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ABSTRACT

Many nucleic acid-binding proteins and the AAA+
family form hexameric rings, but the mechanism of
hexamer assembly is unclear. It is generally believed
that the specificity in protein/RNA interaction relies
on molecular contact through a surface charge or
3D structure matching via conformational capture or
induced fit. The pRNA of bacteriophage phi29 DNA-
packaging motor also forms a ring, but whether the
pRNA ring is a hexamer or a pentamer is under
debate. Here, single molecule studies elucidated a
mechanism suggesting the specificity and affinity in
protein/RNA interaction relies on pRNA static ring
formation. A combined pRNA ring-forming group
was very specific for motor binding, but the isolated
individual members of the ring-forming group bind
to the motor nonspecifically. pRNA did not form a
ring prior to motor binding. Only those RNAs that
formed a static ring, via the interlocking loops,
stayed on the motor. Single interlocking loop inter-
ruption resulted in pRNA detachment. Extension or
reduction of the ring circumference failed in motor
binding. This new mechanism was tested by rede-
signing two artificial RNAs that formed hexamer and
packaged DNA. The results confirmed the stoichio-
metry of pRNA on the motor was the common multi-
ple of two and three, thus, a hexamer.

INTRODUCTION

A variety of DNA and RNA metabolic processes essential
to normal cell functioning, such as replication, recombina-
tion, repair and translation, involve molecular motors
which use the energy derived from nucleotide hydrolysis
to unwind or translocate the nucleic acid structure. The
formation of a hexameric ring appears to be common for
components or enzymes of the DNA or RNA processing

machinery. This class includes DNA helicases (1,2), RNA
packaging motor (3), transcription termination factor
Rho (4,5), DNA polymerases and replication factors (6),
SV40 large T antigen (7), the DNA replication sliding
clamp (8), RNA polymerase (9), and members of the
AAA+ family of ATPases (10–14). While the primary
sequence conserved within a class of enzymes may dictate
the specific biological task to be performed, the structural
arrangement into a hexameric ring may reflect an evolu-
tionary link among enzymes required to move with high
fidelity and processivity along nucleic acid strands. The
geometrical constraints imposed by a hexameric ring
structure may be reflected in optimal molecular contacts
with other interacting proteins or nucleic acids and high
binding affinities. Besides the DNA or RNA processing
machineries, formation of the hexameric complexes have
also been found in many other proteins. Why nature cre-
ates such an elegant ring structure remains to be further
elucidated.

Small RNA species have emerged to play a critical role
in regulating a variety of diverse biological activities.
Protein/RNA interaction is an intriguing subject of scru-
tiny. The flexibility and versatility in RNA structure led to
its impressive functional diversity (15–17). It is interesting
to find that RNA molecules, which are composed of only
four nucleotides, exhibit versatile novel functions. The
enzymatic roles played by some of the RNA molecules
have been elucidated (18–20). The secondary RNA struc-
ture is governed by the primary sequence. It is generally
believed that the specificity in protein/RNA interaction
relies on the molecular contacts, via surface charge attrac-
tion or 3D structural matching. Models such as Key and
Lock, Conformational Capture, and Induced Fit have
also been proposed (21,22). Nevertheless, these models
or theories still require a specific RNA sequence for pro-
tein/RNA contact. In this article, we report on a new
mechanism of specific protein/RNA interaction that
relies on RNA static ring formation.

During the last step of replication, dsDNA viruses
package their genomic DNA into a limited space inside
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the procapsid (a preformed protein shell) (23–28). This
entropically unfavorable DNA translocation task is
accomplished by a DNA packaging motor that includes
a portal protein called the connector (29–33). ATP hydro-
lysis provides the energy for DNA translocation (34–41).
In bacteriophage phi29, the motor is geared by six pRNAs
(packaging RNA) (42–44). Phi29 pRNA contains two
functional domains [for review, see (45); Figure 1C]. The
50/30 paired helical domain is for binding of a DNA-pack-
aging ATPase gp16 (46); while, the connector binding
domain is located at the central region (47,48).
Computer models of the 3D structure of pRNA monomer,
dimer and hexamer have been constructed (48) based on
various experiments, such as photoaffinity cross-linking
(49), chemical modification interference (50,51), comple-
mentary modification (52), nuclease probing (47,53), com-
petition assays (54) and cryo-atomic force microscopy
(50,51,55). The connector binding domain of the pRNA
governs the size and shape of the pRNA ring, which is
formed via a hand-in-hand interaction through the base
pairing of two interlocking left- and right-hand loops
(56–59) (Figure 1A and B). These loops dictate the for-
mation of dimeric, trimeric and hexameric rings. In the
pRNA hexamer, this domain also determines the diameter
of the central channel to be �7.6 nm (48). It has been

