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Abstract

Background: Sum scores of ordinal outcomes are common in randomized clinical trials. The approaches routinely
employed for assessing treatment effects, such as t-tests or Wilcoxon tests, are not particularly powerful in detecting
changes in relevant parameters or lack the ability to incorporate baseline information. Hence, tailored statistical
methods are needed for the analysis of ordinal outcomes in clinical research.

Methods: We propose baseline-adjusted proportional odds logistic regression models to overcome previous
limitations in the analysis of ordinal outcomes in randomized clinical trials. For the validation of our method, we focus
on common ordinal sum score outcomes of neurological clinical trials such as the upper extremity motor score, the
spinal cord independence measure, and the self-care subscore of the latter. We compare the statistical power of our
models to other conventional approaches in a large simulation study of two-arm randomized clinical trials based on
data from the European Multicenter Study about Spinal Cord Injury (EMSCI, ClinicalTrials.gov Identifier: NCT01571531).
We also use the new method as an alternative analysis of the historical Sygen®clinical trial.

Results: The simulation study of all postulated trial settings demonstrated that the statistical power of the novel
method was greater than that of conventional methods. Baseline adjustments were more suited for the analysis of the
upper extremity motor score compared to the spinal cord independence measure and its self-care subscore.

Conclusions: The proposed baseline-adjusted proportional odds models allow the global treatment effect to be
directly interpreted. This clear interpretation, the superior statistical power compared to the conventional analysis
approaches, and the availability of open-source software support the application of this novel method for the analysis
of ordinal outcomes of future clinical trials.
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Background
Statistical methods for the quantitative analysis of ordi-
nal sum score outcomes inmedical research aremotivated
by three distinct core ideas. There is currently no gold
standard statistical method used for the analysis. Hence,
the aim of this paper is to introduce an advanced tai-
lored statistical method for the analysis of complex ordinal
outcomes based on the advantages of the three existing
core ideas. The novel method introduced in this paper
is applicable to ordinal sum score measurements in gen-
eral. However, it is here exemplified by an application
based on two commonly used ordinal clinical outcome
measurements from the field of spinal cord injury (SCI)
research [1]. More precisely, the upper extremity motor
score (UEMS) and the spinal cord independence measure
(SCIM) serve as illustrative ordinal response variables to
introduce and demonstrate the novel method. The UEMS
and SCIM are frequently used ordinal clinical assessments
to classify SCI patients.
SCIs result in life-long para- and tetraplegia, with high

impact on the individual quality of life. To date, no treat-
ment is available to regenerate the interrupted nerve fibers
and repair the damaged spinal cord. Hence, patients with
SCI basically only benefit from the rehabilitation pro-
grams that enable patients to compensate and adjust by
maximizing their functional skills for the given neurologi-
cal impairment caused by the SCI [2]. However, important
progress has been made in the last 20 years in the scien-
tific understanding of the processes regulating nerve fiber
growth and regeneration.
Recent preclinical research in animal models has been

extremely successful in demonstrating the efficacy of the
antibody anti-Nogo-A raised against the axon growth
inhibitory protein Nogo-A [3, 4]. These promising results
warrant its application in patients suffering from acute
spinal cord injury. The Nogo Inhibition in Spinal Cord
Injury trial (NISCI, www.nisci-2020.eu, “To enhance plas-
ticity, regeneration and functional recovery after acute
spinal cord injury, a multicenter European clinical proof
of concept trial”) will enroll tetraplegic patients with var-
ious degrees of complete to incomplete acute spinal cord
injury in a double-blind, placebo-controlled trial to test
the efficacy of this antibody therapy in improving motor
outcome and quality of life. The newly developed sta-
tistical methodology, which quantifies treatment effects
in trials with ordinal sum score outcomes, introduced
in this paper also aims to improve the analysis of the
NISCI trial.

Current state of research
This section contrasts the three distinct statistical core
ideas that are commonly used for the quantitative analysis
of ordinal outcomes. As stated above, the novel method
introduced in this paper is applicable to ordinal sum

score measurements in general. However, the applica-
tion is exemplified based on the commonly used ordinal
clinical outcome measurements from the field of SCI
research [1]:

• the total UEMS from 0 to 50 [5],
• the SCIM total score from 0 to 100 [6, 7], and
• the SCIM self-care (SCIMsc) subscore from 0 to 20

[6, 7].

