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Aim: To perform a systematic review on the application of artificial intelligence (AI) based
knowledge discovery techniques in pharmacoepidemiology.

Study Eligibility Criteria: Clinical trials, meta-analyses, narrative/systematic review, and
observational studies using (or mentioning articles using) artificial intelligence techniques
were eligible. Articles without a full text available in the English language were excluded.

Data Sources: Articles recorded from 1950/01/01 to 2019/05/06 in Ovid MEDLINE were
screened.

Participants: Studies including humans (real or simulated) exposed to a drug.

Results: In total, 72 original articles and 5 reviews were identified via Ovid MEDLINE.
Twenty different knowledge discovery methods were identified, mainly from the area of
machine learning (66/72; 91.7%). Classification/regression (44/72; 61.1%), classification/
regression + model optimization (13/72; 18.0%), and classification/regression + features
selection (12/72; 16.7%) were the three most frequent tasks in reviewed literature that
machine learning methods has been applied to solve. The top three used techniques were
artificial neural networks, random forest, and support vector machines models.

Conclusions: The use of knowledge discovery techniques of artificial intelligence
techniques has increased exponentially over the years covering numerous sub-topics of
pharmacoepidemiology.

Systematic Review Registration: Systematic review registration number in
PROSPERO: CRD42019136552.
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INTRODUCTION

By definition, artificial intelligence is “the theory and development of
computer systems able to perform tasks normally requiring human
intelligence” (Oxford, 2019). The British logician Alan Turing
reports the earliest work in the field in the second quarter of the
20th century. In 1935, Alan Turing proposed the basic concept of an
intelligent machine commonly known as universal TuringMachine.
He further elaborated his vision in 1947 by describing computer
intelligence as “a machine that can learn from experience” (Turing,
1937). As human intelligence is a combination of diverse abilities
(i.e., learning, reasoning, problem solving, perception, and using
language), artificial (or machine) intelligence is also a composite of
methods and techniques from different disciplines of science and
engineering to assimilate them in machines (Figure 1). It is worthy
to note that artificial intelligence is commonly confused with
machine learning. Learning (Machine/Deep Learning) is a
subfield in artificial intelligence that deals with methods and
techniques to assimilate learning abilities in machines. One reason
of machine (or deep) learning emerging as a dominant sub-field of
artificial intelligence is the considerable advancement in computer
technologies and impressive achievements in learning algorithms.
By definition, machine learning is a multidisciplinary field, which
involves methods and techniques from mathematics, statistics, and
computer science to learn from experiences (historical data) with
respect to some tasks (i.e., the nature of the problem), and measure
the performance (performance matrix) and improve it (re-
enforcement) (Michie et al., 1994). Today, machine learning
algorithms based on the principal of reinforcement learning not
only enhances the learning abilities of the machine but also
complement the other aspects of intelligence such as appropriate
reasoning, efficient problem solving, and factual perception.
Traditionally, experimental design, observational data analysis
Frontiers in Pharmacology | www.frontiersin.org
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(statistical data analysis), and computer science have always been
integral constituents of research in biomedical sciences. However, in
the past decade the sprightly ascent of machine learning based
knowledge discovery methods in artificial intelligence sparked this
trend conspicuously. For numerous medical fields, the contribution
of knowledge discovery techniques in artificial intelligence have
been described extensively. However, their level of infusion to
pharmacoepidemiology is unknown. Acording to the international
society of pharmacoepidemiology, this discipline may be defined as
“the study of the utilization and effects of drugs in large numbers
of people.” Considering this gap in knowledge, the objective of
this systematic review is to provide an overview of the use of
knowledge discovery techniques of artificial intelligence in
pharmacoepidemiology.
METHODS

An independent author (MS) registered the protocol of the systematic
review in the PROSPERO International Prospective Register of
Systematic Reviews database (identifier CRD42019136552).

Eligibility Criteria for Considering
Studies in This Review
We evaluated observational studies, meta-analyses, and clinical
trials using artificial intelligence techniques and for which the
exposure or the outcome of the study was a drug. Drugs include
any substance approved on the pharmaceutical market having an
anatomical therapeutic chemical classification code as proposed
by the World Health Organization (WHO). Only studies for
which the full text was available in the English language were
considered as eligible. Abstracts sent to international or national
conferences, letters to the editor, and case reports/series were
considered ineligible along with articles evaluating natural
language processing techniques. Reviews describing the use of
natural language processing techniques are available elsewhere
(Dreisbach et al., 2019). The reference list of narrative and
systematic reviews included with our MEDLINE query were
further screened for undetected records.

Outcome
The main outcome was the frequency of studies published per
year from January 1950 to May 2019, a narrative overview of
their findings, and a lay description of knowledge discovery
methods of artificial intelligence that were used. Secondary
outcomes included the evaluation of 1) the medical field in
which the aforementioned techniques were used and 2) the
number and the type of artificial intelligence techniques that
were used. Additionally, we assessed the frequency distribution
of articles by 3) the study design; 4) type of data sources (e.g.
primary/secondary or simulated); 5) the specific data source; 6)
the purpose for using artificial intelligence based knowledge
discovery techniques, and 7) the level of evidence provided by
the study.

The purpose of using artificial intelligence based knowledge
discovery techniques (outcome no. 6) was categorized as follows:
FIGURE 1 | Artificial intelligence abilities.
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1) To predict clinical response following a pharmacological
treatment; 2) To predict the needed dosage given the patient’s
characteristics; 3) To predict the occurrence/severity of adverse
drug reactions; 4) To predict diagnosis leading to a drug
prescription; 5) To predict drug consumption, 6) To predict
the propensity score; 7) To predict drug-induced lengths of stay
in hospital; 8) To predict adherence to pharmacological
treatments; 9) To optimize treatment regimen; 10) To identify
subpopulation more at risk of drug inefficacy, and 11) To predict
drug-drug interactions.

Search Methods for the Identification of
Studies
Ovid MEDLINE (from January 1950 to May 2019) was searched
along with the references listed in the reviews identified with our
research query (Supplementary Table 1). Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
checklist is provided in Supplementary Table 2.

Selection of Studies
In the first screening procedure, titles and abstracts of retrieved
record were screened by two independent researchers (MS and
DL) for obvious exclusions. All articles that were considered
eligible at the first screening procedure underwent a full-text
evaluation. If disagreements arose during the two steps
evaluation process, it was resolved by consensus.

Data Extraction and Management
A data extraction form was developed for this systematic review
and it is shown in Supplementary Table 3. The scale proposed
by Merlin et al. (2009) was used to establish the level of evidence
of each study.
RESULTS

In total, 6,470 and 240 records were identified in Ovid
MEDLINE and in the reference list of reviews retrieved with
the search query, respectively. After title/abstract screening,
6,633 records were eliminated because of ineligibility and 77
articles (72 original articles and 5 reviews) underwent a full-text
evaluation. The 77 articles were considered eligible to be included
in this systematic review. The PRISMA flowchart of the selection
process is shown in Figure 2 and the PRISMA checklist has been
provided in Supplementary Table 2.