confirmed that phi29 pRNA binds to the first 14 amino
acids at the N-terminus of connector protein gp10
(53,60,61), the subunit of the dodecameric ring structure.
A comprehensive evaluation in combination with the find-
ing that the activity of the combined pRNA ring forming
group is very specific in DNA packaging (56,59,62–64) has
led to the speculation that a specific pRNA sequence or
conformation is required for pRNA and gp10 or connector
interaction. Although the arginine or lysine-rich N-terminus
of gp10 has a tendency to bind the pRNA; here, we report
an unexpected finding that connector binds to diverse RNA
or DNA such as tRNA, DNA oligos or the isolated indi-
vidual pRNA subunit with similar affinity. That is, the
isolated individual pRNA subunit binds to the motor, con-
nector or procapsid nonspecifically. However, only those
RNAs which are capable of forming a static ring via the
interlocking loops can stay on the procapsid.
The novelty of RNA molecules to gear viral DNA-

packaging motor has attracted great attention to scientists
in biophysics, virology, phage biology, RNA chemistry,
molecular biology, energy transduction, nanotechnology
and many other fields. However, there were discrepancies
and keen debate regarding whether the pRNA is a hex-
amer (44,53,55,57,58,65,66,68) or pentamer (67,69,70). To
resolve this conflict, it is critical to understand how the
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Figure 1. Secondary structure of pRNA and hexamer formation. (A) Side-view of phi29 procapsid. (B) Illustration of right- and left-hand interaction
via the interlocking right loop A (50GGAC) and left loop a0 (30CCUG) to form a pRNA hexamer. The connector binding domain is shaded. (C)
Sequence and secondary structure of pRNA Aa0. The lightly boxed regions indicate the location for the truncation and insertion of nucleotide to
construct mutant pRNAs that form into pRNA hexameric rings with reduced or enlarged diameter, respectively.
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pRNA ring is formed. The elucidation of the mechanism
in pRNA ring formation reported here has provided solid
evidence that a pRNA ring on the phi29 DNA-packaging
motor is indeed a hexamer (Supplementary animations).

MATERIALS AND METHODS

Preparation of Cy3-labeled RNA

The 50-end Cy3 labeling of RNA was achieved by in vitro
transcription with T7 RNA polymerase using dsDNA
templates containing the T7 class II promoter (Ø2.5) in
the presence of 2mM ADOTM F550/570 (Cy3-AMP)
(71–73). Transcripts were purified by electrophoresis
through a 40 cm/8% polyacrylamide/8M urea gel, which
separated the Cy3-RNA from the unlabeled RNA with a
distance of 5–8mm. RNA concentration was determined
by UV/Vis spectrophotometer (Beckman DU530) at an
OD 260, while Cy3 concentration was obtained by mea-
suring the absorbance at 550 nm (e550nm=150 000M�1).
Labeling efficiency was determined as the molar concen-
tration of Cy3 divided by the molar concentration of
pRNA (44).

Gel shift assay for the binding of pRNA to connector

A final concentration of 0.5mM purified C-strep connector
(53,60,61) was mixed with different kinds of RNA, includ-
ing monomeric pRNA Cd0 or tRNA, at various concen-
trations from 0.0625 mM to 4 mM by 2-fold increasing for
10min. The complex was then loaded on 0.8% agarose gel
in TAE buffer (40mM Tris–HCl, 1mM EDTA, 20mM
Acetate, pH 8.5), and the gel was run with a constant
voltage of 70V at 48C. The gel was first stained with ethi-
dium bromide to detect RNA and then stained by
Coomassie brilliant blue (0.004% Coomassie brilliant
blue in 0.5% methanol and 8.5% acetic acid) with gentle
agitation at ambient temperature overnight to reveal the
protein bands.

