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Abstract: Understanding dependencies between brain functioning and cognition is a challenging
task which might require more than applying standard statistical models to neural and behavioural
measures to be accomplished. Recent developments in computational modelling have demonstrated
the advantage to formally account for reciprocal relations between mathematical models of cognition
and brain functional, or structural, characteristics to relate neural and cognitive parameters on
a model-based perspective. This would allow to account for both neural and behavioural data
simultaneously by providing a joint probabilistic model for the two sources of information.
In the present work we proposed an architecture for jointly modelling the reciprocal relation
between behavioural and neural information in the context of risky decision-making. More precisely,
we offered a way to relate Diffusion Tensor Imaging data to cognitive parameters of a computational
model accounting for behavioural outcomes in the popular Balloon Analogue Risk Task (BART).
Results show that the proposed architecture has the potential to account for individual differences
in task performances and brain structural features by letting individual-level parameters to be
modelled by a joint distribution connecting both sources of information. Such a joint modelling
framework can offer interesting insights in the development of computational models able to
investigate correspondence between decision-making and brain structural connectivity.

Keywords: risk taking; diffusion tensor imaging; hierarchical Bayesian modelling

1. Introduction

In cognitive neuroscience, relations between neural and behavioural characteristics of individuals
are usually analyzed using a two-step approach which first summarizes performances on a given
experimental task, and then applies standard statistical analysis on the neural and behavioural
measures. However, several studies have highlighted the limitations of this approach in investigating
and selecting theories to explain the relation between neural functioning and cognition [1–3].

Advances in the understanding of this relation are due to the development of different
computational tools, allowing for a finer analysis of several sources of information. Some examples
are: (1) cognitive modelling [4,5] which formally accounts for the generative cognitive processes
which are assumed to produce the observed data; (2) Bayesian graphical models [6,7] which provide
a powerful and flexible way to perform hierarchical Bayesian analysis, allowing to account for group
and individual differences; (3) joint neurocognitive modelling [1,8–11] which provides a framework to
simultaneously model and analyze neural and behavioural data by allowing the latter to be informative
for the former, and vice versa.

The latter modelling framework has demonstrated to be an effective way to increase knowledge
about the underlying neural substrates of cognitive functioning by bridging the gap between
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neuroscience and mathematical psychology. Here, the main advantage consists of using formal
cognitive models as tools to isolate and quantify cognitive processes in order to effectively associate
them with some brain measurements [8]).

In this work we aimed to put the emphasis on the mutual dependency between measures of
structural integrity of brain regions of interest and cognitive functioning as assessed by the analysis of
the outcomes of a given experimental task.

Several works ranging from perception [12], attention [13], memory [14], categorization [15],
and decision in two alternatives forced choices [1,16] have demonstrated the need to formally
account for reciprocal relations between mathematical behavioural models and brain functional
or structural data.

In this contribution we proposed an architecture for jointly modelling such reciprocal relation in
the context of risky decision-making. Although risk–decision tasks can be considered highly popular
and effective experimental tools to investigate cognitive control and decision-making characteristics
under risk conditions, a model-based approach to the joint analysis of brain and behavioural data in
such contexts is still lacking.

Here, we proposed a novel way to relate structural information from Diffusion Tensor Imaging (DTI)
to psychological parameters of a computational cognitive model accounting for the behavioural outcomes
in the Balloon Analogue Risk Task (BART; [17]), from a confirmatory perspective.

The BART represents an ideal scenario to model decision-making since it has been correlated to
“real-world“ risk taking [17,18]. The task has proven to reliably account for risk-taking propensity,
response strategy and risk-related behaviour modulation in a broad range of normal and clinical
populations [19–22]. In a typical BART setting, participants are required to decide whether to risk by
inflating a balloon to earn a cumulative small monetary reward, being informed that the balloon might
explode with a certain probability, thus causing the loss of accrued earnings. If participants decide to
stop inflating they can cash out the current winnings. Optimizing total earnings in such a scenario
is not trivial. In general, it requires a balanced risky-oriented strategy, learning from experience
and modulating choices consistently [23].

In the present work we adopted a hierarchical Bayesian framework to relate neural and cognitive
parameters inferred from performances of healthy participants on the BART. Analysis of posterior
distributions was then used to assess relationships between the neural and cognitive variables.
The model was applied to data from an already published dataset. Finally, the potentials in applying
the method to the analysis of neural substrates underlying risk-taking behaviour and decision making
were outlined and discussed.

