model,
target population, and the outcome’. Moreover, none of the articles described the handling
of data or details of any imputation method. The checklist of the individual TRIPOD items
is summarized in Supplementary Table S1.

The basic adherence rate of RQS items is summarized in Table 3. The mean adherence
rate was 55 ± 43%. All studies included validation cohorts and conducted a cut-off analysis
(i.e., determining high- and low-risk groups) and discrimination statistics (i.e., reporting
C-index with 95% CI). None of the studies adhered to the RQS items in Domain 5 and 6.
The detailed scores of each item are provided in Supplementary Table S2.
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Table 1. Clinical characteristics and magnetic resonance (MR) protocols of the included studies.

First Author
(Year of

Publication)

Affiliation and
Country Study Period Study Design

No. of Patients
(Train-

ing/Validation)

Age [Mean ±
SD or Median

(Range)]

Proportion of
Male

Overall and
TNM Cancer

Stage

Type of
Treatment
Received

MR
Tesla

MR Pulse
Sequences

MR
Manufacturer

(Scanner
Name)

Zhang B (2017)

Guangdong
General Hospi-
tal/Guangdong

Academy of
Medical Sciences,

China

January
2007–August

2013
Retrospective 118 (88/30)

43 (38–51)
(training)/
44 (36–51)

(validation)

78%
Non-

metastatic
III–IVa

NR 1.5 T2, CE-T1
GE (Signa

EXCITE HD,
TwinSpeed)

Ming X (2019)
Fudan University
Shanghai Cancer

Center, China

January
2010–February

2012
Retrospective 303 (200/103) 48 (11–80) 74.6% I–IV NR 1.5 CE-T1 GE

Zhang L (2019)
Sun Yat-sen

University Cancer
Center, China

April 2009–
December

2015
Prospective

737
[360/120(internal)/

257(external)]
NR 1 75%

Non-
metastatic

I–IVa

RT alone or
CCRT ± IC ±

AC
1.5 T1, T2, CE-T1

GE (Signa
EXCITE,

SignaHDx),
Siemens
(Espree,

Novus15)

Zhuo E (2019)
South China
University of

Technology, China

January
2010–January

2013
Retrospective 658 (424/234)

45 (38–53)
(training)
44 (37–50)

(validation)

73.3%
Non-

metastatic
I–IVa

Radical IMRT 3 T1, T2, CE-T1 GE (Discovery
MR750)

Yang K (2019)

Cancer Center and
State Key

Laboratory of
Biotherapy, West
China Hospital,

Sichuan University,
China

January
2010–February

2013
Retrospective 224 (149/75)

46 ± 11
(training)
50 ± 10

(validation)

70.1% III–IVa RT ± IC ± AC 1.5 T2, CE-T1 Siemens
(TrioTrim)

Shen H (2020)

Chongqing
University Cancer

Hospital and
Chongqing Cancer

Institute and
Chongqing Cancer

Hospital, China

June
2013–June

2017
Retrospective 327 (230/97)

52 (45–61)
(training)
52 (45–61)

(validation)

72.5%
Non-

metastatic
I–IVa

RT alone or
CCRT ± IC ±

AC
1.5 T2, CE-T1 Philips

(Achieva)
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Table 1. Cont.

First Author
(Year of

Publication)

Affiliation and
Country Study Period Study Design

No. of Patients
(Train-

ing/Validation)

Age [Mean ±
SD or Median

(Range)]

Proportion of
Male

Overall and
TNM Cancer

Stage

Type of
Treatment
Received

MR
Tesla

MR Pulse
Sequences

MR
Manufacturer

(Scanner
Name)

Bologna M
(2020)

Fondazione IRCCS
Istituto Nazionale
dei Tumori, Italy

2004–2017 Retrospective 136 48 (39–57) 70% I–IV RT alone or
CCRT ± IC 1.5 T1, T2

Siemens
(Magnetom

Avanto)

Zhong L (2020)

School of Artificial
Intelligence,

University of
Chinese Academy
of Sciences, China

January
2010–March

2016
Retrospective 638 (447/191)

41 (10–69)
(training)
41 (16–68)

