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Abstract: Quantitative studies to date on the effects of opioid consumption and abstinence on the nervous system using modern 
stereological methods have not received enough attention. In addition, they have yielded controversial results. The present study 
was conducted to investigate the effects of morphine, with or without abstinence, on the neurons and oligodendrocytes of the 
medial prefrontal cortex (MPFC) in rats using quantitative stereological methods. The male rats were divided into four groups: 
the first (saline [SAL]) and second (morphine [MOR]) groups were treated with saline and an escalating dose of morphine (5-
20 mg/kg) for 30 days, respectively; the third (SAL+abstinence [ABS]) and fourth (MOR+ABS) groups were treated in the same 
manner as the previous groups plus they had a 30-day abstinence period. The results showed that the volume of the MPFC and 
its subdivisions decreased by approximately 15% in the MOR group compared with that in the SAL group (P<0.05). In addition, 
the volume decreased by approximately 24% in the MOR+ABS group compared with that in the SAL+ABS group (P<0.05). The 
number of neurons in the MOR and MOR+ABS groups decreased by approximately 44% and 35%, respectively, compared with 
that in their corresponding control groups. Moreover, the number of the oligodendrocytes in the MOR and MOR+ABS groups 
decreased by approximately 41% and 37%, respectively. No significant difference was noted in the number of cells in the MOR 
and MOR+ABS groups. In conclusion, morphine consumption leads to a permanent reduction in the number of neurons and 
oligodendrocytes, and no additional neuron and oligodendrocyte loss occurs after abstinence.
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dependence and addiction. There are many surveys that focus 
on the functional and biochemical changes of the nervous 
system after the consumption of morphine, heroin, alcohol, 
marijuana, and cocaine that might be lead to addiction [1-6]. 
However, the structural and especially the morphometrical 
changes have received less attention, and the results of these 
studies are controversial [6-11]. Zhang et al. [12] explained 
that the protective and destructive roles of morphine in the 
neuronal system (neurons and glial) are unclear. There is 
evidence suggesting that morphine induces apoptotic cell 
death in neuronal and glial cells, whereas controversial studies 

Introduction

Morphine is an opiate narcotic analgesic commonly 
prescribed to treat moderate to severe pain. As a derivative 
of opium, morphine can lead to psychological and physical 
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support a neuroprotective role for morphine [12]. Tamura 
et al. [13] showed the neuroprotective effects of morphine 
on low-temperature-induced cell death. They reported that 
the neuroprotective effects of morphine were antagonized by 
naloxone, which is a non-selective opioid receptor antagonist 
[13]. Meanwhile, Hu et al. [14] reported that morphine 
induces apoptosis of human neurons and microglia and that 
naloxone blocked morphine-induced apoptosis. 

In addition, the reports on the effects of morphine with-
drawal on the structure of the nervous system are con-
troversial and have not received enough attention [15, 16]. 
The reports on the changes in the glial cells are mainly 
focused on the qualitative, biochemical, and physiological 
alterations, but not the quantitative alteration, after drug use 
and abstinence [17-19].

The present study has focused on the neurons and oligo-
dendrocytes of the medial prefrontal cortex (MPFC). The 
MPFC plays a major role in organizing and motivating ad-
dic tion-related behavior [20, 21]. Alterations in the MPFC 
function may actually be associated with a predisposition to 
addiction [20, 21]. The present study aimed to investigate 
the effects of chronic morphine treatment (30 days) with or 
without abstinence (30 days) on the number of the neurons 
and oligodendrocytes in the MPFC structures. Modern 
stereological studies rely on the geometrical and statistical 
analyses and provide accurate and comparable results in 
quantitative research including neuropathology [22].

Materials and Methods

Animals
Twenty-four male adult Sprague Dawley rats, each 

weighing 250–300 g at the beginning of the experiment were 
randomly selected from the Laboratory Animal Center of 
Shiraz University of Medical Sciences (Shiraz, Iran). They 
were divided into four groups, each including six animals 
(n=6) that were acceptable for stereological survey [23]. 
The animals were housed under controlled humidity and 
temperature conditions in a 12-hour light/dark cycle with 
free access to food and water. Experimental protocols were 
approved by the Animal Ethics Committee of the Shiraz 
University of Medical Sciences by agreement No. 89-5431 
(Shiraz, Iran). 