2. Materials and Methods

2.1. The BART Data

The dataset used in this work was selected from the OpenfMRI database repository
(http://www.openfmri.org; [24]) and refers to the experimental data reported in [25]. The dataset
contains both behavioural performances and MRI scans from 24 healthy participants on a slightly
modified version of the BART. Participants were adults recruited from UCLA’s campus with ages
in the range 18–33, with no history of neurological illness and no use of psychoactive medication or
illegal substances.

In the adopted version of the task, individuals saw a balloon on the monitor and were asked to
select one of two possible options at each choice occasion for a given trial. The first option consisted
in inflating the balloon, and is referred to as pump . The second option ended up the current trial
by deciding to stop inflating the balloon, and is referred to as cash. Pumping the balloon increased
the amount of possible monetary reward by 25 cents for each pump. If the participant decided to stop
inflating the balloon, the accrued money was moved to a permanent store of winnings and a new
balloon was presented. After a variable number of pumps the balloon exploded, in which case
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the participant lost all the money in the temporary pool. Participants did not receive any cue about
the bursting probability. However, probabilities of explosions were not fixed and the actual number of
pumps before an explosion followed a uniform distribution across trials, with an average of 6 pumps
(SD = 2 pumps). Each balloon was presented on each trial for a total of 36 trials.

2.2. The Cognitive Model

As previously outlined, performances of the BART are employed as a measure of risk-related
behavioural tendencies and are usually analyzed by means of standard summary measures on test outcomes
(e.g., total number of pumps, frequency of pumps across trials, number of cashes, number of explosions).
However, such measures do not provide a suitable account for the data-generating process, that is,
for the cognitive sub-processes involved in the task.

In this work we proposed a parsimonious computational account of the cognitive mechanisms
underlying the observed response pattern of pumps and cashes [23,26]. In particular, we relied on
a modified version of a robust model representation which has shown to be particularly stable to
parameter recovery and estimation [23].

The model assumes a subjective probability estimate that a pump will make the balloon bursts
in a given trial k. It also assumes that individuals determine the number of pumps for that trial
prior to the first actions, and do not make adjustments during pumping. The number of pumps that
individuals consider optimal on trial k is defined as ωk, and depends on the propensity of risk taking,
γ, and on the current subjective bursting probability p∗k , as follows:

ωk = − γ

log(1− p∗k )
(1)

where γ ≥ 0. Equation (1) provides a parsimonious and effective representation of an individual
decision strategy. Intuitively, ωk places an upper bound on the pump attainable at a given trial,
which is proportional to risk propensity, γ. The term p∗k in the denominator has the role of shrinking
the number of pumps an individual considers as optimal. Moreover, the probability of pumping in
trial k, at a given occasion j, is defined as θkj and depends on ωk and on behavioural consistency, β,
which can be though to account for response variability:

θkj = [1 + exp(β(j−ωk)]
−1 (2)

where β ≥ 0. High values (resp. low values) of β mean less variable responding
(resp. more variable responding). Equation (2) represents the fact that behaviour is generally determined
by the divergence between the current choice occasion j (e.g., pump opportunity) and the optimal number
of pumps, ωk. When the optimal number of pumps is exceeded (j > ωk for the trial k), the probability
of pumping, θkj, approaches zero. However, parameter β reflects the degree to which a response is
determined by such a divergence. When β = 0, the individual decision to pump or cash is random.
Differently, decisions become more consistently determined by the divergence criterion as β increases.

However, the original formulation of the model [23] assumed parameter p∗k to be fixed
(which implies removing subscript k) and known from participants at the beginning of the task.
This supports the assumption that the subjective probability of burst is constant across the task
trials. However, fitting such model to our data could be problematic at least for two main reasons:
(1) participants were not informed about the true bursting probability which in the task is uniformly
distributed across trials; (2) in general, it is not possible to ensure that subjective bursting probabilities
are consistent among participants and constant across trials, whatever the information they receive
prior to the task.