Stoichiometry determination of RNA on the
procapsid/RNA complex by photobleaching assay

Sucrose gradient sedimentation was performed to separate
the procapsid/50Cy3 RNA complex from free Cy3-RNA.
The complexes were prepared as previously described
(44,60) and were loaded onto the top of a linear 5–20%
sucrose gradient in TMS (100mM Tris–HCl, pH 8.0,
10mMMgCl2, 100mMNaCl) buffer. After being spun
in a Beckman L-80 ultracentrifuge at 35 000 r.p.m. for
1 h at 208C in a SW55 rotor, fractions were collected
from the bottom of the tube.
The purified procapsid/RNA complex was immobilized

in a flow chamber on a quartz slide by means of an anti-
phi29 procapsid antibody. Photobleaching in the presence
of an oxygen scavenging system (1% b-D-glucose, 10mM
b-mercaptoethanol and 1% GODCAT solution, a mixture
of glucose oxidase and catalase) was carried out with a
single molecule total internal reflection microscopy setup
(44,72,74). Sequential images were taken with an expo-
sure time of 200ms. The recorded movie, with more
than 1000 frames, was analyzed by Kinetic Imaging

(Andor Technology, South Windsor, CT, USA). To ana-
lyze the steps of photobleaching, a circled region around
the bright fluorescent spot was selected, and the average
fluorescence intensity was obtained after subtracting the
background intensity. Each step of decreasing fluorescence
intensity represents one single Cy3 fluorophore that was
attached to a single RNA. The number of photobleaching
steps reveals the copy number of Cy3 RNA bound to each
procapsid (44,72).

Assay for procapsid/RNA interaction by sucrose
gradient sedimentation

The binding assay for procapsid/RNA interaction has
been described (60). Briefly, the procapsid was incubated
with varieties of [3H]pRNA in the presence of Mg2+.
Sucrose gradient sedimentation was performed to separate
the procapsid/[3H]pRNA complex. The above mixtures
were loaded onto the top of a linear 5–20% sucrose gra-
dient in TMS buffer and spun in a Beckman L-80 ultra-
centrifuge at 35 000 r.p.m. for 30min at 208C in a SW55
rotor. Upon centrifugation, fractions were collected from
the bottom of the tube and prepared for scintillation
counting.

In vitro phi29 DNA-packaging and phi29 virion assembly

The purification of procapsids, gp16 and DNA-gp3, and
the procedure for DNA packaging in vitro have been pre-
viously described (75). Briefly, a quantity of 10 ml 0.3mg/ml
of purified procapsids was mixed with 1 ml 100 ng/ml
pRNA in TMS buffer for 30min at R.T. Presence of
Mg2+ in TMS buffer promotes the binding of pRNA to
the procapsid. These pRNA-enriched procapsids were
mixed with 3 ml reaction buffer (10mM ATP/6mM sper-
midine/3mM b-mercaptoethanol in TMS), 100 ng DNA-
gp3 and 6 ml 0.5mg/ml DNA-packaging enzyme gp16.
These mixtures were then incubated for 30min at ambient
temperature. DNA-packaging efficiency was verified by
agarose gel electrophoresis using a DNase protection
(76). The packaged DNA, which was protected by the
procapsid, was indicated on the gel.

For in vitro phi29 virion assembly, 30min after the
DNA-packaging reaction, neck, tail and morphogenic
proteins were added to the DNA-packaging reactions to
complete the assembly of infectious virions, which were
assayed by standard plaque formation.

Electron microscopy of procapsid/pRNA/nano gold complex

The preparation of pRNA attached with a single gold
particle and the procedure for the imaging of procapsid/
pRNA/gold complex by electronic microscopy has been
described (77).