We observed increased use of artificial intelligence based
knowledge discovery techniques in pharmacoepidemiology
over the years as seen in Figure 3. In all, 17 medical fields
were identified. The top four most prevalent medical fields were
pure pharmacoepidemiology (16/72; 22.2%), oncology (15/72;
20.8%), infective medicine (8/72; 11.1%), and neurology (6/72;
8.3%) (Supplementary Table 4).

Fifty-five out of 72 articles (76.4%) used artificial intelligence
techniques in the setting of a cohort study (Supplementary
Figure 1). Most of the studies provided a medium-low level of
evidence of III-3 (4/72; 5.6%), III-2 (49/72; 68.1%), and III-1 (16/
Frontiers in Pharmacology | www.frontiersin.org 3
72; 22.2%) while, a few articles provided a level of evidence of II
(3/72; 4.1%).

In the 72 selected articles, the data sources included electronic
health records (36.1%), ad-hoc databases from clinical studies
(31.9%), administrative databases (29.2%), survey (1.4%), and
simulated data (1.4%). The data sources were mainly secondary
(59.8%) and primary sources (31.8%). Only in two articles
(2.8%), researchers used both secondary sources and simulated
data. Analogously, only in two articles (2.8%), researchers used
simulated data (2.8%). The specific data sources used in selected
articles are provided in Supplementary Table 5.

Main Applications of Knowledge Discovery
Techniques in Pharmacoepidemiology
A narrative overview of the articles is provided in Table 1. The
lay description of the knowledge discovery techniques that were
used in retrieved articles is provided in Lay Description of the
Knowledge Discovery Techniques of Artificial Intelligence Used in
Pharmacoepidemiology.

The main applications of artificial intelligence based knowledge
discovery techniques in pharmacoepidemiology were classification/
regression (44/72; 61.1%), classification/regression + model
optimization (13/72; 18.0%), classification/regression
+ features selection (12/72; 16.7%), classification/regression +
features interaction (1/72; 1.4%), and classification/regression
+ features selection + model optimization (2/72; 2.8%).

Classification and regression are two different types of
predictive modeling where in the former the prediction is a
label (class) whilst in the latter it is a quantity. For example, in
classification, a patient can be classified as belonging to one of
two classes: “having the disease” and “not having the disease”
given a set of information from his/her medical history. In
regression, instead, the researcher may try to predict the
cholesterol level of a patient based on patient’s weight.
Feature (variable) selection is a type of modeling in which
the researcher constructs and trains statistical models by
selecting relevant features to reduce overfitting and training
time, and to improve accuracy. The main reason for feature
selection is to improve the model performance that may be
negatively impacted with the inclusion of partially relevant or
irrelevant features as this leads to overfitting. Conversely,
incorrectly excluding variables may lead to a bias in the
model prediction (Heinze et al., 2018). Feature interaction,
instead, is said to be relevant when the impact of any feature
changes based on the levels of the other features hence
rendering an additive model unsatisfactory. For a model with
the lowest order interaction, the prediction is calculated based
on a constant, a value for the first feature, a value for the second
feature, and finally, the value for the interaction of the two
features (Molnar, 2018).

In the retrieved articles, twenty different knowledge discovery
techniques were used. Multiple techniques were used in the same
article leading for a total of 122 applications. Random forest (30/
122; 24.6%), artificial neural networks (22/122; 18.0%), and
support vector machine (19/122; 15.6%) models were the three
most used techniques (Table 1, Supplementary Figure 2). The
July 2020 | Volume 11 | Article 1028
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FIGURE 2 | Study flow diagram.
FIGURE 3 | The trend of pharmacoepidemiological studies using artificial intelligence by years. DL, deep learning; ML, machine learning.
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TABLE 1 | Main applications of knowledge discovery methods of artificial intelligence (AI) in pharmacoepidemiology.

AI technique Application Study/ies AI used for
feature
selection

AI used for
model

optimization

Artificial
Neural
Network

To predict the
clinical response
following a
pharmacological
treatment

1) Barbieri et al. used an artificial neural network to predict future hemoglobin levels among patients
with end-stage renal disease that received pharmacological treatment for anemia (Barbieri et al., 2015)
2) The aforementioned statistical model was also used by Snow et al. to predict the presence or
absence of cancer in patients that underwent laparotomy and chemotherapy for stages III or IV ovarian
cancer. In particular, artificial neural networks provided a better prediction of the presence/absence of
cancer than standard logistic/linear regression analyses (Snow et al., 2001).
3) Buchner et al. found that used an artificial neural network to predict metastatic renal cell carcinoma in
patients with renal cell carcinoma (Buchner et al., 2012).
4) Saadah et al. have used artificial neural networks to identify the subpopulation of premature infants
that benefitted of pharmacological prophylaxis for respiratory syncytial virus with palivizumab. In
particular, the authors found that the statistical method was able to identify two main features i.e.
extreme low-birth weight male infants and congenital heart disease as key elements for the
effectiveness of the treatment (Saadah et al., 2014).
5) The Artificial neural network technique was used by Kebede et al. to predict the change in CD4
count among patients who underwent antiretroviral treatment. The model was found less effective than
other machine learning techniques (Kebede et al., 2017).
6) Schmitz et al. used a neural network model to identify genetic markers for treatment success in heart
failure patients (Schmitz et al., 2014). The model provided the fourth best accuracy when compared to
other machine learning techniques used by the researchers.
7) Hardalaç et al. used a neural network model to evaluate the impact of azathioprine treatment on
mucosal healing (Hardalac et al., 2015).
8) Albarakati and colleagues used an artificial neural network to classify genes as interacting or not
interacting with BRCA-1DNA repair gene among patients underwent to the pharmacological treatment
with cisplatin for breast cancer (Albarakati et al., 2015).

5) Yes

To predict the
needed dosage
given the
patient’s
characteristics

1) Urquidi-Macdonald and colleagues used a back-propagation neural network to individualize dosing
for drugs with a narrow therapeutic index like abciximab to prevent adverse drug reactions. In
particular, they combined information from abciximab dosage, patient sociodemographic
characteristics, clinical history, and abciximab ex vivo platelet aggregation for predicting the dosage
(Urquidi-Macdonald et al., 2004).
2) Tang et al. used an artificial neural network and other machine learning techniques to predict
tacrolimus dose in patients undergoing renal transplantation (Tang et al., 2017).
3) Liu et al. used an artificial neural network in comparison with other machine learning techniques or
multiple linear regression to predict the pharmacogenetic-guided dosage of warfarin (Liu et al., 2015).
4) Li and colleagues evaluated the efficiency of artificial neural network in comparison with multiple linear
regression for the pharmacogenetic-guided dosage of warfarin discovering that for Chinese patients,
the multiple linear regression gave the lowest mean absolute error (Li et al., 2015).
5) Saleh et al. found that an Elman artificial neural network was a reliable technique for predicting
warfarin dosage in the clinical setting of dosage individualization (Saleh and Alzubiedi, 2014).
6) For African-American patients, the abovementioned statistical model was not able to improve the
predictive performance of the dosing algorithm, except that for patients requiring a dose equal or
greater than 49 milligrams per week (Alzubiedi and Saleh, 2016).