In our model representation, subjective bursting probability and its dynamics were taken into
account and inferred by relying on the history of participant’s choices. Let the variable Ck indicate
the cumulative success rate up to trial k according to:
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Ck =
∑K−1

k=1 sk

∑K−1
k=1 nk

where sk and nk are the number of successful (non-bursting) balloon pumps and total pumping attempts
at trial k, respectively. Modelling Ck as a Beta distributed random variable yields the statistical solution
to the task of inferring the subjective bursting probability as follows:

Ck ∼ Beta(µαk σα, (1− µαk )σα)

µαk = logit−1(α0 + α1k) (3)

p∗k = 1− µαk (4)

where the cumulative success rate is regressed on trial numbers, and parameters α0 and α1,
denoting the intercept and slope respectively, are the regression coefficients. For computational
convenience we adopted the parameterization proposed by Ferrari and Cribari-Neto [27].
Such a parameterization has proven to be convenient in our computational setting since it allowed
to model the observed cumulative success rate at trial k as sampled from a Beta distribution
with expected value µαk and concentration σα. Thus, the (conditional) expected value of the Beta
distribution, given the specific trial, has been modelled as a function of cognitive parameters α0 and α1,
and the specific trial k. The inverse logit function allowed to map such parameters to the natural
domain of the expected value of the Beta distribution according to the specified parameterization.
Here, α0 indicates the baseline subjective bursting probability and α1 represents the rate of change
of bursting belief. In particular, if α1 < 0 (rep. α1 > 0), then this reflects an indicator that perceived
bursting probability increases (resp. decreases) as the participant’s responses start accumulating
balloon bursts as the trials unfold (resp., start decreasing balloon bursts).

At this point, the resulting cognitive model can be thought to account for response configurations
of pumps and cashes by means of two hierarchically organized sub-models. In the first sub-model,
a trial-specific bursting probability, p∗k , is computed based on the baseline subjective bursting
probability, α0, and the bursting belief dynamic yielded by α1. In the second sub-model, the decision
process is instantiated by allowing the system to estimate an optimal number of pumps, ωk, conditioned
on the computed trial-specific bursting probability, p∗k , and a response is delivered based on θkj.

Therefore, model representation allows to test the hypothesis that participants do not modify
their initial bursting belief during the task. When α1 = 0, behaviour depends only on the baseline
bursting probability and cognitive parameters γ, and β.

From a generative perspective, an observed pumping action ykj (1 if pump, 0 if cash) can be
modelled according to a Bernoulli distribution:

ykj ∼ Bernoulli(θkj)

and θkj depends on both cognitive parameters and the specific choice occasion within a specific trial.
The likelihood function is then defined as follows:

p(Y |Ω) =
K

∏
k=1

J(k)

∏
j=1

θ
ykj
kj (1− θkj)

(1−ykj) (5)

where Ω = (γ, β, α0, α1) is the array of parameters of the behavioural model, and J(k) is the total
number of observed actions for trial k.

2.3. The Neural Model

The cognitive model decomposition allowed to isolate individual cognitive characteristics and to
rephrase them in terms of model parameters. A further step to model neural and behavioural
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data simultaneously consisted in bringing individual brain characteristics into the joint model.
To this purpose, we focused on neural structural information at individual level. More precisely,
we wanted the neural model to account for properties of structural connectivity in the brain.
Consistently, we adopted Fractional Anisotropy (FA) as the founding measure to parameterize
individual brain structural connectivity.

FA is the most commonly used index for estimation of anisotropy using DTI, and reflects fiber
tracts characteristics such as the extent of alignment of cellular structures within the fibers and their
structural integrity [28,29]. Therefore, such a measure also proved to be a promising index to study
the relation between brain structural integrity and both response variability and risky behaviour in
both clinical and normal population [19,30–32].

In this work, we were interested in relating cognitive functioning with connectivity measures
of networks of regions of interest (ROIs). This choice was motivated by substantial evidences on
the potential of functional-structural properties of distributed neural networks to account for complex
decision processes [32–34]. Thus, the main purpose of our neurocognitive modelling approach
consisted of linking connectivity-related information of network structures with the latent mechanisms
captured by the computational cognitive model.

As a measure of connectivity we quantified the FA of white matter tracts relating specific regions
of interest in a specific neural network. The confirmatory aspect of our approach was reflected by
the choice of relying on a subset of the whole-brain structural connectivity matrix. To do this, a custom
connectivity matrix was obtained by focusing on the following ROIs array and related white matter
connectivity paths: left and right thalamus, striatum, dorsolateral prefrontal cortex, anterior cingulate
cortex, inferior frontal gyrus, insular cortex. A network was then defined as the vector of elements of
any (biologically) consistent subset of the ROIs array.