RESULTS

RNA nomenclature

To facilitate the description, we use uppercase and lower-
case letters to represent the right and left interlocking
hand loops, respectively, of the pRNA. Various pRNA
mutations mentioned in this article with substitutions in

6622 Nucleic Acids Research, 2008, Vol. 36, No. 20



the right and left hand loops are listed in Table 1. The
same letter in upper and lower cases, e.g. C and c0, indi-
cates their competence to interlock based on complemen-
tary base pairing; whereas, different letters, such as
C and d0, indicate noncomplementary base pairing and
therefore incompetence to contact or bind to form
a ring. For example, pRNA (Cd0) with right-hand
loop C (5

0

G45A46C47A48) and left-hand loop d0

(3
0

U85C84C83G82) can interact with pRNA Dc0 with the
left-hand loop c0(3

0

C85U84G83U82) and right-hand loop D
(5
0

A45G46G47C48), respectively, to form a hexameric ring
(Figure 1 and Table 1). The right-hand loop C and the
left-hand loop d0 in pRNA Cd0 cannot interlock, and thus
cannot form a hexameric ring. Similarly, the right-hand
loop D and the left loop c0 in pRNA Dc0 cannot interlock
and thus cannot form a hexameric ring. However, a closed
even number ring can be formed by the interlocking of C
with c0 and D with d0 when Cd0 was mixed with Dc0

(Table 1). pRNA De0, Ea0 or Ab0 alone cannot interlock
with itself to form a hexameric ring by analogy. However,
a closed hexameric ring can be formed by mixing three
pRNA molecules Be0, Ea0 and Ab0 (Table 1).

Hexameric pRNA complex was not formed prior
to binding to the procapsid or connector

As reported previously, pRNAs form a hexameric ring
(44,57,58,65) around the connector (53,60) of phi29
DNA-packaging motor. One intriguing question that
remains to be addressed is whether the ring is formed
prior or subsequent to the binding to the connector. It
was found that pRNA in solution forms monomers or
dimers (55,56). Formation of trimers requires a special
design of interlocking loops A, b0, B, e0, E and a0

(Supplementary Figure S1, lane 6). Years of extensive
investigation revealed that free hexameric pRNA could
not be detected in solution in the absence of connector
or procapsid (Figure 2 and Supplementary Figure S1)
(55). Formation of a stable pRNA hexamer requires pro-
capsid (or connector) as a scaffold [Figure 2A(b)]. The
native PAGE gel showed pRNA Ab0 or Dc0 formed
only monomers, Ab0+Ba0 or Cd0+Dc0 formed dimers,
and Ab0+Be0+Ea0 formed trimers (Supplementary
Figure S1). Comparison of the histograms of photo-
bleaching steps by single molecule counting (44,72) of dif-
ferent pRNAs also showed that without the procapsid
(or connector), pRNA alone did not form a hexamer
(Figure 2B).

Individual pRNAmonomer and nonspecific RNA
bound to the motor with similar affinity

Gel shift assay revealed that the binding affinity of non-
specific tRNA to connector was very close to that of the
individual monomeric pRNA Cd0 (Figure 3), Dc0, De0 or
Ea0 (data not shown).

Data from single molecule imaging indicates that tRNA
and the individual monomer of pRNA Cd0 (or other
pRNA monomer without self-interlocking left or right
loops) showed similar results with weaker binding to
procapsid (Figure 4B and C). Quantification following
our published methods (44,72) showed that both the

procapsid/tRNA complex and the procapsid/pRNA Cd0

complex obtained a similar pattern in the histogram of
photobleaching steps (Figure 5A and B). Photobleaching
analysis further revealed that the majority of both types of
complexes only contained one fluorescent RNA molecule
(Figures 4G, H and 5). The validity of the 3D structure of
Cd0, as well as its potential competency in group effort to
drive the motor, was confirmed by the findings that: (i)
when Cd0 was mixed with Dc0, they formed a pRNA dimer
in the native gel (Supplementary Figure S1); (ii) unlabeled
Dc0 when added to the fluorescent Cd0 demonstrated that
each motor contained six pRNA (three labeled Cd0 and
three unlabeled Dc0) (see subsequently and Figure 4F
insert); and (iii) when Cd0 was mixed with Dc0, they were
able to package phi29 genomic DNA and produced infec-
tious virions with an optimal yield in the in vitro phi29
assembly system (44,72) (Figure 6).