4) Yes

To predict the
occurrence/
severity of
adverse drug
reactions.

1) Keijsers and colleagues found that the neural network was able to assess the severity of levodopa-
induced dyskinesia in patients with Parkinson’s disease. The model performance was reliable
considering that it misclassified in a few cases when compared to those assessed by the physicians
(Keijsers et al., 2003).
2) Artificial neural networks were used to identify laboratory event-related adverse drug reactions in
electronic health records. The model had the highest sensitivity and negative predictive value among
several machine-learning techniques (e.g. random forest, support vector machine, regularized logistic
regression, etc.) to predict the study outcome.
3) In the study conducted by Hoang et al, the authors assessed sequences of drug redemptions as
proxies for adverse drug reactions. The artificial neural network performed inadequately for this
classification task (Hoang et al., 2018).
4) Li et al. used the model to identify levodopa-induced dyskinesia in patients with Parkinson disease (Li
et al., 2017).
5) Jeong et al. used an artificial neural network technique to predict adverse drug reactions in electronic
healthcare records by using laboratory results as potential predictors (Jeong et al., 2018).

4) Yes 3) Yes
5) Yes

(Continued)
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TABLE 1 | Continued

AI technique Application Study/ies AI used for
feature
selection

AI used for
model

optimization

To predict
diagnosis
leading to a drug
prescription.

1) Artificial neural networks have been used by Rezaei-Darzi et al. to predict the labeling diagnosis
leading to a pharmaceutical prescription. This statistical model was able to predict this diagnosis in
93.3% of cases showing very high accuracy (Rezaei-Darzi et al., 2014).

1) Yes

To predict drugs
consumption

1) Hu and colleagues found that artificial neural networks performed worse than decision tree-based
learning in predicting drugs consumption for analgesia in a cohort of 1099 patients where more than
270 have been used to train the statistical model (Hu et al., 2012).
2) Smith et al. used a multilayer perceptron neural network to predict anticoagulation in patients in
hemodialysis (Smith et al., 1998).

1) Yes
2) Yes

To predict the
propensity score

1) Setoguchi and colleagues found that this when compared to standard logistic regression, artificial
neural network provide the least biased estimates of the propensity score in many clinical scenarios
(Setoguchi et al., 2008).

To predict drug-
induced lengths
of stay in
hospital

1) Kim and colleagues, instead, found analytic advantages of using artificial neural network instead of
logistic regression for predicting lengths of stays in the post-anesthesia care unit following general
anesthesia (Kim et al., 2000).

Auto-
contractive
maps

To predict the
clinical response
following a
pharmacological
treatment

1) In the article from Podda et al., auto-contractive maps were used to predict platelet reactivity in
clopidogrel-treated patients given a set of demographic and clinical information.

Random
forest

To predict the
clinical response
following a
pharmacological
treatment

1) LaRanger et al. found that the random forest was an efficient machine learning technique to identify
genes that could predict response to keloid treatment with 5-fluorouracil (LaRanger et al., 2019).
2) Li et al. used a random forest model to predict that factors that increased the probability or the
reduction of brain edema in patients treated with bevacizumab that underwent radiation therapy for
nasopharyngeal carcinoma. The predictors selected by the random forest were able to provide a good
predictive power (84% area under Receiving Operator Characteristic curve) (Li et al., 2018).
3) Devitt et al. used a random forest model to identify features in early proteomic spectra that predict
the response to treatment with PEGylated interferon a-2b and ribavirin in patients with hepatitis C
(Devitt et al., 2011).
4) Schmitz et al. used clinical and genetic variables to classify patients as responders/non-responders
to cardiac resynchronization therapy. The random forest was one of the top four best models in terms
of specificity, sensitivity, and accuracy for predicting the outcome (Schmitz et al., 2014).
5) Waljee et al. used a random forest to predict the clinical remission for patients with inflammatory
bowel disease treated with thiopurines. Researchers used laboratory values and age as predictors. The
model classified correctly patients in remission with an area under Receiving Operator Characteristic
curve of 79% (95%CI 0.78-0.81) (Waljee et al., 2017).
6) Sangeda et al. used a random forest to predict the occurrence of virological failure in patients treated
with antiretroviral drugs for HIV (Sangeda et al., 2014).
7) Kebede et al. used a random forest to predict CD4 count changes and to identify predictors of such
change in patients with HIV/AIDS. When compared to other machine learning algorithms as J48
(accuracy 98.69%) or support vector machine (accuracy 96.62%), the random forest provided the best
prediction model for CD4 count changes (accuracy 99.98%) (Kebede et al., 2017).
8) In the article from Podda et al, a random forest was used to predict platelet reactivity in clopidogrel-treated
patients given a set of demographic and clinical information (Podda et al., 2017).
9) Albarakati et al. used a random forest model to predict genes that were expressed differently in patients
with mRNA BRCA1+ and mRNA BRCA1− to assess their impact on prognosis (Albarakati et al., 2015).
10) Pusch et al. used a random forest model to identify predictors of all-cause mortality in patients with extra-
pulmonary tuberculosis (Pusch et al., 2014).

3) Yes
7) Yes

To predict the
needed dosage
given the
patient’s
characteristics

1) Tang et al. used a random forest model and other machine learning techniques to predict tacrolimus
dose in patients undergoing renal transplantation (Tang et al., 2017).
2) Liu et al. used a random forest model in comparison with other machine learning techniques or
multiple linear regression to predict the pharmacogenetic-guided dosage of warfarin (Liu et al., 2015).
3) Li and colleagues evaluated the efficiency of random forest in comparison with multiple linear
regression for the pharmacogenetic-guided dosage in Chinese patients (Li et al., 2015).

3) Yes

To predict the
occurrence/

1) Molassiotis et al. used a random forest model to cluster sign and symptoms that could predict the
occurrence of nausea in patients receiving chemotherapy (Molassiotis et al., 2012).

2) Yes
6) Yes

3) Yes
4) Yes

(Continued)
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TABLE 1 | Continued

AI technique Application Study/ies AI used for
feature
selection

AI used for
model

optimization

severity of
adverse drug
reactions.

2) Zhao et al. used a random forest to predict adverse drug event in electronic health records. The
random forest provided a good performance that was increased by including historical data prior to the
adverse drug event (Zhao et al., 2015).
3) Sudharsan et al. compared four different machine-learning techniques, including a random forest
model, to predict hypoglycemia in patients with type 2 diabetes. The authors found that random forest
was the best model to optimize for the prediction of the abovementioned event having a sensitivity of
92% and a specificity of 90% (Sudharsan et al., 2015).
4) Jeong et al. used a random forest model to predict adverse drug reactions in electronic healthcare
records by using laboratory results as potential predictors (Jeong et al., 2018).
5) Hoang et al. used the random forest to identify drug safety signal in medication dispensing data
(Hoang et al., 2018).
6) Larney and colleagues used a random forest model to identify patients at greater risk of adverse
outcomes among those treated with opioid agonists (Larney et al., 2018).