Morphine treatment and abstinence
In this experiment, each of the animals were assigned to 

one of the four groups: 1) the control animals were treated 
with saline for 30 days (SAL); 2) the second group was 
chronically treated with morphine for 30 days (MOR); 3) 
the other control group was treated with saline for 30 days 
followed by another 30 days of abstinence injection (SAL+ 
ABS); and 4) the last group was chronically treated with 
morphine for 30 days followed by 30 days of abstinence 
injections (MOR+ABS). Morphine sulfate (purchased from 
Temad Factory, Tehran, Iran) was dissolved in sterile saline 
and administrated subcutaneously at a dose of 1 ml/kg once 
daily for 30 days with an escalating dose of morphine. Briefly, 
the initial dose administered was 5 mg/kg and was increased 
by 5 mg⁄kg every five days to a maximum dose of 20 mg/kg, 
and continued until day 30 of the treatment [24]. The control 
rats received an equal volume of saline.

Tissue preparation
The animals were anesthetized with ketamine (100 mg/

kg, i.p.) and xylazine (10 mg/kg, i.p.). Then, the rats were 
perfused transcardially. Briefly, the rat brains were fixed 
by cardiac perfusion with 0.9% saline followed by 200–300 
ml of 4% paraformaldehyde in 0.1 M phosphate buffer, pH 
7.4. Then, the brains were rapidly removed from the skulls, 
placed in buffered formaldehyde, and embedded in a paraffin 
block. A complete series of coronal sections were obtained, 
according to Paxinos and Watson [25]. The thickness of the 
sections was 25 µm, and they were stained with cresyl violet 
[26, 27].

Estimation of the volume of the MPFC and its subdi
visions

The brain was executively sectioned. Nine to eleven 
sections were sampled in each rat in a systematic, random 
manner, thus with a random start and equidistant. The 
volume of the right MPFC and its subdivisions (anterior 
cingulate, prelimbic, and infralimbic areas) were estimated 
using the Cavalieri method (Fig. 1) [22, 28-30]. The 
boundary of the MPFC was considered to be between the 
first appearance of the forceps minor of the corpus callosum 
(Bregma 4.20 mm) and its decussation (Bregma 2.28 mm) 
[20]. The border of each region was determined at a final 
magnification of ×16. A grid of points was superimposed on 
the sampled sections (Fig. 1). This test system of points was 
overlaid on the image of the tissue using stereology software 
designed at our research center (Morphometry & Stereology 
Research Center, Shiraz University of Medical Sciences, 
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Shiraz, Iran). The estimation was made using the following 
formulas: 

V((MPFC)=A · t
A= a(p) · ∑Pi

in which “V(MPFC)” is the volume of the cortex, “t” is the 
distance between the sampled sections and the section 
thickness, “∑Pi” is the total number of points hitting the 
sections of MPFC and its subregions, and “a(p)” is the area 
per point and is calculated by multiplying “ΔX” by “ΔY” 
(which, in this case, was 0.2 mm2). The right upper corner of 
each cross was considered a point (Fig. 1).

Estimation of the numerical density and the total 
number of neurons and oligodendrocytes

Microscopic survey was done using a videomicroscopy 

sys tem made up of a microscope (E-200, Nikon, Tokyo, Ja-
pan), a video camera, a high numerical aperture lens (×60, 
N.A.=1.4), and a computer and a monitor. Ten to twelve 
microscopic fields were studied in each rat. The microscopic 
fields were selected in a systematic random manner, thus with 
a random start and then at an equal traveling distance. Briefly, 
a microscopic field was selected from a corner of the slide out 
of the MPFC. The slide was moved at equal intervals along 
the X- and Y-axes using a stage micrometer. This method 
was continued until the whole MPFC was quantified. The 
numerical density of the neurons and the oligodendrocytes 
was estimated according to the disector (“two sections”) 
principle within the MPFC [22, 28-30]. The oligodendrocytes 
were identified using staining, according to Chareyron et al. 
[27], who explained that oligodendrocytes are smaller than 

Fig. 1. The Cavalieri method. The volume of the medial prefrontal cortex (MPFC) and its subdivisions; anterior cingulated (Cg1), prelimbic 
(PrL), and infralimbic areas (IL) were estimated using Cavalieri’s method. (A) The MPFC was sectioned executively. Nine to twelve sections were 
sampled (here 9). “t” is the distance between the sampled sections. (B) A grid of points was superimposed on the sampled sections. “a(p)” is the 
area per point and is calculated by multiplying “ΔX” by “ΔY”. The arrow indicates the point that is the right upper corner of the cross. Cresyl-violet 
staining.