In SCI research, it has been suggested that these sum
score measurements correlate with changes in daily liv-
ing activities that rely on recovery of upper extremity
function [8–11]. UEMS measures the muscle contrac-
tion force for 10 key muscles on the arms and hands
(5 on each body side), where each contributes a 6-point
ordinal scale (0: total paralysis, through 5: active move-
ment against full resistance). The score is not ordinal per
se, because it can only be directly compared between
patients with the same level of injury, that is, with the
same pattern of uneffected key muscles (which, by def-
inition, receive a 5 score). SCIM consists of sub-items
assessing mobility abilities (bed, indoors and outdoor
activities), respiration and sphincter management, and
self-care (feeding, grooming, bathing, and dressing). Both,
SCIM total score and self-care subscore, are consid-
ered ordinal and can be used to compare the indepen-
dence of patients regardless of the corresponding level of
injury.
The first core idea discussed is considered as the most

prominent one. For this, the total sum score of the indi-
vidual ordinal scores is treated as a conceptually con-
tinuous outcome measured on an interval scale. Classi-
cal statistical models or tests, such as baseline-adjusted
analysis of covariance (ANCOVA) models or t-tests, are
then applied to infer mean differences between treat-
ment groups. The main advantages of this approach are
ease of communication through reporting of difference in
means and associated confidence intervals and the pos-
sibility of dealing with more complex trial designs, for
example, through the incorporation of baseline informa-
tion. However, Heller et al. [12] recommend to only apply
linear regression and its variants for pragmatic analysis
approaches for not highly skewed distributed outcome
variables. In the case of the highly skewed UEMS and
SCIM this does not seem adequate. Furthermore, differ-
ences in ordinal scores cannot directly be interpreted. For
example, consider the case of two patients with very acute
UEMSs, one with an UEMS of 25 and the other with an
UEMS of 40. After six months, the UEMS of both patients
increases by 5 points. Although the increase is the same
for both patients, the relative percent recovery is much
larger for the first patient from a medical point of view. As
pointed out in [13], it is clearly erroneous to assume that

www.nisci-2020.eu
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important differences should be clinically equivalent
across the whole scale [14].
This issue is dealt with by the remaining two core ideas,

which respect the ordinal nature of the outcomes. One
idea is to understand the contributions of each score item,
i.e. SCIM item or each segment within the UEMS, as
a multivariate ordinal outcome. Item-response analysis,
most prominently with the Rasch model, tries to identify
a latent continuous interval scale that generates the ordi-
nal assessment. Item properties, such as unidimensional-
ity and potential differential item functioning, have been
assessed for the SCIM [15] and UEMS [16]. Once such
a latent scale is identified, classical models and tests for
continuous outcomes could be used to infer differences
in means between treatment groups. The results, how-
ever, are difficult to interpret because treatment effects
are reported on this latent scale. In SCI research, Reed
et al. [17] recently introduced the spinal cord ability ruler
(SCAR) as an interval construct to measure volitional per-
formance after spinal cord injury. The SCAR is a single
SCI measurement based on two existing and commonly
used measurements (International Standards for Neuro-
logical Classification of SCI (ISNCSCI) and SCIM). The
definition of the SCAR scores is based on a Rasch anal-
ysis and was validated by simulation with two databases.
Additional statistical models which belong to the class of
latent trait model for ordered polytomous responses are
the Graded Response Model (GRM, [18]) as well as the
Partial Credit Model (PCM, [19]).
The third idea is to define a simple treatment effect

measure that can be directly interpreted on the origi-
nal ordinal scale of the outcome measures. Tanadini et
al. [8] suggest to compare the UEMS measurements with
respect to the odds ratio (OR) of treatment versus con-
trol groups. The challenge here is to extend the classical
proportional odds logistic regression Polr) model [20–22]
for ordinal responses with a considerably high number
of non-reducible outcome categories. Since the classi-
cal Polr model features one intercept parameter for each
possible outcome category, this would require 50 inter-
cept parameters for each possible stratum in a model
for the UEMS sum score, which ranges between 0 and
50. Tanadini et al. [8] approach this problem by fitting
one segment-wise proportional odds model. While this
technique can be used for p-value-based inference of
segment-wise ORs with potential baseline adjustment, it
is impossible to derive a global treatment effect and a cor-
responding confidence interval. The latter information is,
however, of utmost importance for communicating results
of randomized clinical trials.
The above discussion stresses the need for an advanced