More formally, consider a square and symmetric connectivity matrix F, such that:

F =


f11 f12 . . . f1J

f21 f22 . . .
...

...
...

. . .
...

f I1 f I2 . . . f I J


where fij = 0 for i = j, and I = J. The entries fij specify the fractional anisotropy of the custom tract
connecting ROIs i and j. We refer to Network FA [32] to represent structural connectivity in a given
network. Thus, network FA consists of the collection of f (x)

ij such that i, j ∈ x, and x is the indicator
variable reflecting the vector of ROI labels which constitute a defined network. Potentially, Network FA
can be obtained for several combinations of ROI labels, and thus for several subsets of F.

However, in this application we focused on two brain networks. The first network involves white
matters connections between anterior cingulate cortex (ACC), insula, and inferior frontal gyrus (IFG),
regions which are thought to be involved in loss-aversion modulations [33]. In particular, ACC is
critically involved in cognitive control and decision-making processes in signaling anticipated risk
and potential loss [35], whilst insula and IFG are thought to be implied in risk aversion signaling
and risk avoidance during risky decisions [36,37]. The network implies fiber connections between ACC
and IFG, and those implied by insular–cingulate and insular–frontal projections, bilaterally (Figure 1a).
The second network involves projections between dorsolateral prefrontal cortex (dlPFC) and both
striatum and thalamic nuclei, involved in top-down modulation of goal-directed behaviour [38] and,
in part, in response variability in risky task [19]. Such a network is part of the Cortico–Striatal–Thalamic
path, and consists of fiber connections between striatum and thalamus, and those implied by
the striatal–dlPFC and thalamic–dlPFC projections, bilaterally (Figure 1b).
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(a)

(b)

Figure 1. Pictures on the left show the regions of interest (ROIs) which constitute the networks.
The network containing anterior cingulate (red), insula (yellow) and inferior frontal gyrus (blue) consists
of the anterior cingulate cortex (ACC)–Insula–inferior frontal gyrus (IFG) Network (a). The network
containing thalamus (green), striatum (yellow) and dorsolateral prefrontal cortex (dlPFC) (blue) consists
of the dlPFC–Thalamus–Striatum Network (b). The central and rightmost pictures represent tracts of
white matters connections for the first and the second network, respectively. For simplicity, figures show
networks tracts for the left brain hemisphere, but the same applies to the opposite hemisphere. Network
Fractional Anisotropy (FA) is intended to account for bilateral network tracts fractional anisotropy.

We refer to δx=1 and δx=2 as the neural parameters accounting for network FA measure for
ACC–Insula–IFG and dlPFC–Thalamus–Striatum networks, respectively. Here, we followed a strategy
proposed in [1] to easily provide a probabilistic account of the neural measures. In particular,
tracts fractional anisotropy was assumed to be drawn from a Gaussian Distribution, which provided
a computationally convenient and tractable probability model of Network FA:

logit( f (x)
ij ) ∼ Normal(δx, σx). (6)

Here, δx is thought to be the latent neural parameter accounting for structural property of
network x, and f (x)

ij is the fractional anisotropy for tract connecting ROIs i and j in network x.
Parameter σx was thought to represent the inter-tracts variability of FA in the network x, and it
was not conceived as accounting for Network FA since we were not interested in relating the variance
in the inter-tracts FA measurements to cognitive parameters in the joint framework. However, it is
worth noticing that such assumption might be infeasible when high inter-tracts variation is empirically
detected, as in the case of measurements on the clinical population. In this case, more consistent
parametric models might be considered to better account for Network FA.

The likelihood function is then defined as follows:

p( f (x)|δx, σx) =
N(x)

∏
n=1

N(logit( f (x)
n )|δx, σx) (7)

where N(·) denotes the normal density with mean δx and standard deviation σx, and N(x) the number
of connected tracts within the network x. We referred to f (x)

n as a simplified notation which reflects
the FA value of the n-th tract connection between ROIs i and j in the network x.
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Thus, neural parameters were inferred based on processed neural data and served to feed
the system to account for the neural counterpart of the joint neurocognitive model, as will become
clearer later in the next sections.

