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Stopping chromosomes from
breaking bad
The scaffolding that holds chromosome pairs together plays a key role in

limiting the levels of double-strand breaks.

RIMA SANDHU AND G VALENTIN BÖRNER

W
hen is the right time for an organism

to terminate a developmental pro-

cess? This is a question that is rele-

vant to most levels of biological organization:

when should the development of an organ, such

as the heart, stop? When has enough of a sub-

cellular structure, such as the endoplasmic retic-

ulum, been formed? This question is especially

relevant when a failure to stop a process could

damage the organism. Such processes include

the programmed induction of double-strand

breaks, which form in large numbers along chro-

mosomes at the onset of meiosis (Keeney et al.,

2014).

Double-strand breaks have a crucial role in

meiosis because some of them become “cross-

overs” between homologous chromosomes

(homologs). Successful meiosis requires the for-

mation of at least one such crossover along each

pair of homologs. Yet, the formation of double-

strand breaks must also be stopped in a timely

manner to prevent segments of chromosomes

from being lost. Now, in eLife, Monica

Colaiácovo and colleagues at Harvard Medical

School and Massachusetts General Hospital –

including Saravanapriah Nadarajan as first author

– report that designating a double-strand break

to be a future crossover shuts down the forma-

tion of further breaks (Nadarajan et al., 2017).

Intriguingly, the exact molecular architecture of

the synaptonemal complex, the scaffolding that

connects homologs along their length before

they separate during meiosis I, appears to play a

key role in this process.

The work by Nadarajan et al. belongs to a

flurry of papers that have recently challenged

long-standing ideas about the structure of the

synaptonemal complex (Machovina et al., 2016;

Rog et al., 2017; Pattabiraman et al., 2017). At

any given time, the central element of this com-

plex appears as a static scaffold comprised of

regularly spaced transverse filaments. When the

movement of individual filament proteins is

tracked, it is evident that they are continuously

unloaded and replaced by new molecules. This

rapid turnover slows down only when a subset of

double-strand breaks has been designated as

sites of future crossovers.

SYP-4 is one of four transverse filament pro-

teins that make up the central element of the

synaptonemal complex in the nematode worm

Caenorhabditis elegans (Smolikov et al., 2009).

Nadarajan et al. now show that phosphorylation

at a particular site (serine 269) on SYP-4 has two

consequences. First, additional double-strand

break formation is stopped. Accordingly, the

elimination of SYP-4 phosphorylation results in

the continued appearance of breaks even after

the obligatory crossover site per homolog pair

has been designated. In other words, there is a
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negative feedback loop that ensures that a site

committed to become a crossover prevents fur-

ther double-strand breaks from forming.

Second, phosphorylation also results in the

stabilization of the structure of the central region

of the synaptonemal complex. Accordingly, with-

out SYP-4 phosphorylation, rapid turnover of

transverse filament proteins in the central ele-

ment continues even though the required num-

ber of crossovers has been reached. Nadarajan

et al. argue that a failure to stabilize the

synaptonemal complex in a timely manner allows

the formation of double-strand breaks to con-

tinue. They exclude the opposite effect (that

excessive breaks destabilize the synaptonemal

complex) because double-strand break levels

are not generally correlated with the dynamics

of this structure (Pattabiraman et al., 2017).

Some intriguing parallels exist between the

mechanism identified in C. elegans and two

mechanisms identified in budding yeast that also

prevent formation of excessive double-strand

breaks (Keeney et al., 2014). In the first case,

excessive break formation is prevented via phos-

phorylation of yeast Rec114, a widely conserved

accessory protein that is required for double-

strand break formation (Carballo et al., 2013).

In the second case, additional breaks are sup-

pressed by the phosphorylation of a yeast trans-

verse filament protein called Zip1

(Thacker et al., 2014; Chen et al., 2015). Like

SYP-4, the phosphorylation of Rec114 and Zip1

depend on the formation of double-strand

breaks, although further maturation of breaks

into crossovers does not appear to be required

(Carballo et al., 2013; Chen et al., 2015).

Additional commonalities between the two

systems include the fact that phosphorylation

triggers structural changes between and along

homologs. Accordingly, phosphorylation results

in a shift of Rec114 away from its initial double-

strand break association, whereas Zip1 phos-

phorylation triggers close homolog juxtaposition

via the synaptonemal complex (Carballo et al.,

2013; Chen et al., 2015). At the same time, it is

presently unclear whether these changes are

mediated in different organisms by the same

kinases (i.e. the enzymes that phosphorylate

proteins).

The discovery that the molecular architecture

of the synaptonemal complex plays a central

role in terminating the formation of double-

strand breaks opens up intriguing avenues for

further investigation. Components of the central

element of the synaptonemal complex are nor-

mally not required for double-strand break

formation. How then does stabilizing the central

element inactivate the formation of breaks? One

possibility is that it alters how easily the double-

strand break machinery can access its targets

along chromosomes. Alternatively, stabilization

of the synaptonemal complex may interfere with

initial break processing thereby allowing the

Spo11 topoisomerase that normally induces mei-

otic breaks to shift its activity to the backward

reaction and bind breaks back together

(Keeney et al., 2014; Prieler et al., 2005).

We also need a better understanding of the

relationship between the mechanisms that pre-

vent excess double-strand break formation and

the mechanisms that ensure that enough breaks

are formed. In C. elegans, both depend on polo-

like kinases and crossover designation factors

(Machovina et al., 2016; Pattabiraman et al.,

2017). Thus, positive and negative feedback

loops that either enhance or limit the formation

of double-strand breaks share multiple compo-

nents. Nadarajan et al. have identified the phos-

phorylation of SYP-4 as a critical switch for

terminating break formation. It will be fascinat-

ing to identify the other factors that help a cell

to decide whether formation of additional dou-

ble-strand breaks should be reduced or

enhanced.
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