tailored method for the analysis of complex ordinal out-
comes that allows valid inference of a global interpretable
treatment parameter and respects the original ordinal

scale of the outcomes in potentially complex trial designs.
We introduce a novel methodology that brings together
the simplicity of a univariate sum score outcome and the
interpretability of a global treatment effect. The method is
based on maximum likelihood estimation and allows for
baseline adjustment as well as confidence interval-based
inference.

Methods
The proposed baseline-adjusted proportional odds logis-
tic regression model is generalizable and applicable
for any statistical analysis with a conseriderably high
amount of possible outcome categories. However, we here
strengthen our argument by applying the method to spe-
cific ordinal sum score outcome variables from the field
of SCI research. Thus, this section begins with the intro-
duction to the underlying data set with which we later
evaluate our models. We then focus on the specific mod-
els and their application in terms of statistical power and
trial sample size calculations with the help of a simulation
study. Furthermore, we present a concrete application of
the method applied as an alternative analysis approach to
the Sygen® trial data.

Data source and trial outcomes
The proposed treatment effect models were evaluated in
a setting similar to the currently conducted NISCI trial.
Patient data from the European Multicenter Study about
Spinal Cord Injury (EMSCI, ClinicalTrials.gov Identifier:
NCT01571531, www.emsci.org) were selected according
to the NISCI inclusion criteria (age between 18 and 72
years; AIS of A, B, C or D; neurological level of injury
between spinal segments C1 - C8 at time very acute;
observed UEMS and SCIM at baseline, i.e. 2 - 28 days
post-injury, and follow-up, i.e. 150 - 186 days post-injury).
All patients gave written informed consent. In total, data
on a subset of N = 350 female and male patients from
EMSCI were obtained.
EMSCI tracks the functional and neurological recovery

of patients during the first year after SCI. Patient data are
collected in a highly standardized manner in 18 European
centers during five specific time frames in reference to the
day of injury:

• 0 for null (very acute, baseline). 0 - 15 days after the
injury.

• I for acute I. 16 - 40 days after the injury.
• II for acute II. 70 - 98 days after the injury.
• III for acute III. 150 - 186 days after the injury.
• C for chronic. 300 - 546 days after the injury.

The drug efficacy being tested in a clinical trial is often
quantified as the change of primary outcome between
baseline and follow up. For the proceeding analysis, we

www.emsci.org
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therefore only consider the timepoints null with super-
script 0 and time point acute III with superscript III. The
models were evaluated with UEMS [5] and SCIM sum
(sub)scores [6, 7] as outcomes. The UEMS total sum score
at trial end point is abbreviated as MIII. The symbols SIIItot
and SIIIsc denote the SCIM total sum and SCIM self-care
subscore at time point acute III, respectively. Note that
some of the subjects in the EMSCI database were assessed
using SCIM-II [6], and others were assessed using SCIM-
III [7]. However, for the purposes of our analysis, no
distinction was made between the two versions of the
measure because the self-care items of these measures are
highly similar [7, 23].

Enhanced proportional odds logistic regression (ePolr)
The enhanced proportional odds logistic regression
(ePolr) model is an extension of the classical Polr model
[20–22]. In the following, we elaborate the similarities of
these twomodels as well as the enhanced properties of the
ePolr model, i.e. the baseline-adjustment, stratification,
and smoothing. For this, let yIII be a categorical response
measured on an ordinal scale with a considerably high
amount of K categories: yIII ∈ {1, 2, . . . ,K}. Moreover, y0
stands for the ordinal outcome variable measured at base-
line, and x represents a univariate explanatory variable or,
in the two-sample situation, x = 0 for the control and
x = 1 for the active group. The models are formulated as
models for conditional distribution functions:

P
(
YIII ≤ yIII | x) = expit

(
h(yIII | y0) + β · x)

(Polr)
P
(
YIII ≤ yIII | y0, x) = expit

(
h(yIII | y0) + β · x)

(ePolr)

Both models use the inverse logit transformation /
link function, also known as the expit transformation, to
ensure interpretability of exp(β) as the conditional OR
associated with a one unit increase in x �→ x + 1.