2.4. DTI Data Processing

The FA value computation was based on the eigendecomposition of the diffusion
tensor [39]. In order to extract tracts’ FA, DTI diffusion images with a total of 64 volumes
(diffusion sampling directions) with a b-value of 1000s/mm2, in-plane resolution of 1.97917 mm
and slice thickness of 2 mm, were used for analysis. All images have been corrected for eddy
currents with FSL’s eddy toolbox using one b0 image as structural reference to account for geometrical
distortions. The diffusion data were normalized in the MNI (Montreal Neurological Institute)
space using affine registration and the ICBM-152 template, and a deterministic fiber tracking
algorithm [40] was used. The tractography and connectivity matrix were calculated using DSI Studio
(http://dsi-studio.labsolver.org). A seeding region was placed at whole brain and the fiber tracking
procedure was performed with the thresholds of minimum FA value at 0.15, and maximum angle at
27◦ according to previously utilized protocols [41]. The step size was randomly selected from 0.5 voxel
to 1.5 voxels and tracks with length shorter than 30 or longer than 300 mm were discarded. A custom
template with 12 ROIs (consisting of the brain regions whose tracts constitute F), six left and six right,
was created using AAL2 [42], Desikan-Killiany-Tourville [43] and HCP842 [44] atlases and used as
the brain parcellation. The connectivity matrix was calculated by using the FA of the connecting tracks.

2.5. Joint Modelling

A fundamental characteristic of joint models relies on their particular flexibility in allowing
several assumptions about probabilistic (or deterministic) relations between neural and behavioural
variables to be taken into account through model’s architecture.

In neurocognitive modelling are proposed two relevant architectures to account to
the modelling of relationships between different sources of data: the Directed Approach and the
Covariance Approach [11,45].

In the directed approach, a statistical model of neural data is defined and it is
assumed that behavioural model parameters are directly affected by neural model parameters,
codifying a non-reciprocal relation between the two sources of information. By contrast, the covariance
approach does not assume such restrictions on parameters dependencies, but relies on specifying
a joint model in which cognitive and neural parameters share a multivariate structure with covariance.

In this work, we adopted the latter as an adapted version of the joint model proposed by [1].
The primary reason for relying on the covariance approach was that we wanted to be agnostic in
specifying the causal role of each source of information, that is, the directional statistical influence
between neural and cognitive measures. To say it differently, the proposed covariance model combined
both behavioural and neural models’ parameters in a unified framework, which characterizes the way
behavioural and neural parameters coexist to explain the underlying cognitive process [45].

In our context, the covariance model has been thought to account for individual differences in
task performances and brain structural characteristics by letting individual-level parameters to be
modelled by a multivariate distribution connecting the two sources of information. Such connection
allowed the information yielded by the neural data, as represented by F, to affect the information we
learned about key cognitive parameters (e.g., γ, β).

We proposed a Multivariate Student’s t-distribution [46,47] as the multivariate probability model
in order to account for robust relations between neural and cognitive parameters. Such relations
were learned through hierarchical modelling and accounted by the (hyper-)covariance matrix of
the multivariate distribution. Both cognitive and neural parameters were treated as latent variables.

For the behavioural model, we assumed structured individual differences in parameters
γ, β, α0, and α1. The assumed model was also the one showing the best general fitting performances

http://dsi-studio.labsolver.org
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when compared to other possible models (see Supplementary Materials for model selection details).
We further put a constraint on the relation between neural and cognitive parameters accounted
by the covariance matrix of the multivariate probability model. In particular, we assumed that
individual-level baseline bursting probability, α0 and its updating, α1, condition the behavioural
model outside the covariance structure, and that risk-taking, γ and response variability, β, were then
recovered within the multivariate probability model. To say it differently, we let α0 and α1 play the role
of providing conditions for (possible) unbiased estimates of individual-level parameters γ and β, given
that subjective probabilities have been taken into account.