Hexameric ring formation stabilized the
connector/pRNA complex

(1) The monomeric pRNA Cd0 or Dc0 alone (incompetent
to form a hexameric ring due to the lack of interlocking
loops by itself) had very low binding to the procapsid
(Figure 7), like the negative controls of nonspecific tRNA
or DNA oligo. These data agreed with previous publica-
tions showing that 5S rRNA did not compete with pRNA
binding on the procapsid (54,62). In contrast, when Dc0

was added to Cd0 (competent to form a hexameric ring),
the binding of Cd0 to procapsid was greatly enhanced
(Figure 7). Full activities in DNA packaging (Figure 6A)
and phi29 virion assembly (Figure 6B) were regained as well.
Single molecule quantification (44,72) revealed that each
motor contained six pRNAs (three labeled Cd0 and three
unlabeled Dc0) (Figure 4F insert). However, with either
monomeric pRNA Cd0 alone or tRNA, very few RNA
molecules were found to be associated with procapsids
(Figure 4B and C). Furthermore, for those procapsid that
did retain RNA, each procapsid contained only one RNA
molecule (Figure 4G and H) (Supplementary animations).
(2) When pRNA Aa0 with two self-interlocking loops A

and a0 (competent to form a hexameric ring due to the
potential to develop six pairs of interlocking loops A
and a0) was tested alone, it was found to be active in
procapsid binding or DNA packaging (Table 1; Figure 4
and Figure 6).
(3) Individual pRNA Ab0, Be0 or Ea0 monomer, without

hexameric ring forming capability, bound to the connector
or procapsid poorly and was inactive in DNA-packaging
or virion assembly when used alone. However, procapsid
binding was enhanced, DNA was packaged and virions
were produced when Ab0, Be0 and Ea0 were mixed together
(Supplementary Figure S2).
(4) When one of the interlocking links in the competent

group was disrupted, procapsid binding affinity of the
group was substantially reduced to a level close to the
nonspecific RNA. For example, when the pRNA Dc0 in
a Cd0/Dc0 group was replaced by pRNA De0, its procapsid
binding was weak (Figure 8). In the pRNA Ab0/Ea0 group,
since the interlocking link between loop b0 and E was
disrupted, the assembly activity was reduced by more
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Table 1. Illustration of pRNA hexamer formationa

a‘||’ indicates that the loops are not paired and closed ring cannot be formed. The ‘+’ from one to five indicates the strength of
procapsid binding or phi29 virion assembly activity.
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than 1000-fold (Table 1). Similarly, in the group Ab0/Bc0/
Cd0, the DNA-packaging activity was undetectable, and
virion assembly activity was also reduced by more than
100-fold due to the disruption between the interlocking
loop A and d0 (Table 1, Supplementary Figure S2).

Mutant RNAs with a 4% reduction or extension in the
circumference of the ring were incompetent to bind
procapsid and were inactive in DNA packaging

Phi29 connector has a truncated cone shape with both a
wide end and narrow end. The wide end is embedded in

the capsid while the narrow end is exposed outside
(Figure 1). X-ray crystallography revealed that the con-
nector contains three sections: a narrower section with a
diameter of 6.6 nm, a central section with a diameter of
9.4 nm and a wider section with a diameter of 13.8 nm
(30). The model of the 3D structure of pRNA hexamer
revealed that the ring contains a central channel with a
diameter of 7.6 nm that can sheathe onto the 6.6 nm
narrow end of the connector and be secured by the
connector’s 9.4 nm central section (48) (Figure 1A). It
indicates that the hexameric RNA internal channel’s
diameter of 7.6 nm (48) is critical to stabilize the

A  In the presence of procapsid.