P(YIII≤yIII |y0, x +1)
P(YIII>yIII |y0, x +1) /

P(YIII≤yIII |y0, x)
P(YIII>yIII |y0, x) =exp(β) =OR

The ePolr model is part of the transformation model
family which was recently introduced by Hothorn et al. in
[24]. Following this, the unknowns in these models that
have to be estimated from the data are the regression coef-
ficient β and the conditional transformation function h,
which incorporates baseline information y0. In contrast to
earlier proposals of similar models for the analysis of ordi-
nal outcomes with a predefined transformation function h
[25], we estimate this function from the data.
The classical Polr model [20–22] is based on a dis-

crete parametrization of h, which assigns one intercept

parameter θk , k ∈ {1, 2, . . . ,K − 1}, to each possible out-
come category without the possibility of stratifying with
respect to baseline variables. For example in a SCI clini-
cal trial, the number of required intercepts for the SCIM
total sum score would be 100 and potentially exceeds the
number of patients in such a trial. Although attempts to
extend the classical model, and thus the discrete transfor-
mation function h, to many possible categories or even
continuous outcomes have been reported [26], baseline
adjustment is still a conceptual challenge. However, the
incorporation of baseline information, such as y0, is very
important in the context of clinical trials. To overcome
this limitation, we introduce a smooth and parsimonious
parametrization of the transformation h that allows for
appropriate incorporation of baseline information as well
as stratification by the variable strata:

P
(
YIII≤yIII | y0,strata, x) = expit

(
h(yIII | y0,strata)

+ β · x) (stratified ePolr)

The estimation of such a model with a considerable high
number of outcome categories K and in the presence of
strata, the number of intercept parameters is equal to
K − 1 times the number of strata. In such a situation,
however, one does not expect abrupt jumps between inter-
cepts of adjacent categories. Therefore, the replacement
of category-specific intercepts with a smooth function h
depending on a few parameters only was suggested by Par-
sons [13]. The latter contribution developed correspond-
ing proportional odds models for repeated measurements
using a generalised estimating equations (GEE) approach.
Parsons’ method features orthogonal polynomials of dif-
ferent degrees for h and requires to expand the data by the
number of categories. Stratification, i.e. allowing different
transformation functions h for different strata, would be
conceptually possible if a further expansion of the data by
the number of strata is feasible. Similar approaches for the
estimation of conditional distribution functions by means
of data expansion have been suggested in other contexts as
well [27]. Here, we follow Hothorn et al. [24] and employ
a model parameterization allowing model estimation and
inference in the maximum likelihood framework, also in
the presence of large K and potentially many strata. For
this, we introduce a spline polynomial a(y)�ϑ : R → R

in terms of P � K basis functions and parameterize the
transformation function as h(y) = a(�y	)�ϑ , with �y	
being the largest integer smaller or equal some real value
y. A numerically attractive choice for such a spline is a
Bernstein polynomial on the interval [ 1,K] [24]. Mono-
tonicity of h can be ensured by a linear constraint on
the P parameters ϑ = (ϑ1 < · · · < ϑP). Stratas are
incorporated by application of this basis to each stratum
a(y) ⊗ (0, . . . , 1, . . . , 0), the second factor being a dummy
coding of strata.
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In the specific case of a stratified ePolr model, the likeli-
hood contribution of a single observation with variable y0
at baseline, yIII at trial end and strata strata is

expit
(
h(yIII | y0, strata) + β · x)

− expit
(
h(yIII − 1 | y0, strata) + β · x)

under the conventions h(0) = −∞ and h(K) = ∞.
Here, the transformation function h is stratified by the
y0 measurements taken at baseline and the stratification
variable strata. For each stratum, we obtain a stratum-
specific baseline log-odds function and a response-
varying effect of y0, the outcome at baseline. Note that
all resulting strata have a direct impact on the condi-
tional distribution and all moments, such as means, vari-
ances, skewness, and kurtosis, might vary depending on
strata. Hence, the baseline-adjusted ePolr model allows
for parametric prediction methods. The model parame-
ters β and h are simultaneously estimated by maximum
likelihood [24] with the help of the R package tram [28].