Fig. 2. Estimation of numerical density. (A) A schematic drawing of a microscopic slide with a section of the medial prefrontal cortex mounted 
on it. “h” is the height of the optical disector and “t” is the real thickness of the section. In each field, the first 5 µm of the section thickness was 
ignored (guard zone: gz), and cell counting was done in the next 10 μm of the section thickness “h”. (B, C) Sampling of cells using optical disector. 
The unbiased counting frame was superimposed on the images. Just the cells whose nucleoli did not appear in the beginning of the disector height 
(B) and appeared at the following optical scan (C) were counted. The cells whose nucleoli were completely or partly inside the counting frame or 
touching the upper and right lines were counted as “∑Q-”. Cresyl-violet staining.
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astrocytes and contain round, darkly staining nuclei that are 
densely packed with chromatin. To estimate the total number 
of cells, an oil immersion lens at a magnification of ×3,500 
was used. A brief description appears under Fig. 2. The 
numerical density of the cells was estimated using the optical 
disector and the following formula:

NV = ∑Q-

· t
a(frame)·h·∑P T

in which “a(frame)” was the area of the counting frame (in 
this case, 736 μm2), “h” is the height of the optical disector (in 
this case, 10 μm), “∑Q-” is the number of the cells counted in 
all disectors, “∑P” is the total number of counted frames, “T” 
is the microtome setting to cut the block (in this case, 25 µm), 
and “t” is the real thickness of the section measured in three 
random areas of each microscopic slide using the microcator 
(MT 12, Heidenhain, Germany). In each field, the first 5 
µm of the section thickness was ignored to avoid unbiased 
counting. This has been called a “guard zone” (Fig. 2). Cell 
counting was done in the next 10 μm of section thickness, 
which is known as “the height of the disector” or “h” (Fig. 2). 
The cells that were completely or partly inside the counting 
frame or touching the upper and right borders were counted, 
whereas the cells that hit the lower and left borders were not 
counted. In other words, just the cells whose nucleoli did not 
appear in the beginning of the disector height and appeared at 
the following optical scan were counted [22, 28-30]. The cells 
whose nucleoli were completely or partly inside the counting 
frame or touching the upper and right lines were counted 
“∑Q-” (Fig. 2). “Reference trap” indicates that relying on the 
density (and not the total amount of the parameter) might 
lead to false conclusions; therefore, the numerical densities 
were multiplied by the MPFC volume [22, 28-30] . 

Statistical analysis
The data are reported as the mean and the standard devia-

tion (SD). Statistical comparisons between the group means 
were conducted by a Kruskall-Wallis test and a Mann–
Whitney U-test. P≤0.05 was considered significant.

Results

Volume of the MPFC
The volume of the MPFC and its subdivisions was 

decreased by approximately 15% in the MOR group compared 
to that in the SAL group (P<0.05). In addition, the volume 
decreased by approximately 24% in the MOR+ABS group 
compared to that in the SAL+ABS group (P<0.05) (Table 1). 

Number of cells
The total number of neurons significantly decreased by 

approximately 44% in the MOR group compared with that 
in the SAL group (P<0.01). It significantly decreased by 
approximately 35% in the MOR+ABS group compared with 
that in the SAL+ABS group (P<0.01) (Table 1). 

The total number of oligodendrocytes significantly de-
creased by approximately 41% in the MOR group compared 
with that in the SAL group (P<0.05). It decreased by appro-
ximately 37% in the MOR+ABS group compared with that in 
the SAL+ABS group (P<0.05) (Table 1). 

No significant difference was seen in the number of the 
cells in the MOR and MOR+ABS groups. 

Discussion

This study used stereological methods with the aim of 
evaluating the effects of chronic morphine consumption 
and abstinence on the neurons and oligodendrocytes in the 
MPFC of rats. A review of the literature showed that the 
results of the destructive or protective effects of morphine 
are controversial. Hodgson et al. [31] and Mao et al. [32] 
reported that intrathecal consumption of morphine might 
induce neurotoxicity in animals. In a study by Atici et al. 
[33], chronic administration of morphine was reported to 
cause apoptosis of neurons in the parietal, frontal, temporal, 
occipital, entorhinal, pyriform, and hippocampal regions of 
the brains of rats. In addition, an in vitro study showed that 
morphine causes increased neurotoxicity in human neuronal 
cultures with apolipoprotein E [34]. Some data indicate that 
morphine, through the activation of opioid receptors, can 
promote abnormal programmed cell death by increasing 
the expression of pro-apoptotic protein and suppressing the 

Table 1. Mean±SD of the total number of the neurons, oligodendrocytes, and 
the volume (mm3) of medial prefrontal cortex (MPFC) in 30 days morphine 
treated rats (MOR), without or with 30 days abstinence (ABS), and saline-
treated controls (SAL) (n=6)

Groups
Total no.