a. Monomeric pRNA Ab′ b. Dimeric pRNA Aa′ c. Two-bp truncated pRNA

B  In the absence of procapsid

a. Monomeric pRNA Ab′ b. Dimeric pRNA Aa′ c. Two-bp truncated pRNA
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Figure 2. Single molecule imaging for the comparison of pRNA oligomerization in the presence (A) and in the absence (B) of procapsid.
(a) Monomeric pRNA Ab0; (b) dimeric pRNA Aa0; and (C) pRNA with the deletion of 2-nt pairs to reduce the diameter of the hexameric ring.
Each bright spot represents one single procapsid/Cy3-pRNA complex (A) or the Cy3-pRNA complex in the absence of procapsid or connector (B).
The histogram represents the photobleaching steps of the complex that contained the Cy3-labeled RNA. The measurements and pRNA counting
have been performed using the single molecule total internal reflection florescence dual view system (44,72).
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connector/hexameric pRNA complex. It is expected that
if the diameter is too small, some of the loops cannot
reach each other and a hexamer cannot be formed
around the connector. On the other hand, if the diameter
is too large, a loose hexamer would fall off the connector,
even if the hexamer had been formed. To test this hypoth-
esis, four mutant pRNAs, with either a 2-bp truncation or
insertion, were constructed. The reduction and insertion
sites were located at nucleotide #33 and #89, respectively
(Figure 1C). These two locations are involved in determin-
ing the diameter of the hexameric ring (48). The native gel
revealed that the mutant pRNA with 2-bp truncation was
competent to form dimers in solution, but not hexamers
(Supplementary Figure S1, lane 7). This suggests that the
mutant pRNA assumed a folding similar to the wild-type
pRNA, and the mutation did not significantly change the
energy required for dimer formation via the interlocking
loops. However, the pRNAs predicted to form a ring with
smaller diameter were incompetent in procapsid binding,
DNA-packaging and phi29 virion assembly (Figure 6).
This supports our assumption that the mutated pRNA
did not form stable procapsid/pRNA complexes due to
the reduced diameter of the predicted hexameric ring.

Hexamer is the prevalent product on the procapsid

It has been reported that when procapsids were incubated
with fluorescent pRNA, which is capable of forming hex-
americ rings, nearly all of the fluorescent spots contained
six copies of pRNA as demonstrated by single fluorescent
pRNA counting and statistics (44). Here, nanogold elec-
tron microscopy was used to observe the binding of
pRNA Aa0 to the procapsid. Each pRNA was labeled
with one single 5-nm nanogold particle. After purification
to homogeneity, the pRNA/gold complexes were incu-
bated with procapsid and then examined by TEM.
Although occasionally a procapsid with one to five golds
had appeared due to incomplete labeling, it is interesting
to find that we obtained an image with the procapsids
containing either six gold particles representing six

pRNAs or no gold particles at all (Figure 9). This finding
strongly supports the conclusion that the formation of a
hexamer stabilizes the procapsid/RNA interaction, and
any bound pRNA fewer than six copies would detach
from the procapsid if a hexameric ring was not formed.
Without stabilizing by the formation of the hexamer, one
or two pRNAs unstably bound to the procapsid could fall
off the procapsid after transient binding.

Construction of artificial pRNAs active in DNA
packaging and production of infectious phi29 virion

The aforementioned results support our hypothesis that
formation of a hexameric ring strongly stabilizes the pro-
capsid/RNA complex. To further support this conclusion,
new artificial RNAs Yy0 or Gg0 with a sequence different
from that of phi29 pRNA were designed and constructed
to test its activities in procapsid binding and in gearing the
motor in DNA packaging. These RNAs contained a right-
hand loop Y or G and a left-hand loop y0 or g0 that were
complementary so as to promote the formation of the
hexameric ring. It also contained a helical region at the
paired 50- and 30-ends (Supplementary Figure S3) for
the binding of the DNA packaging ATPase gp16
(46,63). It is interesting to find that artificial pRNAs
bound to the procapsid similar to pRNA Aa0 (compare
Figure 4D and E) were fully active in DNA packaging and
infectious phi29 virion production (Figure 6). Further
investigation through single molecule photobleaching
studies on the complex of procapsid/Cy3-artificial RNA
(Yy0) revealed a six-step photobleaching (Figure 4J) (44),
indicating the presence of six pRNA bound to procapsid.
This finding suggests that the artificial pRNAs Yy and Gg0

were biologically similar to that of the normal phi29
pRNA (Figure 4I).