ePolr models for spinal cord injury clinical trials
For the evaluation of the suggested ePolrmodel, we specif-
ically tailored three models M1–3 to SCI related clinical
trial outcomes:

• M1: UEMS sum scoreMIII from 0 to 50,
• M2: SCIM sum score SIIItot from 0 to 100,
• M3: SCIM self-care subscore SIIIsc from 0 to 20.

For the sake of simplicity, we considered a two-arm trial
that compares a control (I(trt) = 0) to a novel treat-
ment (I(trt) = 1). Each of the following models
describes the conditional cumulative distribution func-
tion of the corresponding sum score as a function of
baseline variables (mainly the baseline sum scores at time
0 as well as the number of segments below level of injury
for the UEMS) and a global treatment effect βtrt:

P
(
MIII≤mIII |m0,#seg,trt

)=expit
(
h(mIII | m0,#seg)

+ βtrt · I(trt)
)

(M1)

P
(
SIIItot≤sIIItot |s0tot,trt

)=expit
(
h(sIIItot |s0tot) + βtrt ·I(trt)

)

(M2)

P
(
SIIIsc ≤ sIIIsc | s0sc,trt

)=expit
(
h(sIIIsc |s0sc) + βtrt · I(trt)

)

(M3)

As mentioned previously, the inverse logit transforma-
tion, also known as the expit transformation, ensures
interpretability of the treatment effect exp(βtrt) as the
conditional odds ratio that compares the treatment group
and the control group given baseline variables. For the
UEMS, this odds ratio is given by

P(MIII≤mIII | m0, #seg, active)
P(MIII>mIII | m0, #seg, active) /

P(MIII ≤ mIII | m0, #seg, control)
P(MIII > mIII | m0, #seg, control)

= exp(βtrt).

The variable #seg is defined as the number of left and
right spinal segments below motor level that are at or
more caudal than C5 and at or more rostral than T1. Strat-
ification with respect to #seg is of utmost importance for
UEMS, because the UEMS total score can only be consid-
ered as an ordinal variable when comparing patients with
the same level of injury [8]. The parameter exp(βtrt) for
the two SCIM models M2 and M3 can be interpreted in
the same way. The unknowns in these models that have to
be estimated from the patient trial data are the treatment
effect βtrt and the conditional transformation function h,
which incorporates baseline information. In the specific
case of model M1, the likelihood contribution of a treated
patient with a UEMS total sum score m0 at baseline, mIII

after six months and #seg segments below motor level is

expit
(
h(mIII | m0,#seg) + βtrt · I(trt)

)

− expit
(
h(mIII − 1 | m0,#seg)

+ βtrt · I(trt)
)
.

under the conventions h(0) = −∞ and h(K) = ∞.
The specific choice of the variables considered for

model M1 reflects that recovery in the upper extremities
of patients with cervical SCI is not only dependent on the
severity of the injury (as measured by the baseline UEMS)
but also on the injury level [29, 30]. Hence, the transfor-
mation function h in model M1 is stratified by the UEMS
total sum score measurements observed at baseline, m0,
and the number of tested segments below motor level,
#seg, representing the injury level. The extracted data set
from the EMSCI database has observations with four to 10
segments belowmotor level #seg that are at or more cau-
dal than C5 and at ormore rostral than T1. In addition, the
UEMS at baseline ranges between 0 and 28. Consequently,
we defined three strata ([ 0, 6], [ 7, 8], [ 9, 10]) for #seg
and estimated a stratum-specific response-varying effect
in the UEMS baseline values. More specifically, the spline
basis reads a(y) × (1, 0, 0) × (1,m0) for stratum #seg ∈
[ 0, 6], a(y) × (0, 1, 0) × (1,m0) for stratum #seg ∈[ 7, 8],
and a(y) × (0, 0, 1) × (1,m0) for the last stratum. For each
stratum, we obtain a stratum-specific baseline log-odds
function and a response-varying effect of m0, the outcome
at baseline. For our empirical experiments, we chose seven
parameters for the Bernstein polynomial parametrization
[24] on the interval [ 0, 50] and thus estimated a total of
7 × 3 × 2 = 42 parameters for the conditional transfor-
mation function h. Due to the monotonicity constraint,
the effective degrees of freedom for h is, however, much
smaller than the corresponding number of parameters.
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The estimated baseline-adjusted ePolr models allow for
parametric predictionmethods such that a direct compar-
ison between treated and untreated patients is straight-
forward. The model parameters are simultaneously esti-
mated by maximum likelihood [24]. Concurrently, the OR
exp(βtrt), along with a variability assessment and thus a
confidence interval, is directly estimated by the model.
Corresponding p-values for testing the two-sided null
hypothesis of no treatment effect (βtrt = 0) rely on the
asymptotic normality of the maximum likelihood estima-
tor. Hereafter, we will refer to the Wald test as the asymp-
totic ePolr test, short for asymptotic enhanced baseline-
adjusted proportional odds regression coefficient test.
For small samples, however, the asymptotic ePolr test