5) Yes
6) Yes

To predict drug-
drug interactions

1) Hansen et al. applied a data-mining approach to identify warfarin-related drug-drug interactions in
administrative registers. In particular, they used a random forest model to predict variable importance
for the outcome. Authors were able to identify 7 out of 47 possible warfarin-drug interactions without a
prior hypothesis (Hansen et al., 2016).

To predict drugs
consumption

1) Devinsky et al. used a random forest model to predict treatment change (new, add-on or switch) in
patients with epilepsy given a set of clinical variables (Devinsky et al., 2016).
2) Hu and colleagues found that random forest was the third best method in predicting drugs
consumption for analgesia when compared to other machine learning techniques. The input variables in
the model included a set of clinical and demographic features (Hu et al., 2012).
3) Shamir et al. used a random forest model to predict the correct treatment in patients with Parkinson
exposed to deep brain stimulation (Shamir et al., 2015).
4) Simuni et al. used a random survival forest model to predict the time to initiation of symptomatic
therapy patients with Parkinson disease (Simuni et al., 2016). Random survival forest is a variant of the
abovementioned statistical technique that is used for right-censored data.

4) Yes

To predict the
propensity score

1) Karim et al. found that random forest and other machine learning techniques such as hybrid methods
such as Hybrid-LASSO or Hybrid-elasticNET perform better than standard pharmacoepidemiological
methods (e.g. logistic regression) for confounder selection in the setting of high-dimensional propensity
score (Karim et al., 2018).
2) Kern et al. used a random forest model to estimate the propensity score of receiving the combination
budesonide/formoterol (Kern et al., 2015).
3) Wasko et al. used a random forest model to compute the propensity score or rather the probability
of receiving prednisone rather than disease-modifying antirheumatic drugs (Chester Wasko et al., 2016).
4) Wasko et al. used a random forest model to compute the propensity score or rather the probability
of receiving methotrexate rather than non-receiving methotrexate (Wasko et al., 2013).

To predict drug
adherence and
persistence

1) Hackshaw et al. used a random forest model to identify predictors of pazopanib persistence and
adherence in patients that were naïve for this drug (Hackshaw et al., 2014).

To identify
subpopulation
more at risk of
drug inefficacy

1) An et al. developed a random forest model to predict drug-resistant epilepsy using administrative
claims data (An et al., 2018).

1) Yes

Bayesian
additive
regression
tree

To predict the
needed dosage
given the
patient’s
characteristics

1) Tang et al. used a Bayesian an additive regression tree and other machine learning techniques to
predict tacrolimus dose in patients underwent renal transplantation (Tang et al., 2017).

To predict
adherence to
pharmacological
treatment

1) Lo-Ciganic et al. used Bayesian additive regression tree to predict medication adherence thresholds
(Lo-Ciganic et al., 2015).

1) Yes 1) Yes

Bayesian
machine
learning

To predict the
occurrence/
severity of

1) Lazic et al. used an ad-hoc Bayesian machine-learning model to predict hERG-mediated QT
prolongation using information from drugs with known potential of increasing QT through hERG to train
the model (Lazic et al., 2018).

(Continued)
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TABLE 1 | Continued

AI technique Application Study/ies AI used for
feature
selection

AI used for
model

optimization

adverse drug
reactions.

Bayesian
network
learning

To predict the
clinical response
following a
pharmacological
treatment

1) Cuypers et al. used a Bayesian network to identify interactions between drug-exposure, amino acid
variants, and therapy response in patients with hepatitis C (Cuypers et al., 2017).
2) Schmitz et al. used a Bayesian network to identify genetic markers for treatment success in heart
failure patients (Schmitz et al., 2014). Bayesian network learning provided a lower accuracy than other
machine learning techniques used by the researchers.
3) Saadah et al. used a probabilistic network to identify the subpopulation of premature infants that
benefit from the pharmacological prophylaxis with palivizumab. In particular, the authors found that the
statistical method was able to identify two main features or rather extreme low-birth weight male infants
and congenital heart disease as key elements for the effectiveness of the treatment (Saadah et al.,
2014).

To predict
adherence to
pharmacological
treatments

1) Anderson et al. used a Bayesian network to identify predictors of treatment adherence in patients
with schizophrenia treated with atypical antipsychotics (Anderson et al., 2017).

Convolutional
neural
network

To predict the
occurrence/
severity of
adverse drug
reactions.

1) Li et al. used the model to identify levodopa-induced dyskinesia in patients with Parkinson disease (Li
et al., 2017).

1) Yes

Decision table To predict the
clinical response
following a
pharmacological
treatment

1) Schmitz et al. used a decision table to identify genetic markers for treatment success in heart failure
patients (Schmitz et al., 2014). Decision table provided a lower accuracy than other machine learning
techniques used by the researchers.

Classification,
regression
and decision
tree

To predict the
clinical response
following a
pharmacological
treatment

1) Pusch et al. used both classification and regression tree to identify clinical factors (e.g. therapy
duration) associated with all-cause mortality in patients with extra-pulmonary tuberculosis (Pusch et al.,
2014).
2) Sangeda et al. used a decision tree to predict the occurrence of virological failure in patients treated
with antiretroviral drugs for HIV (Sangeda et al., 2014).
3) Yabu et al. used a decision tree to assess if immune and gene profiles can predict response to
desensitization therapy in candidates for kidney transplantation (Yabu et al., 2016).
4) Go et al. used a decision tree to predict the response Vascular Endothelial Growth Factor Receptor
(VEGFR)-Tyrosine Kinase Inhibitor (TKI) in patients with metastatic renal cell carcinoma (Go et al., 2019).
5) Podda et al. used a CART to predict platelet reactivity in clopidogrel-treated patients given a set of
demographic and clinical information (Podda et al., 2017).
6) Banjar et al. used a CART to identify predictors of response to imatinib in patients with chronic
myeloid leukemia (Banjar et al., 2017).

6) Yes

To predict the
needed dosage
given the
patient’s
characteristics

1) Tang et al. used a regression tree model together with other machine learning techniques to predict
tacrolimus dose in patients undergoing renal transplantation (Tang et al., 2017).
2) Liu et al. used a regression tree model in comparison with other machine learning techniques or
multiple linear regression to predict the pharmacogenetic-guided dosage of warfarin (Liu et al., 2015).
3) Li and colleagues evaluated the efficiency of classification and regression tree in comparison with
multiple linear regression for the pharmacogenetic-guided dosage of warfarin discovering that for
Chinese patients, the multiple linear regression gave the lowest mean absolute error (Li et al., 2015).

2) Yes
3) Yes

To predict drug
consumption

1) Hu et al. used a regression tree model machine to predict analgesic treatment (Hu et al., 2012). 1) Yes

To predict the
occurrence/
severity of
adverse drug
reactions.

1) Hoang et al. used a regression tree model to identify drug safety signals in medication dispensing
data (Hoang et al., 2018).
2) Sargent et al. used an xgboost algorithm to assess the association between anticholinergic drug
burden and cognitive impairment, physical and cognitive frailty (Sargent et al., 2018).