The Multivariate Student’s t-distribution was then specified by the hyperparameters vector:

µ =
(
µγ, µβ, µδ1 , µδ2

)
containing the hyper-mean parameters for each of the individual-level parameters sharing a covariance
matrix. The hyper-covariance matrix is thought to reflect research question and model assumptions.
In our case we aimed to investigate the relation between pairs of network FA and cognitive
sub-processes in a confirmatory perspective, and it was defined as follows:

Σ =



σ2
γ 0 σγσδ1 ρ1 σγσδ2 ρ2

0 σ2
β σβσδ1 ρ3 σβσδ2 ρ4

σγσδ1 ρ1 σβσδ1 ρ3 σ2
δ1

0

σγσδ2 ρ2 σβσδ2 ρ4 0 σ2
δ2



where ρ1 and ρ2 account for the relation between risk-taking, γ, and both ACC–Insula–IFG
and dlPFC–Thalamus–Striatum networks FA, δ1 and δ2, respectively. Correlation parameters ρ3 and ρ4

account for the relation between behavioural consistency, β, and both δ1 and δ2, respectively.
Eventual relations between brain structural and cognitive characteristics were, thus, estimated on
a model-based perspective. A graphical representation of the relation between the variables in
the system is shown in Figure 2, which depicts the joint model’s architecture.

Figure 2. Covariance model’s architecture. Square and circular nodes indicate discrete and continous
variables, respectively. Grey nodes indicate observed variables. Blue and red nodes represent behavioural
and neural node parameters, respectively. Double-circled nodes represent deterministic nodes.

The graphical model represents all the (in)dependencies assumptions between the variables
in the system. Given the model’s assumptions we can compute the joint posterior distribution of
the model parameters conditional on observed data as follows:
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p(δ1, δ2, Ω, µ, Σ,σ1, σ2, µα0 , σα0 , µα1 , σα1 |Y , F) ∝

∏
s

[
p(Y s|γs, βs, α0s, α1s)p( f (1)s |δ1s, σ1)p( f (2)s |δ2s, σ2)

]
∏

s
p
(
δ1s, δ2s, γs, βs|µ, Σ

)
p
(
α0s|µα0 , σα0

)
p
(
α1s|µα1 , σα1

)
p(µ)p(Σ)p(σ1)p(σ2)p(µα0)p(σα0)p(µα1)p(σα1)

(8)

where s represents individuals, and f (1)s (resp. f (2)s ) reflects the FA values for the brain tract connections
in ACC–Insula–IFG network (resp. dlPFC–Thalamus–Striatum network) for individual s.

The first row on the right side of Equation (8) represents the likelihood of the joint structure
which simultaneously includes behavioural and neural model likelihoods, the second row represents
the related priors according to model factorization, that is, the multivariate probability model for
the random vector of individuals neural and cognitive parameters and the probability models for
the two regression coefficients. The third row specifies the hyper priors (see Appendix A for details).
Such factorization allows computation of marginal posterior distributions via Markov Chain Monte
Carlo algorithms (MCMC; [48]).

Parameter reflecting the degrees of freedom of the Multivariate Student’s t-distribution has
been treated as a tuning parameter in order to ensure algorithm convergence and chains mixing
(see Supplementary Materials for computational details).

3. Results

For the model fitting, one participant was excluded from the analysis due to corrupted
and unreliable MRI scan. The joint model was then fitted to data from the remaining 23 participants.
The data array consisted of the collection of pumps and cashes across trials and the custom structural
connectivity matrix for each subject (Y s, Fs).

All calculations were performed with the aim of the efficient interaction between R [49]
and JAGS [50] using the package “R2jags“ [51]. A probabilistic programming implementation
(see Supplementary Materials for details) of the bayesian graphical model architectures was then
provided and posterior distributions were computed using Gibbs Sampling algorithm [52]. We ran
12 chains of 15,000 iterations each, with a burn-in period of 5000 iterations and a thinning size of 1,
parallelized on an Intel i7 6 cores CPU. Thus, we obtained 120,000 samples from the joint posterior.
The total time required to perform the computation was about 35 minutes. Table 1 summarizes some
of the posterior densities of interest.

Table 1. Marginal posterior distributions statistics: Posterior mean (µpost), 95% credible intervals
[q0.05, q0.975], chains convergence (R̂).

Parameter µpost q0.05 q0.975 R̂

µγ 0.442 0.374 0.474 1.012

µβ 1.471 1.211 1.571 1.013

µα0 2.653 2.460 2.722 1.001

µα1 −0.004 −0.007 −0.001 1.001

ρ1 −0.341 −0.85 0.365 1.019

ρ2 −0.483 −0.86 0.072 1.010

ρ3 0.021 −0.645 0.750 1.013

ρ4 −0.250 −0.761 0.371 1.008
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Posterior marginals were sampled efficiently and the 12 chains showed an optimal convergence as
measured by the R̂ statistic [53], and the trace plot of the log joint posterior density (Figure 3). Values of
R̂ approaching 1 indicate better convergence.