(validation)

69.3% Non-
metastaticI–III IC + CCRT

1.0,
1.5,
3.0

T1, T2, CE-T1

Philips
(Achieva,
Panorama
HFO) GE

(Discovery
MR750,

Espree, Signa
EXCITE, Signa

HDx),
Siemens

(TrioTim)

Zhang F (2020)

The Cancer Center
of the Fifth

Affiliated Hospital,
Sun Yat-sen

University, China

January 2013–
November

2019
Retrospective 236 [132/44(internal)

/44(external)]

48 (19–83)
(training) 49

(27–78)
(internal test)

44 (24–70)
(external test)

72.7%
Non-

metastaticI–
IVa

RT 1.5, 3 T1, T2, CE-T1
Siemens

(Magnetom
Verio, Avanto)

Kim M (2021)

Seoul St. Mary’s
Hospital, College
of Medicine, The

Catholic
University of

Korea, Republic of
Korea

June
2006–October

2019
Retrospective 81 (57/24) 53 ± 13 75.3%

Non-
metastaticI–

IVa
CCRT 3 T2, CE-T1

Siemens
(Magnetom

Verio)Philips
(Ingenia)

1 Reported as <62 or ≥62 years old. AC = adjuvant chemotherapy; CCRT = concurrent chemoradiation therapy; CE-T1 = contrast-enhanced T1-weighted image; IC = induction
chemotherapy; IMRT = intensity-modulated radiation therapy; NA = not available; NR = not reported; SD = standard deviation.
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Table 2. Summary of details of radiomic and image analyses.

First Author (Year of
Publication)

Segmentation
Software

Segmentation
Method

Radiomic Software
Used Feature Selection Method

Number of
Radiomic Features

Selected

Validation
Type

Type of Algorithm
Used

Zhang B (2017) ITK-SNAP Whole tumor MATLAB LASSO 8 I ML

Ming X (2019) MIM Not reported MATLAB LASSO 5 I ML

Zhang L (2019) RadiAnt Largest axial slice MATLAB Recursive feature
elimination 11 I & E ML

Zhuo E (2019) Analyze Pro Whole tumor MATLAB None 4863 I ML

Yang K (2019) Raystation Whole tumor LIFEx LASSO 3 I ML

Shen H (2020) In-house software
developed by Philips Whole tumor Philips Radiomics

Tool LASSO 20 I ML

Bologna M (2020) Not reported Largest axial slice PyRadiomics Stability-based selection,
correlation-based selection 2 I Statistical method

Zhong L (2020) ITK-SNAP Whole tumor PyRadiomics LASSO 3 I DL

Zhang F (2020) ITK-SNAP Whole tumor PyRadiomics
ICC, minimal redundancy

maximum relevance,
random forest

12 I & E ML

Kim M (2021) 3D Slicer Whole tumor PyRadiomics LASSO 7 I ML

DL = deep learning; E = external validation; I = internal validation; LASSO = least absolute shrinkage and selection operator; ML = machine learning.
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Table 3. Basic adherence rate of the RQS items.

RQS items Adherence Rate

Domain 1
Image protocol quality 90% (9)
Multiple segmentation 20% (2)
Phantom study on all scanners 0%
Imaging at multiple time points 0%

Domain 2
Feature reduction or adjustment for multiple testing 90% (9)
Validation 100% (10)

Domain 3
Multivariate analysis with non-radiomics features 90% (9)
Detect and discuss biologic correlates 60% (6)
Comparison to gold standard 90% (9)
Potential clinical utility 70% (7)

Domain 4
Cut-off analysis 100% (10)
Discrimination statistics 100% (10)
Calibration statistics 70% (7)

Domain 5
Prospective study registered in a trial database 0%
Cost-effective analysis 0%

Domain 6
Open science and data 0%

3.5. Pooled Estimate of C-Indices for PFS

The pooled estimate of C-indices for PFS was 0.76 (95% CI, 0.69–0.84) (Figure 2). In
addition, there was significant heterogeneity among the studies (I2 = 89.2%; Cochran’s Q
method, p < 0.001). No publication bias was observed upon visual inspection of the funnel
plot (Figure 3); the results of Egger’s test showed no bias as well (p = 0.73).
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3.6. Subgroup Meta-Regression Analyses