1) Yes
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TABLE 1 | Continued

AI technique Application Study/ies AI used for
feature
selection

AI used for
model

optimization

To predict
adherence to
pharmacological
treatments

1) Franklin et al. used a boosted regression tree to predict treatment adherence (Franklin et al., 2016). 1) Yes

To predict
diagnosis
leading to a drug
prescription.

1) The decision tree has been used by Rezaei-Darzi et al. to predict the labeling diagnosis leading to a
pharmaceutical prescription (Rezaei-Darzi et al., 2014).

1) Yes

K-means
clustering

To predict the
clinical response
following a
pharmacological
treatment

1) Kan et al. used k-means cluster analysis to assess the association between longitudinal treatment
patterns and the onset of clinical outcomes (Kan et al., 2016).

K-nearest-
neighbor

To predict the
clinical response
following a
pharmacological
treatment

1) deAndre´s-Galiana et al. used the k-nearest neighbors technique to identify prognostic variables for
Hodgkin lymphoma treatment (deAndres-Galiana et al., 2015).
2) Albarakati and colleagues used a K-nearest-neighbor model to classify genes as interacting or not
interacting with BRCA-1DNA repair gene among patients underwent to the pharmacological treatment
with cisplatin for breast cancer (Albarakati et al., 2015).
3) Schmitz et al. used a K-nearest-neighbor model to identify genetic markers for treatment success in
heart failure patients (Schmitz et al., 2014). The model provided the fourth best accuracy when
compared to other machine learning techniques used by the researchers.
4) Podda et al. used this model to predict platelet reactivity in clopidogrel-treated patients given a set of
demographic and clinical information.

To predict drug
consumption

1) Hu et al. used the k-nearest-neighbor to predict analgesic treatment (Hu et al., 2012). 1) Yes

To predict the
occurrence/
severity of
adverse drug
reactions.

1) Sudharsan et al. used a K-nearest-neighbor to predict hypoglycemia in patients with type 2 diabetes
(Sudharsan et al., 2015).

1) Yes

Ridge,
ElasticNET,
and LASSO

To predict the
clinical response
following a
pharmacological
treatment

1) Tran et al. used penalized regression to estimate longitudinal treatment effects in simulated data and
in a cohort of patients with HIV. Researchers found that weighted estimators performed better than
covariate estimators did (Tran et al., 2019).
2) Yabu et al. used an elasticNET model to assess if immune and gene profiles can predict response to
desensitization therapy in candidates for kidney transplantation (Yabu et al., 2016).
3) Ravanelli et al. used a LASSO regression to assess the predictive value of computed tomography
texture analysis on survival in patients with lung adenocarcinoma treated with tyrosine kinase inhibitors
(Ravanelli et al., 2018).
4) Saigo et al. used a LASSO regression to assess if the history of medical treatments predict anti-HIV
therapy response (Saigo et al., 2011).

3) Yes
4) Yes

To predict the
needed dosage
given the
patient’s
characteristics

1) Liu et al. used a LASSO regression in comparison with other machine learning techniques or multiple
linear regression to predict the pharmacogenetic-guided dosage of warfarin (Liu et al., 2015).

To predict the
propensity score

1) Karim et al. found that Hybrid-LASSO or Hybrid-elasticNET perform better than standard
pharmacoepidemiological methods (e.g. logistic regression) for confounder selection in the setting of
high-dimensional propensity score (Karim et al., 2018).

To predict the
occurrence/
severity of
adverse drug
reactions.

1) Larney and colleagues used the ridge/eleasticNET/LASSO regressions to identify patients at greater
risk of adverse outcomes among those treated with opioid agonists (Larney et al., 2018).

1) Yes 1) Yes

Discriminant
analysis

To predict the
clinical response

1) Kohlmann et al. used both a linear and quadratic discriminant analysis to classify patients as
resistant/non-resistant based on their longitudinal viral load profile (Kohlmann et al., 2009).
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TABLE 1 | Continued

AI technique Application Study/ies AI used for
feature
selection

AI used for
model

optimization

following a
pharmacological
treatment

Fuzzy-c-
means

To predict the
clinical response
following a
pharmacological
treatment

1) Ravan et al. used the fuzzy-c-means algorithm to identify neurophysiologic changes induced by
clozapine in patients with schizophrenia (Ravan et al., 2015).

Naïve Bayes
classifier

To predict the
clinical response
following a
pharmacological
treatment

1) Podda et al. used a Naïve Bayes classifier model to predict platelet reactivity in clopidogrel-treated
patients given a set of demographic and clinical information (Podda et al., 2017).
2) Wolfson et al. used a naïve Bayes classifier to predict patients’ cardiovascular risk in the setting of
time-to-event data both in simulated and real-world data (Wolfson et al., 2015).

To predict the
occurrence/
severity of
adverse drug
reactions.

1) Loke et al. used a naïve Bayes classifier model to predict the re-occurrence of severe chemotherapy-
induced adverse drug reactions in patients with a medical history of this event (Loke et al., 2011).
2) Sudharsan et al. used a naïve Bayes classifier model to predict hypoglycemia in patients with type 2
diabetes (Sudharsan et al., 2015).

2) Yes

To predict drugs
consumption

1) Shamir et al. used a naïve Bayes classifier to predict the treatment in patients with Parkinson disease
exposed to deep brain stimulation (Shamir et al., 2015).
2) Hu et al. used the k-nearest-neighbor to predict analgesic treatment (Hu et al., 2012).

2) Yes

Principal
component
analysis

To predict the
clinical response
following a
pharmacological
treatment

1) Yap et al. used the principal component technique to investigate anxiety characteristics that can
predict the occurrence of chemotherapy-induced nausea and vomitting (Yap et al., 2012).

Q-learning To predict the
clinical response
following a
pharmacological
treatment

1) Krakow et al. used the Q-learning technique to identify the sequences of treatment regimens
associated with improved survival (Krakow et al., 2017).

To optimize
treatment
regimen

1) Song et al. used the Q-learning technique to discover the optimal dynamic treatment regimen using
data from a randomized trial for which the treatment regimens were randomized at multiple stages
(Song et al., 2015).

Support
vector
machine

To predict the
clinical response
following a
pharmacological
treatment

1) Ravan et al. used a support vector machine model to identify neurophysiologic changes induced by
clozapine in patients with schizophrenia (Ravan et al., 2015).
2) Go et al. used a support vector machine model to predict the response VEGFR-TKI in in patients
with metastatic renal cell carcinoma (Go et al., 2019).
3) Yabu et al. used a support vector machine model to assess if immune and gene profiles can predict
response to desensitization therapy in candidates for kidney transplantation (Yabu et al., 2016).
4) Podda et al. used this model to predict platelet reactivity in clopidogrel-treated patients given a set of
demographic and clinical information (Podda et al., 2017).
5) Albarakati et al. used a support vector machine model to predict genes that were expressed
differently in patients with mRNA BRCA1+ and mRNA BRCA1− to assess their impact on prognosis
(Albarakati et al., 2015).
6) Yun et al. used a support vector machine to assess if changes in cortical surface area or thickness
predict the response to serotonin reuptake inhibitors in patients with obsessive-compulsive disorders
(Yun et al., 2015).
7) Sun et al. used a support vector machine to assess the association between immunology biomarkers
and the response to chemotherapy in patients with epithelial ovarian carcinoma (Sun et al., 2016).
8) Qin et al. used a support vector machine to examine the association between patterns of topological
properties of brain network and major depressive disorders during their pharmacological treatment (Qin
et al., 2015).