for the treatment effect βtrt might be too liberal because
of lack of approximation accuracy. We therefore in addi-
tion applied a model-based permutation test [31, 32] for
βtrt = 0. A general theory for such permutation tests is
available in [33, 34] and can be directly applied to the con-
text studied here [35]. The null hypothesis of no treatment
effect (βtrt = 0) implies that the distribution of the model
scores for the treatment effect βtrt in models M1–3 is the
same in the control and treatment group. For this, we
first estimated the intercept-only models based on model
M1, M2, and M3 and extracted the single score contribu-
tions Si of each observation i for each of the models. More
specifically, the score Si is defined as the derivative

Si = ∂�i(α)

∂α

∣
∣
∣
∣
α=0

of the log-likelihood contribution of the ith subject
under the null of an absent treatment effect

�i(α) = log
(
P

(
MIII = mIII

i | m0
i ,#segi

))

= log
(
expit

(
h

(
mIII

i | m0
i ,#segi

) + α
)

−expit
(
h

(
mIII

i − 1 | m0
i ,#segi

) + α
))
.

The resulting test statistics T1,2,3 = ∑N
i=1 Si · I(trt)

is the sum of the score contributions Si of the observa-
tions allocated to the treatment group. There is a strong
connection to the Wilcoxon rank sum test: Without strat-
ification and application of the transformation function
h(mIII

i ) = logit(N−1Ri) with upranks Ri, i = 1, . . . ,N ,
the scores Si are the Wilcoxon scores [36]. The fact that
both the permutation test suggested here as well as the
Wilcoxon rank sum test can be derived as score tests in
a proportional odds model highlights their similarity and
explains why one can expect both procedures to be espe-
cially powerful against proportional odds alternatives.
The conditional null distribution of the test statistic

is approximated by 10,000 permutations that rearrange
the labels for arm allocation and then are used to obtain

the permutation p-value. Hereafter, we will refer to this
model-based permutation test of the score contributions
as permutated ePolr test.

Sample size and statistical power calculation
Based on the previously defined models M1–3, we intro-
duce a procedure that allows for a simulation-based
assessment of an appropriate number of patients to be
enrolled in a trial. In addition, we used the simulations to
compare the power of our model-based inference method
to the power of conventional test procedures for total sum
scores.
Our simulation of the placebo-controlled randomized

clinical trials with two arms based on the EMSCI data set
has the following specific levels of experimental condi-
tions:

• total sample size (N): 80, 120, 160, 200, 240
• treatment effect exp(βtrt) ([OR]): 1, 1.25, 1.5, 1.75, 2,