The results of the subgroup meta-regression analysis are shown in Table 4. The number
of radiomic features used in the prognostic models and the radiomic software used were
found to be the sources of heterogeneity. Models developed using more than eight radiomic
features had significantly higher C-indices than those developed with less features (0.83 vs.
0.71, p < 0.001). Furthermore, models developed using PyRadiomics for radiomic feature
extraction had significantly lower C-indices than those developed using other software
(0.71 vs. 0.83, p < 0.001). Other covariates, including the segmentation method used (whole
tumor vs. largest axial slice, p = 0.53), total number of patients (>300 vs. ≤300, p = 0.686),
external validation of the prognostic models (yes vs. no, p = 0.542), rate of adherence to the
TRIPOD checklist (>70% vs. ≤70%, p = 0.775), and feature selection method (LASSO vs.
others, p = 0.975) were not found to be significant sources of heterogeneity. One article [27]
did not specify whether the ROI segmentation performed in the reported study was based
on the largest axial slice or whole tumor; thus, the study was not included in the subgroup
meta-regression analysis of the segmentation method covariate.

Table 4. Subgroup meta-regression analysis of included studies.

Covariate No. of Studies C-Index (95% CI) p-Value 1

No. of patients
>300 5 0.76 (0.60–0.92) 0.686
≤300 5 0.74 (0.68–0.78)

Segmentation method 2

Whole tumor 7 0.75 (0.65–0.85) 0.53
Largest axial slice 2 0.72 (0.66–0.79)

No. of radiomic features used
<8 5 0.71 (0.70–0.73) <0.001
≥8 5 0.83 (0.81–0.86)

External validation
Yes 2 0.72 (0.60–0.84) 0.542
No 8 0.74 (0.66–0.83)
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Table 4. Cont.

Covariate No. of Studies C-Index (95% CI) p-Value 1

TRIPOD adherence rate
>70% 6 0.75 (0.63–0.86) 0.775
≤70% 4 0.73 (0.65–0.82)

Feature selection method
LASSO 6 0.74 (0.63–0.85) 0.975
Others 4 0.74 (0.67–0.82)

Radiomic software
PyRadiomics 4 0.71 (0.69–0.73) <0.001

Others 6 0.83 (0.81–0.85)
1 p-value for between-group difference according to each category. 2 One study (Ming et al) did not specify the
segmentation method and was not included in the subgroup meta-regression analysis. LASSO = least absolute
shrinkage and selection operator; TRIPOD = Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis.

4. Discussion

This systematic review and meta-analysis were conducted to assess the prognostic
value of pretreatment MRI-based radiomics for NPC. Based on the pooled estimate of the
C-indices of the analyzed models, radiomics revealed an overall modest prognostic value
in predicting PFS (mean C-index, 0.76; 95% CI, 0.69–0.84). However, there was substantial
heterogeneity across the studies, which was primarily due to the number of radiomic
features included in the prognostic models.

Of the 10 selected studies, the study by Shen et al. reported the highest C-index (0.84;
95% CI, 0.64–0.89) [28]. A possible explanation for this might be that except for the study
in which feature selection was not performed, the prognostic model in the study by Shen
et al. had the largest number of radiomic features (n = 20) [33]. This finding is in line with
that of our subgroup meta-regression analysis, which showed that the number of radiomic
features was a significant factor in determining the performance of the C-index. This is
also consistent with the results of a previous study by Chu et al. which indicated that a
larger number of radiomic features is more accurate than a lower number in discriminating
pancreatic ductal adenocarcinoma from the normal pancreas [34]. However, it is important
to emphasize that radiomic models fitted with a larger number of features are also more
susceptible to overfitting, which in turn inevitably impacts the reproducibility in external
datasets. In this regard, the two studies that reported C-indices of 0.73 and 0.71 obtained
from the external validation cohorts [30,31] may provide higher clinical values than other
studies with internal validation cohorts. Of note, the study by Zhang et al. [31] applied the
harmonization of MR images to correct for inter-scanner variabilities, which is particularly
important for standardizing radiomic features obtained from different MRI scanners.