7) Yes
8) Yes

To predict the
needed dosage

1) Tang et al. used a support vector machine together with other machine learning techniques to
predict the tacrolimus dose in patients undergoing renal transplantation (Tang et al., 2017).

3) Yes
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top six purposes of using artificial intelligence techniques were to
predict: 1) the clinical response following a pharmacological
treatment (42.7%); 2) the occurrence/severity of adverse drug
reactions (19.4%); 3) the needed dosage given the patient’s
characteristics (14.5%); 4) drug consumption (9.7%), and 5)
propensity score (4.8%) (Table 1).
Lay Description of the Knowledge
Discovery Techniques of Artificial
Intelligence Used in
Pharmacoepidemiology
Artificial Neural Network
An artificial neural network is a machine learning technique that
tries to mimic neurons’ mechanisms of processing signals and is
applicable to solve complex knowledge extraction tasks. In
artificial neural networks, the input signals are characterized by
the features variables (e.g., covariates) where each gets a different
weight according to its importance in the knowledge extraction
task (e.g., having or not having an adverse event). In its simplest
form, as in the case of single-layer network, features represent the
Frontiers in Pharmacology | www.frontiersin.org 11
input nodes of the artificial neural networks, and all the input
nodes are then arranged in one layer (e.g., skip-layer units) while
the outcome represents the output node (Zhang, 2016a).
Artificial neural networks can be split into two broad
categories based on network topology, Feedforward and
Feedback Artificial Neural Networks. The choice and
applicability of the different network topology depend on the
nature of problem. Convolutional Neural Network based on the
principal of feedforward is well suited for the problems related to
image analysis whereas problems such as speech recognition are
better suited for the recurrent neural networks based on the
feedback network topology. For this reason, the model has been
used widely for computer vision task such as the automatic
identification of patterns in medical images (Yamashita et al.,
2018). Among studies selected in this systematic review, the
artificial neural network was primarily used for Auto Contractive
Maps (ACM). The ACM differs from the other artificial neural
networks because it is able to learn from data without
randomizing weight for each variable. In this technique, the
weight of each variable is calculated based on their convergence
criterion when all the output nodes become null. In particular,
TABLE 1 | Continued

AI technique Application Study/ies AI used for
feature
selection

AI used for
model

optimization

given the
patient’s
characteristics

2) Guerrero et al. used a support vector machine to predict hemoglobin levels in order to adjust
erythropoietin dosage among patients with chronic renal failure (Martin-Guerrero et al., 2003).
3) Li and colleagues evaluated the efficiency of a support vector machine in comparison with multiple
linear regression for the pharmacogenetic-guided dosage of warfarin discovering in Chinese patients (Li
et al., 2015).

To predict drugs
consumption

1) Shamir et al. used the support vector machine to predict the correct treatment in patients with
Parkinson exposed to deep brain stimulation (Shamir et al., 2015).
2) Hu et al. used the support vector machine to predict analgesic treatment (Hu et al., 2012).

2) Yes 2) Yes

To predict the
occurrence/
severity of
adverse drug
reactions.

1) Kesler et al. used the support vector machine to predict cognitive changes/deficits in patients with
breast cancer that were/were not exposed to chemotherapy (Kesler et al., 2013).
2) Hoang et al. used the support vector machine to identify drug safety signal in medication dispensing
data (Hoang et al., 2018).
3) Li et al. used the model to identify levodopa-induced dyskinesia in patients with Parkinson disease (Li
et al., 2017).
4) Sudharsan et al. used a support vector machine to predict hypoglycemia in patients with type 2
diabetes (Sudharsan et al., 2015).
5) Jeong et al. used the support vector machine to predict adverse drug reactions in electronic
healthcare records by using as potential predictors laboratory results (Jeong et al., 2018).

2) Yes
3) Yes
4) Yes
5) Yes

To identify
subpopulation
more at risk of
drug inefficacy

1) An et al. used the support vector machine to predict drug-resistant epilepsy using administrative
claims data (An et al., 2018).

1) Yes

Kernel partial
least squares

To predict the
clinical response
following a
pharmacological
treatment

1) Linke et al. used kernel partial least squares to investigate feature interaction while identifying
predictors for clinical response in patients treated with tamoxifen for breast cancer (Linke et al, 2006;
Yap et al., 2012).

1) Yes
(specifically
for features
interaction)

Hierarchical
clustering

To predict the
needed dosage
given the
patient’s
characteristics

1) Berger et al. hierarchical clustering to identify predictors of the immune response to influenza
vaccination (Berger et al., 2015).

1) Yes
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the model uses a data-driven mechanism to set-up weights based
on the Euclidean space given the topological properties of
each variable.

Bayesian Additive Regression Trees (BART)
BART is a technique that combines several Bayesian regression
trees and starts by building an individual regression tree for each
variable that are subsequently summed. By definition, the BART
model is flexible and able to evaluate non-linear effects and
multi-way interactions automatically. For each node of the
regression tree, the levels of the variable are separated into two
sub-groups based on their predictive power for the outcome. By
definition, Bayesian additive regression trees are able to capture
additive effects among variables (Hernandez et al., 2018).

Bayesian Network
A Bayesian network is a special machine learning technique used
in causal inference. Causal inference determines the probability
of an outcome using evidence from prior observations. The
model use prior knowledge from a causal diagram (direct
acyclic graph) which describes the underlying joint probability
distribution among variables with conditional dependencies
(Sesen et al., 2013). The model incorporates prior knowledge
about the topic and then learns from the data how the variables
interact with each other in the network.

Ridge, ElasticNET, and LASSO
In the case of high dimensional datasets where the number of
variables is bigger than the number of observations, least squares
method (linear model) cannot be used. In such a scenario, the
commonly used approach is to reduce dimensionality through
regularization. In such a case, penalized regression can be
the preferred choice to perform feature selection. In this case
the coefficients are obtained through the minimization of the
penalized residual sum of squares where the penalty is imposed
on the regression coefficients and used as a tuning parameter. If
the penalty is imposed on the sum of the squared coefficents,
penalized regression is called the Ridge regression. If the penalty
is imposed on the sum of the absolute values of the coeeficients,
we have the Least Absolute Shrinkage and Selection Operator
(LASSO) regression. The Elastic Net imposes the penalty on the
combination of the both sum of the squared and absolute values
of the coefficients. LASSO forces (shrinks) the coefficients of all
the variables with a poor contribution to the prediction to be zero
and, therefore, these variables are excluded from the final model.
ElasticNET, instead, shrinks some of the coefficient towards zero
but also preserve some of the variables with medium-low
predictive power providing a less aggressive feature selection
strategy (Kyung et al., 2010).