2.25, 2.5, 2.75, 3

The combinations of these five trial sample sizes and nine
possible treatment effects result in 45 different trial sce-
narios. For each scenario, we sampled N EMSCI trial
participants and randomly allocated them to control or
treatment groups following a 1:1 allocation scheme.
By restricting the treatment effect to βtrt = 0 in

the models M1–3, one describes the spontaneous neu-
rological recovery for patients under standard of care,
i.e. patients in the control group. In the first step, the
models, and thus the stratified transformation functions h,
were estimated from treatment-naive EMSCI patient data
with spontaneous neurological recovery patterns under
standard of care. βtrt is constantly set to 0 for participants
in the control group. In the second step, the outcomes
mIII, sIIItot, sIIIsc for the treated patients were simulated by
a standard parametric bootstrap procedure sampling new
outcomes under the specific postulated treatment effects
exp(βtrt) ([OR]): 1, 1.25, 1.5, 1.75, 2, . . . , 3. The baseline
measurements at time point 0 (m0, s0tot, s0sc) were left
unchanged and hence are equivalent to the original obser-
vations from the EMSCI data.
Concurrently, a battery of five different significance

tests for testing H0 : βtrt = 0 were applied to each
simulated trial, and subsequently the statistical power was
evaluated. The statistical power P(reject H0 | βtrt > 0)
was estimated as the fraction of significant p-values for
treatment effect βtrt at the nominal level α = 0.05 among
the 15,000 replications of the 45 different trial scenarios.
As noted above, we evaluated the new method by

applying it to three different outcomes: UEMS total sum
scores mIII, SCIM total sum scores sIIItot, and SCIM self-
care subscore sIIIsc . Subsequently, the treatment effects for
these outcomes were tested with the following statistical
tests:



Buri et al. BMCMedical ResearchMethodology          (2020) 20:104 Page 7 of 14

• t-test comparing the difference of the total sum score
at time III and the total sum score at time 0 between
the two treatment groups

• Wilcoxon rank sum test
• ANCOVA comparing the difference between the two

treatment groups at time III while adjusting each
patient’s follow-up score for his or her baseline score
at time 0 [37]

• Asymptotic ePolr test based on models M1, M2, and
M3

• Permutated ePolr test based on models M1, M2, and
M3

Alternative analysis of the sygen® trial
As a concrete application of model M1, we reanalyzed
a data subset of the Sygen® trial; the study design is
explained in detail elsewhere [38–40]. Briefly, in this trial,
N = 760 SCI participants from 28 centers in North
America were recruited over a 5-year time period between
1992 and 1997. The primary outcome was a dichotomized
variable derived from an ordinal scale representing the
overall neurological status of a patient (see [39] for the
exact definition). Subsequently, the primary outcome was
analyzed by means of binary logistic regression.
Another reanalysis of a data subsample of the study was

recently published [8]. For this, the authors redefined the
single-score UEMS as the primary outcome of the trial
and applied the autoregressive transitional ordinal model
to test for treatment effect. Following this, we also rede-
fined the primary trial outcome. Based on model M1, we
used the UEMS total sum score mIII observed at time
acute III as the primary trial outcome. The alternative
analysis of the trial subsample data set specifically concen-
trates on the UEMS total sum score observations because
the original data collection did not incorporate the SCIM
measurements.
Following our simulation study, we extracted the patient

data from the Sygen® trial according to the previously
mentioned inclusion criteria of the NISCI trial. The
original Sygen® trial had two treatment doses at the
beginning; the higher dosage was abandoned during the
study. Consequently, only patients treated with the lower
dosage were considered here. The resulting subsample of
N = 335 patients are from 26 different study centers.
This analysis is intended to give a practical example

of an application of the enhanced baseline-adjusted pro-
portional odds model and should not be considered as
a definitive conclusion about the quantification of treat-
ment effect or the outcome of the Sygen® trial in general.

Results
Randomized clinical trial simulation
The purpose of the simulation study was to compare our
novel methodwith conventional analysis methods, such as

the t-test, Wilcoxon rank sum test, and ANCOVA. Note
that the simulation setting as well as the results reported
are based on ordinal outcome measurements specifically
tailored for clinical assessment and classification of SCI
patients. However, the model setup is generalizable to any
type of ordinal response measure with a considerably high
number of outcome categories.
Tables 1, 2, and 3 report the estimated statistical power