Figure 3. Trace plot of the (unnormalized) log posterior density computed for all the chains, for the first
6000 iterations. The burn-in period was removed to show the whole convergence dynamic. As can be
noticed, the log posterior seems to show no trends.

Therefore, the joint model seemed to fit the data adequately by allowing a reliable recovery of
cognitive parameters describing observed behaviour. Figure 4 shows results from posterior predictive
check, which, in bayesian modelling, is the benchmark method to assess effective model fit [54].
We compared observed data to synthetic model-generated data produced by parameters drawn from
the posterior distribution. Model fit adequacy was evaluated based on how much synthetic data
resemble empirical data. We generated posterior predictives of 1000 datasets of pumps and cashes
patterns on 36 trials, for 1000 cognitive parameter sets (γs, βs, α0s, α1s) sampled from the joint posterior
distribution corresponding to each individual s. Empirical distributions of number of pumps were
then compared with recovered distributions.

Figure 4. Posterior predictive check. Black dots and boundaries represent mean pumps and standard
deviations for each individual from the empirical dataset. Red dots and lines represent mean pumps
and standard deviations of predicted synthetic individual datasets.
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Population (hyper-)means (see Supplementary Materials for Bayesian Sensitivity Analysis) allow
to interpret individual differences in performance in terms of few parameters reflecting the assumptions
about the process generating individual-level parameters [55].

At the population level, individuals seemed to modify their bursting belief only very slightly
during the unfolding of the task (posterior mean µα1 = −0.004), and in general subjective bursting
probabilities can be considered constant across the trials span. Therefore, individuals showed
a relatively low level of risk-taking (posterior mean µγ = 0.442) and a relatively high level of behaviour
consistency (posterior mean µβ = 1.471) leading to low response variability.

In our confirmatory framework we aimed to verify whether such cognitive parameters
configuration was related to Network FA. The multivariate distribution of the joint model allows
to characterize such relation by treating groups of individual-level parameters as covariates.
Thus, posterior densities of correlation parameters of the covariance matrix convey information on
how individual differences in brain networks structural integrity and cognitive characteristics account
for differences in performance. Figure 5 shows the estimated posterior distribution for the correlations
between risk-taking, γ, and both ACC–Insula–IFG and dlPFC–Thalamus–Striatum networks FA,
ρ1 and ρ2, respectively, and that between behavioural consistency, β, and dlPFC–Thalamus–Striatum
network FA, ρ4. The correlation between behavioural consistency and ACC–Insula–IFG is not shown
since it has not substantial evidence.

Figure 5. Marginal posterior distributions of the correlation parameters of interest in the
covariance matrix.

In general, the relationships between parameters are weak, except for ρ2, but the figure
indicates a moderate inverse relation in all the three cases. Increase in risk-taking propensity
was related to decreased white matter micro-structure integrity in two networks which codify
for loss and risk aversion and for goal-directed behaviour. Such results might posit some
constraints on the quantification of the actual role of risk propensity in enacting an optimal
decision strategy. Participants were indeed required to adopt a balanced risky-oriented strategy
in order to maximise earnings, and taking more risk at different stages of the task could be seen
as an adaptive strategy which increases the chance to produce more positive outcome [32,56].
From this perspective, however, risk-taking propensity might not be the main component to
fulfil the task of optimizing earnings. The finding of an inverse relation between behavioural
consistency and dlPFC–Thalamus–Striatum network seems to clarify the role of white matter structural
properties in predicting the adoption of a functional cognitive strategy when performing the BART.
Individuals presenting an increased fractional anisotropy in such network showed an increased
response variability (decreased behavioural consistency). This relation might reflect, in healthy
individuals, the tendency to approach and explore the environment by choosing actions whose outcome
is uncertain but potentially advantageous [19,57], as reflected by the functionality of the network.
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4. Discussion

In the present work, we proposed an approach to the modelling of the neural structural substrates
underlying risky behaviour within a joint modelling framework, inspired by previous works on
joint analysis by means of hierarchical bayesian models [1,45]. A behavioural model allowing for
estimation of meaningful cognitive parameters was developed and coupled with neural parameters
in a multivariate probability model. This made the analysis of the relation between decision-making
and brain structural connectivity interpretable on a model-based perspective.