Naïve Bayes Classifier
The naïve Bayes classifier is an artificial intelligence technique
used for classification that relies on the Bayesian classification
(Zhang, 2016c) based on the following principles: given the
hypothesis h, a set of data D and a probability measure P, we
can define P(h) as the probability that h is true. P(h) represents
the prior knowledge on h; P(D) is the probability that the data in
Frontiers in Pharmacology | www.frontiersin.org 12
D will be observed; P(D|h) is the probability of observing the set
D given that h is true; and P(h|D) is the probability that h true for
a given data D, i.e., posterior probability of h. The theorem can be
formalized as following: P(D|h) = P(D|h) P(h)/P(D). The
theorem allows for calculating the posterior probability of h
given D starting from the knowledge of the prior probabilities of
D, and the conditional probability of D given h. Consequently, it
is possible to calculate the maximum posterior hypothesis
(MAP), or rather the most probable hypothesis of h given D.
The naïve Bayes algorithm classifies the new data by assigning
the most probable target value, or rather the MAP value, given
the sequence of attributes (a1, a2,…, an) that describe the
new data.

Discriminant Analysis
A discriminant analysis is used to group observations based on
the similarities of their features. Suppose we have g groups D1,
D2,…, Dg from which the observations are coming from. The
objective of the discriminant analysis is to categorize an
individual in one of these groups given a set of observations,
x1, x2, … … … … ,xp (where p is the number of variables). For
example, we want to discriminate between patients with or
without diabetes mellitus type 2 (g = 2) based on observations
of glycaemia, body weight, and age (p = 3) (in this case x1 =
blood glucose concentration, x2 = body weight, and x3 = age).
For the specific characteristics of the individuals of a group Di,
we can compute a probability that describes the likelihood of
belonging to the group i, given the observed variables. Linear
discriminant analysis is a classification technique that uses linear
combinations of features to categorize observations in groups.
The model requires that the data are normally distributed,
homoscedastic or have an identical covariate matrix among
classes. Quadratic discriminant analysis, instead, relaxes the
last assumption or rather does not require that classes have the
same covariate matrix.

Principal Component Analysis
The principal component analysis is a technique that reduces the
dimensionality of quantitative variables in the dataset through
linear combinations of these variables, also known as the
principal components. The principal components are selected
so that the first principal component (first linear combination)
has the highest variance, the second principal component has the
second highest variance but also uncorrelated with the first
principal component and so on. When the original variables
are highly correlated, only a few principal components are
retained as they would still explain a large portion of the
variation in the data.

Q-Learning
Q-learning is a reinforcement-learning algorithm used to
optimize the solution of discrete time stochastic processes.
The technique is “model-free” and “goal-oriented.” It provides
at each stage of the process the optimal set of decisions to
maximize a long-term reward. The algorithm is used in
pharmacoepidemiology considering that many therapeutic
processes are a set of actions that change over time and may
July 2020 | Volume 11 | Article 1028
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be associated with a clinical outcome (i.e., a set of drugs
administrated over time and the occurrence of an adverse drug
reaction) (Song et al., 2015; Krakow et al., 2017).

Support Vector Machine and Sequential Minimal
Optimization
Support vector machine (SVM) is a method used for
classification. The SVM algorithm has three core components:
i) A line; or a hyperplane as the “boundary” that separates data
points, ii) A margin; i.e., the distance between the groups of data
that are close to each other, and iii) Support vectors; i.e., the
vectors to separate data points located within the margin of a
hyperplane. In the presence of linearly separable data points, the
algorithm finds among all straight lines or hyperplanes that
separate the different groups those that maximize the margin
value. In fact, a straight line or a hyperplane with maximum
margin value allows minimizing the classification error. In non-
linear classification, it is necessary to operate in two separate
phases. In the first phase, data points are mapped on a large
dimensional space to make them separable in a linear manner.
Subsequently, the algorithm searches for a line or a hyperplane
that maximizes the size of the margin, given that the instances
are linearly separable. The support vector machine usually uses
data transformations to transform a non-linear into a linear
relationship of variables to simplify the delineation of
boundaries. These data transformations usually use the kernel
function (Noble, 2006). Sequential minimal optimization,
instead, is an algorithm used to train the support vector
machine (Platt, 1998).

Classification and Regression Tree
A classification and regression tree (CART) is a model
constructed by recursively partitioning variables based on their
predictive power for the study outcome. The model starts by
identifying the variable with the strongest predictive power. This
variable is included in the model as the root node or rather the
parent node from which all other splitting procedures will be
performed. In the regression tree, each node represents a
variable. The decision tree split each node into two levels to
make them have the best separation for maximizing their
predictive power of the variable. With this model, the user
does not need to make any assumptions about the statistical
distribution of the data (e.g., normality assumption). The model
can handle both categorical and numerical data (Kingsford and
Salzberg, 2008). The boosted regression tree incorporates the
important advantages of tree‐based method described above.
However, it overcomes the inclusion of a single tree by including
boosting (a combination of simple models to improve the overall
predicting performance) (Elith et al., 2008).

Decision Table
A decision table is a hierarchical (rule) table used for
classification in which attributes of variables are paired. A
decision table is composed of columns with the inputs and
outputs of a decision and rows denoting rules. This technique
allows for the detection of the interrelationship among variables
and their attributes (Becker, 1998). Decision tables use the
Frontiers in Pharmacology | www.frontiersin.org 13
wrapper method that finds the best subset of features or rather
it removes features with a poor contribution to the model. In this
way, the algorithm reduces the probability of overfitting.

K-Means Cluster
The k-means clustering algorithm uses unlabeled data to
generate a fixed number (k) of clusters of data with similarities
in attributes. The center of the clusters (k) is called centroids and
are calculated by averaging data allocated to the cluster. The
algorithm is composed of two steps: 1) Initialization, where the
user sets the number of clusters, k, 2) the application of an
algorithm (e.g. Lloyd’s algorithm) for which each data point is
assigned to its closest cluster (Bock, 2007). The process iterates
until the variation of data points in the cluster is minimized.

K-Nearest Neighbors
K-nearest neighbors is a machine learning technique used for
both regression and classification. The k-Nearest Neighbor
algorithm uses a training dataset with labeled data to classify
new data points without labels. In the training dataset, the
number of clusters (k) is identified based on their labels (e.g.,
having or not having a disease). The algorithm classifies a new
data point by calculating its distance to each cluster of the
training set until the closest cluster is identified. The technique
does not make any assumption about the distribution of data
(Zhang, 2016b).

Fuzzy C-Means
The fuzzy c-means is an artificial intelligence technique for
clustering based on the similarities in the features. The term
fuzzy stands for indistinct, confused, and blurred. It is based on
the assumption that the world around us is not dichotomous
(e.g., black and white) but contains in itself all the infinite
nuances that exist between these two extremes. This concept is
expressed mathematically by a real number between zero and
one that represents the degree of membership (membership
function) of the object in question to one or the other group
(e.g., how much a gray is white, or how much a gray is black).