DISCUSSION

In this article, we have shown that the binding of individ-
ual pRNA to the motor connector is not sequence specific.
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revealed that the resulting data were highly significant. The ‘||’ at the vertices of the inserted diagram indicates that two loops were noncomple-
mentary and could not interlock to form a ring. Cy3-labeled RNA is shown as a green line, while unlabeled RNA is shown as a black line in the
inserted diagram (Animations available at: http://www.eng.uc.edu/nanomedicine/newmovs.html).
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Consequently what could be the mechanisms of protein/
RNA interactions that resulted in the specific requirement
of phi29 pRNA in procapsid binding and DNA packa-
ging? All of the above results can be explained as follows.
Each wild-type phi29 pRNA itself contains both inter-
and intra-molecular interlocking loops, and are therefore
able to form a closed ring via hand-in-hand interaction of
those loops (56). With the Cd0/Dc0 group as an example,
the individual pRNA Cd0 or Dc0 by itself has low procap-
sid binding affinity and could not package DNA or assem-
ble infectious phi29 virion, since they only contain
mismatched loops and cannot form a closed ring.
However, the closed ring is formed to produce a hexamer
containing three Cd0 and three Dc0 arranged in alternating
order when Cd0 is mixed with Dc0 (Figure 4F). Thus,
pRNAs bound to the procapsid firmly and DNA was
packaged to produce infectious virions. In contrast, inter-
ruption of any one of the interlocking links could impede

the formation of the hexameric ring, resulting in an incom-
petence of the pRNA group to bind to the connector.
Extension or reduction of the circumference of the ring
resulted in no motor binding. Furthermore, a ring with
three 2-bp deleted pRNAs and three 2-bp lengthened
pRNA is functional in DNA-packaging and virion assem-
bly (Shu and Guo, manuscript in preparation). It confirmed
that the specificity in procapsid/pRNA interaction is attrib-
uted to the formation of the static ring that surrounds the
connector. All individual RNA subunits, no matter if they
are pRNA, nonspecific tRNA, were competent to bind to
the three basic residues, Arg–Lys–Arg, at the N-terminus of
the connector protein gp10, which protrudes out of the
procapsid (53,60). A dynamic and low affinity interaction
between RNA and the connector could make some of
the RNAs fall off the connector if the ring was not
formed. However, forming a static hexameric ring via the
interlocking loops and sheathing around the connector
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Figure 6. Comparison of the activity of DNA-packaging (A) and virion assembly (B) of different RNAs. The packaged DNA was protected from
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strongly stabilizes the procapsid/RNA complex, which
also keeps the RNA bound to both the connector the
procapsid. (Supplementary animations)

Phi29 DNA-packaging motor is geared by a pRNA
ring, of which the stoichiometry is under fervent debate.
Phage DNA-packaging motor contains a 6-fold
(12-subunit) connector surrounded by a 5-fold symmetri-
cal capsid shell (26). The presence of pRNA hexamer and
the inter-pRNA interaction of the suppressor mutants
were demonstrated by extensive complementation ana-
lyses in 1997 (65). In 1998, two labs (57,58) independently
reported that pRNA forms hexamers as a part of the
phi29 motor.

Subsequent to the biochemical, mathematical and
genetic approaches to find the hexamer, a hexameric
pRNA ring was reported in 2000 using Cryo-electron
microscopy (Cryo-EM) (68). In contrast, the cryo-EM
approach by others resulted in a pRNA pentamer
(67,69,70). Cryo-EM image reconstruction for RNA
remains challenging due to the sensitivity of RNA to

RNase degradation during sample preparation, as well
as the structural flexibility resulting from the presence
of multiple free energy levels of folding for RNA.
The underestimation of the copy number of RNA per
procapsid caused by RNase degradation has also been
observed in the single molecule photobleaching studies.
The results from these studies demonstrated that five-
steps occur more often than six-steps, even though the
pRNA ring was explicitly determined to be a hexamer
(44). In addition, those who support the hexamer and
those who support the pentamer hold different points of
view. The hexamer supporters argued that pRNA binds to
the connector, which contains 12 subunits and holds 6-
fold symmetry. The pentamer supporters claimed that
pRNA binds to the procapsid shell, which shows a
5-fold symmetry (69). However, cross-linking approaches
revealed that pRNA did not bind to the procapsid protein,
but to the connector (49). Xiao et al. (60) has provided
solid evidence that pRNA binds to the N-terminus of the
connector protein gp10. Further analysis reveals that the
three basic amino acids, Arg–Lys–Arg, at the N-terminus
of the gp10 are responsible for pRNA binding. Mutation
of any two of these three amino acids resulted in complete
abolishment of pRNA binding to the DNA-packaging
motor (53,61). Recent single molecule counting, using
high sensitive dual view total internal reflection fluo-
rescence microscopy with photobleaching technology,
revealed that each DNA-packaging motor contains six