MPFC (volume)
Neuron Oligodendrocyte

SAL 347,000±43,000 116,000±45,000 2.6±0.3
MOR 194,000±31,000† 68,600±17,000* 2.1±0.2*
SAL+ABS 417,000±74,000 157,000±18,000 2.5±0.3
MOR+ABS 270,000±53,000† 98,000±47,000* 1.8±0.3*

*P<0.05, (SAL vs. MOR) or (SAL+ABS vs. MOR+ABS). †P<0.01, (SAL vs. 
MOR) or (SAL+ABS vs. MOR+ABS).
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expression of anti-apoptotic protein [35]. Meanwhile, there 
are some reports of the protective effects of morphine. For 
example, the protective effects of morphine in hypoxia and 
ischemia have been reviewed by Peart et al. [36]. In addition, 
Rambhia et al. [37] suggested that morphine induces a 
neuroprotective effect mediated by nitric oxide in a human 
neuroblastoma cell line against intracellular oxidative stress 
and neuroinflammation. In addition, Zhang et al. [38] re-
ported that a group of chemicals containing morphine struc-
ture, such as morphinans, is also neuroprotective in several 
inflammatory disease models. The reason for the contrasting 
results might be attributed to the varying mor phine doses 
and/or different brain regions analyzed in other research. 
The latter results are in line with our present findings, which 
indicate a permanent reduction in the number of neurons 
even after morphine abstinence. Bekheet et al. [39] also 
reported that Purkinje cells of the cerebellum decreased in 
number after 30 days of morphine sulphate administration 
in albino rats. Analysis of our data showed that the volume 
of MPFC is affected by morphine treatment. This is in 
agreement with the study by Pezawas et al. [6] who found a 
significant cortical volume loss, including frontal lobe volume 
of the brain in opioid-dependent patients. In addition, our 
data shows neuronal loss after morphine consumption. 
Therefore, our study is in agreement with those studies that 
report the neurotoxic effects of morphine. In addition, our 
data shows that after withdrawal of morphine (MOR+ABS), 
the percent neuron loss was nearly the same as that in the 
MOR group. This shows that there is no additional neuronal 
loss during the abstinence period. Thus, it appears that our 
study is not in line with the studies by Emeterio et al. [15] 
and Spiga et al. [40]. The results of the Emeterio et al.’s study 
[15] suggest a neurotoxic effect exerted by chronic morphine 
treatment and its withdrawal. In line with the evaluation by 
Spiga et al. [40], our study revealed a reduction in the area 
and perimeter of the somata of tyrosine hydroxylase-positive 
neurons in the ventrotegmental area of morphine-withdrawn 
rats. 

The other finding from the present experiment is the 
significant reduction in the number of oligodendrocytes 
in the MPFC even after 30 days of abstinence. Analysis 
of the data in the current study demonstrates that the 
oligodendrocytes were lost after morphine consumption.
The withdrawal period could compensate for the cell loss, 
and no new regeneration of cells was noted. Simultaneous 
loss of neurons and oligodendrocytes was also observed. 

This is in accordance with the report by Zehr et al. [41] 
that showed that axonal degeneration in dying neurons 
causes oligodendrocytes to undergo apoptosis. The exact 
mechanisms for both the protective and destructive pathways 
are unclear and still under investigation [12].

The number of neurons in the MOR+ABS group appears 
greater than that in the MOR group. A similar result is noted 
in the comparison of the SAL+ABS group with the SAL 
group. The age of the rats appear to be responsible for this 
result. At the beginning of the study, the age of the MOR 
(or SAL) group was lower than that of the MOR+ABS (or 
SAL+ABS) group (approximately 70 vs. 100 days). 

The current study used stereological methods to obtain 
unbiased quantitative data. The numerical density of the cells 
was converted to the total number to prevent the reference 
trap [42]. 

Conclusion
Morphine consumption induces a permanent reduction 

in the number of neurons as well as the oligodendrocytes, in 
the MPFC of rats. After abstinence, no additional neuron and 
oligodendrocytes loss was noted. 
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