The presented methodology application is thought to provide an example for cognitive
scientists who are interested in investigating dependencies between behavioural and neural data
via computational models. When applied to the experimental context of the BART, our approach
shows several useful advantages.

First, the proposed computational framework is extremely flexible and has the potential to
combine neural and cognitive models with several assumptions and complexities. This comes in handy
when different BART configurations are considered (e.g., a priori knowledge of the bursting probability)
and consistent behavioural model assumptions have to be made accordingly (e.g., removing the node
related to the bursting belief dynamic, α1, from the graphical model).

Second, our method provides a way to infer the relationships between the biological properties of
the brain and higher-level cognitive processes involved in risky decision-making by overcoming
some limitations of the standard approach. For instance, inferences about the role of given
cognitive mechanisms and their neural correlates in producing behavioural outcome, such as total
monetary earning and relative frequency of pumps and cashes, implicitly assume a mapping
between cognitive processes and summary measures of individuals task output. As a consequence,
neurocognitive theories are built upon resulting relations between such statistics and brain
measurements. Decomposing the data-generating process in several psychological sub-processes
allows, instead, to relate brain measurements directly to cognitive variables of interest. In this
respect, our computational model is valuable from a theoretical perspective since it can be used to test
hypothesis about how neural variables predict cognitive functioning and behaviour in risk conditions,
in a substantial formal way.

Therefore, the proposed architecture can be modularly extended to account for the presence of
several explanatory variables. Thus, different covariates in the joint structure can be employed based
on conditional dependence assumptions. As an example, one might think of explicitly modelling
subjective bursting probabilities as predicted by discrete or continuous covariates such as sex, age,
or self-report measures.

Moreover, several brain networks can be put in relation to cognitive variables of interest by
extending the connectivity matrix F and the possible network subsets, and by extending the covariance
matrix, Σ, to include more correlation parameters on a model-based perspective.

Despite these advantages, the proposed computational framework has some limitations.
A first technical limitation might concern the fact that posterior probability computations become
demanding and potentially unstable when the number of free parameters in the covariance matrix
of the multivariate neurocognitive probability model increases. However, the Multivariate Student’s
t-distribution adopted in the proposed application has shown to overcome some computational
problems by ensuring posterior sampling chains mixing.

Second, our joint modelling framework assumes a previously defined parametric representation
of the multivariate model accounting for cognitive and neural parameters. This might constitute
a severe constraint since a probabilistic model describing neural data may not always be consistent,
especially when complex brain structural measures, such as those provided by DTI, are considered.

It is worth noticing that other neural measures might be adopted to parameterize individual
structural brain connectivity, and that embedding such measures in a joint structure could be far from
trivial. In our model we adopted FA as an exemplary application, due to its popularity and (relatively)
ease in being reliably computed. However, a more complex and exhaustive neural measure accounting
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for white matter anisotropy might be the Generalized Fractional Anisotropy (GFA, [58]). This
is computed by using a more complete information on diffusion sampling directions and yields
anisotropy maps with a higher angular resolution that might efficiently replace FA. Nevertheless,
GFA estimates are particularly sensitive to noise and probably unreliable unless high angular sampling
is available [59]. For this reason, a more accurate account of noise estimates has to be considered
and formally instantiated in the joint graphical model, especially in relation to the covariance structure
which directly relate neural and behavioural parameters.

In conclusion, we think that the proposed approach offers interesting insights in the development
of computational models able to investigate correspondence between decision-making and brain
structural connectivity. Further works are needed to investigate the potentials of the joint framework
to account for BART performances and neural characteristics of individuals in clinical populations.
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Appendix A

The following probability distributions were used for the hyper priors:

µγ, µβ ∼ Normal(0, 103)I(0,∞)

µδ1 , µδ2 ∼ Normal(0, 103)

σγ, σβ ∼ Gamma(0.01, 0.01)

σδ1 , σδ2 ∼ Gamma(0.01, 0.01)

σ1, σ2 ∼ Gamma(0.01, 0.01)

ρ1, ρ2, ρ3, ρ4 ∼ Uniform(−1, 1)

µα0 ∼ Normal(0, 103)I(0,3)

σα0 ∼ Gamma(0.01, 0.01)

µα1 ∼ Normal(0, 1)I(−0.2,0.2)

σα1 ∼ Uniform(0, 1)
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