Random Forest and Random Survival Forest
Random forest is a machine leaning method based on the
principle of ensemble learning. The key aspiration behind the
random forest is to improve the performance of the indvidual
tree learners with the help of bootstrap aggregating (or bagging).
The technique builds each tree by bootstrapping a random
sample from the data. To select the variables that need to be
split in the decision tree, the random forest randomly selects
features and uses scores (e.g., the decrease in Gini impurity
score) as the splitting criterion. Gini impurity is a metric used in
decision trees to determine which variable and at what threshold
the data should be split into smaller groups. Gini Impurity
measures misclassification of random records from the data set
used to train the model. To understand the importance of each
variable for classification/regression, the random forest classifies
variables based on their importance for classification/regression
in a parameter called “variable importance measure,” which has
however been noted to be biased. Alternative measures are
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available to overcome this limitation, such as partial dependent
plots. These plots provide an overview of how each variable
influences the prediction of the study outcome when related to
other variables selected by the random forest. Crucial parameters
for the random forest are the number of trees generated in the
random forest, the number of variables randomly selected for
splitting in each decision tree, and the minimum size of each
terminal node (Couronne et al., 2018).

Kernel Partial Least Squares
Kernel partial least squares is a nonlinear partial least squares
(PLS) method. PLS is a dimensionality reduction technique that
models independent variables using latent variables (also
known as components as in PCA). The aim is to find a few
linear combinations of the original variables that are most
correlated with the output. This technique is able to minimize
multicollinearity among variables and it is useful in the set of
high-dimensional datasets (Rosipal and Trejo, 2001).

Hierarchical Clustering
Hierarchical clustering is a technique that performs a hierarchal
decomposition of the data based on group similarities. The
model builds up a distance matrix that computes the distance
among data points. In particular, given a set of N observations to
be grouped, and a distance (or similarity) matrix N × N, which
defines the distance of the data points to each other, the basic
process of hierarchical grouping is as follows:

1. The algorithm starts associating a cluster to each entity so it
will have initially N clusters, each of which contains only one
data point and then computes the distance (similarity)
among the clusters.

2. Subsequently, it will look for the pair of clusters that are
“close” to each other (more similar) and it will combine them
in a single cluster. In this way, the number of clusters will be
reduced by one unit.

3. It will calculate again the distance (similarity) between the
new cluster and each of the old clusters.

4. It will repeat steps 2 and 3 until the entities are grouped in the
desired cluster number (Johnson, 1967).
DISCUSSION

In the last decade, there has been increased use knowledge discovery
techniques of artificial intelligence in pharmacoepidemiology. This
result is in line with those of Koohy (2017) who showed an
increased popularity of machine learning methods for biomedical
research from 1990 to 2017. We strongly believe that one of the
major consequences for the increased interest in applying machine
learning techniques over the years is the dramatic growth in size
and complexity of clinical and biological data that have led to the
necessity of combining mathematics, statistics, and computer
science to extract actionable insight. By using advanced
algorithms that are capable of self-learning from the data,
machine-learning techniques provide support for decision making
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to the final user (e.g. a researcher) without a pre-specific hypothesis
(i.e., “hypothesis-free algorithms”). In this systematic review, we
found that random forest, artificial neural network, and support
vector machine were the most used techniques in the selected
articles. The extensive use of artificial neural networks may be
related to its first appearance in the scientific literature. In fact, this
technique has existed for over 60 years (Jones et al., 2018). Random
Forest instead, since its introduction in 2001 (Breiman, 2001), has
rapidly gained popularity becoming a common “standard tool” to
predict clinical outcomes with the advantage of being easily usable
by scientists without any strong knowledge in statistics or machine
learning (Couronne et al., 2018). Similarly, the support vector
machine is considered to be one of the most powerful techniques
for the recognition of subtle patterns in complex datasets (Huang
et al., 2018). Interestingly, we observed that in the majority of the
articles, researchers used more than one knowledge discover
technique, which is a common approach in large data analytics.
In fact, it is usually not possible to know beforehand the best
algorithm for a specific classification/regression progress, and data
scientist should rely on “past experience from other scientists” or
benchmark multiple algorithms in order to determine the one that
maximizes the accuracy of the model, an approach also known as
“use trial and error” (Brownlee, 2014).

It should be highlighted that we found that secondary data were
mostly used among selected articles. This is not surprising
considering that electronic healthcare databases and administrative
databases have revolutionized pharmacoepidemiology research in
the last three decades. These data sources can be used by
pharmacoepidemiologists to address clinical questions on drug
use, drug effectiveness, and treatment optimization (Hennessy,
2006) carrying the advantage of being easier and less costly to
reuse than primary data that, on the contrary, required to be
collected anew (Schneeweiss and Avorn, 2005).

As expected, the majority of selected articles provided a
medium-low level of evidence according to the Merlin scale
(Merlin et al., 2009), a phenomenon that is a natural
consequence of the level of evidence that is attributed to
observational studies (Murad et al., 2016). In fact, among
selected articles, the majority used a cohort or a case-control
design, therefore, independently of the technique that was used
to predict the study outcome the level of evidence was classified
as medium-low.

In the selected articles, we identified 17 medical fields, of which
the most prevalent were pure pharmacoepidemiology (mostly
methodological studies in pharmacoepidemiology), oncology,
infective medicine, and neurology. Clearly, the high frequency
of articles investigating pure pharmacoepidemiology is related to
the research query used for selecting the articles. Regarding the
other medical fields, our findings are in accordance with the
current scientific literature (Jiang et al., 2017). In fact, a recent
article showed increased use of artificial intelligence in areas with a
high prevalence of the disease of which an early diagnosis may
guarantee a better prognosis or a reduced disease progression like
oncology, neurology, and cardiology.

Finally, it is not surprising that the main purpose of using
artificial intelligence techniques in this systematic review was
July 2020 | Volume 11 | Article 1028
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related to the prediction of a clinical response to a treatment (i.e.,
supervised learning problems). Artificial intelligence and
machine learning techniques have entailed some important
methodological advancements in the analysis of “big data.”
The utility of these techniques lies behind their potential for
analysing large and complex data for making predictions that can
improve and personalize the management and treatment of a
disease, and improve the total well-being of an individual
(Collins and Moons, 2019). As secondary purpose of using
artificial intelligence techniques there was the prediction of
occurrence/severity of adverse drug reactions. In this case, it
can be related to the great impact of adverse drug reactions as
iatrogenic disease that requires often a treatment and represents
a cost to the health-care system.
CONCLUSION

The use of knowledge discovery techniques from artificial
intelligence has increased exponentially over the years covering
numerous sub-topics of pharmacoepidemiology. Random forest,
artificial neural networks, and support vector machinemodels were
the three most used techniques applied mainly on secondary data.
The aforementioned techniques have been used mostly to predict
the clinical response following a pharmacological treatment, the
occurrence/severity of adverse drug reactions and the needed
dosage is given the patient’s characteristics.
Frontiers in Pharmacology | www.frontiersin.org 15
In the second part of this systematic review, we will summarize
the evidence on the performance of artificial intelligence versus
traditional pharmacoepidemiological techniques.
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