Interestingly, between-study heterogeneity in the subgroup meta-regression analysis
was attributable to the software used for radiomic feature extraction. The models devel-
oped using PyRadiomics for radiomic feature extraction demonstrated significantly lower
C-indices than those developed using other software. Considering that PyRadiomics is a
rigorously tested and maintained software that serves as a reference standard for radiomic
analysis [35], it seems counterintuitive that models designed using PyRadiomics showed
lower C-indices than those designed using other software. A possible interpretation of this
finding is that PyRadiomics-derived radiomic features are more standardized with a rela-
tively smaller number of radiomic features to choose from (around 120 features). However,
handcrafted radiomic features acquired using MATLAB are easier to use for additional
specifications such as wavelet filter application and log transformations, thus yielding
a substantially larger pool of radiomic features. We investigated other possible factors
specific to radiomic research that may be responsible for between-study heterogeneity, such
as the method of feature reduction or external validation of prognostic models, but none of
them yielded meaningful findings.
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Despite the benefits of radiomics in oncologic imaging, its applicability in routine
medical imaging without the need for additional advanced time-consuming MRI protocols
is limited: a frequent criticism on radiomic research focuses on the lack of reproducibility of
radiomic features and generalizability of clinical settings [36]. Among the included studies,
many selected radiomic features were highly handcrafted such that none of the features
within the same broad category (i.e., gray-level co-occurrence matrix) had any meaningful
overlap when they were further subcategorized after the wavelet filter application, which
potentially limits the repeatability of the research. One plausible explanation for this
finding is the lack of preprocessing (i.e., histogram matching or z-score normalization) of
features extracted from MRI sequences in half of the selected studies [11,27–29,33]. Image
preprocessing and normalization are especially relevant in the context of MRI scans, where
the absolute voxel intensities do not have tissue-specific meanings [37].

It is notable that the mechanism by which specific radiomic features’ characteristics
may translate into patient prognosis was not reported in several of the studies [28,31,32].
This may lead to limited reproducibility and repeatability of radiomic research. The selected
features of importance varied greatly among studies, even among those where the same
two sequences (i.e., T2 and T1-CE) were used for feature extraction [11,12,28,29]. This
suggests that the extraction of radiomic features is highly data-dependent and susceptible
to variations in manual segmentations [38].

It is also interesting to note that some of the criteria of the TRIPOD checklist were not
met by all studies. For instance, none of the study titles indicated the target population of
the study, the outcome of the study, or whether the studies were conducted to develop or
validate a model. This is consistent with the findings of a recent study on the quality of
reporting radiomics in oncologic studies according to the TRIPOD statement [17]. Among
the 77 studies reviewed in that study, only the titles of two studies were in line with the
TRIPOD recommendations. Similarly, another study by Heus et al. showed that appropriate
titles were the least well-reported items [39]. This may lead to difficulties in identifying
published studies on prediction models. As for the RQS assessment, none of the studies
met items such as phantom study or multiple imaging acquisition. In retrospective study
design, adhering to such items would probably be challenging in clinical settings. Overall,
the RQS of the included studies was unsatisfactory with all scores below 50%, which is
consistent with other similar systematic reviews based on the RQS [40–42].

This study has some limitations. First, a pooled estimate of overall survival could
not be calculated because of the small number of studies with overall survival as the
primary endpoint. Second, most of the included studies were conducted in China because
NPC is endemic in southern China. Thus, the geographically imbalanced data may limit
the generalizability of our findings. Finally, only prognostic models fitted with radiomic
features were assessed because clinical factors, and prognostic clinical models, were highly
variable across the studies, and thus were not suitable for calculating pooled estimates.

5. Conclusions

The findings of the present study suggest that pretreatment MRI-based radiomics has a
prognostic value in predicting the PFS of patients with NPC. The subgroup meta-regression
analysis showed that the number of radiomic features selected in the prognostic models
is significantly associated with C-index performance. However, there was substantial
heterogeneity across the studies; thus, more consistent and robust study protocols are
necessary in future radiomics research.
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