A Cy3-pRNA (Cd′+Dc′) B Cy3-pRNA (Cd′+De′) C Cy3-pRNA (Cd′) D Cy3-dsDNA E Cy3-ssDNA

Figure 8. Single molecule imaging to compare the procapsid-binding efficiency between the ring forming pRNA group (A) and the pRNA group with
one of the interlocking links disrupted (B). The binding of procapsid with pRNA monomer Cd0 (C), dsDNA (D) and ssDNA (E) were also shown as
controls. The pRNA Cd0 was labeled with a single Cy3 molecule. Cy3-ssDNA was synthesized by IDT. The procapsid/Cy3-RNA or procapsid/Cy3-
DNA complex, which was purified from 5–20% sucrose gradient and attached to the quartz slide surface coated with anti-phi29 procapsid antibody.
(A) Procapsid/Cy3-pRNA(Cd0+Dc0); (B) procapsid/Cy3-pRNA(Cd0+De0) with one link disrupted; (C) procapsid/Cy3-pRNA(Cd); (D) procapsid/
Cy3-dsDNA; and (E) procapsid/Cy3-ssDNA.
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Figure 9. Transmission electron micrographs of phi29 procapsids/
pRNA-gold complexes. Bar=50 nm.
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copies of pRNA (44). The group who asserted the penta-
meric pRNA ring argued that pRNA hexamers are
formed initially, but after binding, one of the pRNAs
dissociates from the procapsids due to a conformational
change, leaving five pRNAs still bound (67,69,70).
However, single molecule fluorescence microscopy studies
of purified DNA-packaging intermediates revealed that
the active motor still contained six copies of pRNA
during DNA translocation (44).
The results in this article support our earlier findings

using pRNA with interlocking loops. Previously, it was
reported that only the hexameric pRNA ring was active
in DNA packaging (44,57,65). Mixing two inactive
pRNAs, such as pRNA Cd0 and Dc0 in a 1 : 1 molar
ratio, resulted in full production of infectious virions, indi-
cating that the stoichiometry of the pRNA should be a
multiple of two. Three inactive pRNAs, Ab0, Be0 and Ea0,
which become fully active when mixed together, suggest
that the number of pRNAs in the DNA-packaging com-
plex is a multiple of three. The common multiple of two
and three is six. It was found that purified pRNA trimers
have the highest specific activity (78) compared with the
pRNA dimer and monomer. It would be astonishing if
two trimers could form a pentamer. Single molecule ima-
ging in this report revealed that the ring was formed by
either a pure dimer or by pure trimer alone. Again, these
data strongly support the argument that the ring is a
common multiple of two and three, which must be a hex-
amer. These data also suggest that the pRNA ring con-
tains an even number of pRNA, since the purified pRNA
dimer was the building block of the ring. It was impossible
to build a 5-member ring when pure dimers or pure tri-
mers were used alone. It is not easy to account for how a
pentamer could be formed from an even number of
binding units (pRNA dimer) on a targeted base with
even-numbered symmetry (the dodecameric connector).
The finding of hexamer was also supported by a
DNA-packaging model proposed by Fang et al. (66).
Natural DNA or RNA translocation motors contain

components that mostly display a hexameric configuration
for contacting DNA or RNA, as do the large AAA+
family (the ATPases associated with a variety of cellular
activities), to which phi29 DNA-packaging protein gp16
belongs (79,80). The formation of a hexameric ring indi-
cates that this class of nanomachines might possess
a similar mechanism in nucleotide contact or DNA/
RNA translocation. DNA polymerase (81), P4
RNA packaging motor (3), RNA polymerase (9), helicase
(2,82), Rho (83,84), DNA polymerase processivity factor
(85), BPV E1 replication initiator (86,87) and tens of
other nucleotide/nucleic acids binding or translocating
proteins all exist as hexamer (2,5,10–14,88–90).
Convincing data have revealed that the pRNA ring on
the phi29 motor was a hexamer. It would be very interest-
ing to find out why a hexamer was quantified into a pen-
tamer by cryo-EM. We do not exclude the possibility that
there may be novel features of the pRNA and this motor
organization that, if identified in the future, will explain
the discrepancy in the findings regarding hexamer and
pentamer.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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