of models M1, M2, andM3, respectively. The newly intro-
duced permutated ePolr test outperformed conventional
analysis methods in every simulation setup. Especially in
trial setups with relatively small sample sizes, the results
of the significance test based on the baseline-adjusted
proportional odds regression model had clear advantages
with regards to power, e.g. in detecting significant treat-
ment effects. In all three tables, the estimated statistical
power of the asymptotic ePolr test and the permutated
ePolr test is consistently higher than the estimates from
conventional approaches, i.e. the t-test, Wilcoxon rank
sum test, and ANCOVA. However, for extreme experi-
mental conditions, e.g. large postulated treatment effects
such as exp(βtrt) = 2.75, the differences among the
approaches diminished.
When the treatment had no effect (βtrt = 0), the nom-

inal level of 0.05 was well preserved by almost all trial
settings. However, we noted that the asymptotic ePolr test
for all three models M1–3 was relatively liberal. In other
words, more than 5% of the two-sided null hypotheses
were rejected. This is due to the inadequately asymp-
totic normality approximation of the maximum likelihood
estimator for small sample sizes. The model-based per-
mutated ePolr test addressed exactly this challenge and
successfully detected the expected effects within the sim-
ulation study, especially in trials with small sample sizes.
Hence, the nominal level of 0.05 was well maintained by
the permutated ePolr test. For the reporting and evalua-
tion of the results, we therefore concentrated in particular
on the comparison of the permutated ePolr test with the
t-test, the Wilcoxon sum rank test, and ANCOVA.
In the following paragraphs, we will point out the most

interesting findings based on the common goal of clinical
trials to reach a statistical power of 80%. For the detailed
simulation study results, see Tables 1, 2, and 3.

Upper extremitymotor score (UEMS)
The application of the permutated ePolr test to model
M1 clearly profited from the incorporation of the variable
#seg and baseline-adjusted effect of the UEMS total sum
score measured at time very acute. Accordingly, the esti-
mated power of the permutated ePolr test was consistently
higher than the estimated power of the t-test, Wilcoxon
rank sum test, and ANCOVA. Thus, the increased power
can be explained by the incorporation of baseline infor-
mation and level of injury as strata in ePolr models. Given
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Table 1 Statistical power of the UEMS total sum score model M1 for all simulation settings (1:1 allocation) compared with that of
conventional approaches

Experimental conditions (1:1 allocation) Novel model-basedmethods Conventional approaches

N total N trtmt N ctrl Odds ratio Asymptotic ePolr
test based on
model M1

Permutated ePolr
test based on
model M1

t-test M1 Wilcoxon rank
sum test M1

ANCOVA M1

80 40 40 1.00 .062 [.058, .067] .049 [.045, .052] .049 [.046, .053] .049 [.045, .052] .048 [.045, .052]

120 60 60 1.00 .061 [.057, .065] .050 [.046, .053] .053 [.049, .056] .050 [.046, .053] .052 [.049, .056]

160 80 80 1.00 .058 [.054, .062] .046 [.042, .049] .049 [.046, .053] .048 [.045, .051] .049 [.045, .052]

200 100 100 1.00 .057 [.054, .061] .048 [.045, .052] .048 [.044, .051] .047 [.044, .051] .048 [.045, .052]

240 120 120 1.00 .061 [.058, .065] .053 [.049, .056] .053 [.049, .056] .052 [.048, .055] .052 [.049, .056]

80 40 40 1.25 .105 [.099, .111] .086 [.082, .091] .077 [.073, .082] .074 [.070, .078] .079 [.074, .083]

120 60 60 1.25 .124 [.119, .130] .103 [.098, .108] .091 [.086, .095] .089 [.084, .093] .091 [.086, .095]

160 80 80 1.25 .142 [.137, .148] .122 [.117, .128] .103 [.098, .108] .104 [.099, .109] .106 [.101, .111]

200 100 100 1.25 .162 [.156, .168] .142 [.136, .148] .124 [.119, .129] .122 [.117, .128] .127 [.122, .132]

240 120 120 1.25 .182 [.176, .189] .162 [.156, .168] .136 [.131, .142] .135 [.130, .141] .139 [.133, .145]

80 40 40 1.50 .194 [.186, .202] .164 [.158, .170] .145 [.139, .151] .143 [.137, .148] .146 [.140, .151]

120 60 60 1.50 .265 [.258, .273] .233 [.227, .240] .194 [.188, .200] .195 [.189, .202] .199 [.193, .205]

160 80 80 1.50 .328 [.321, .336] .298 [.290, .305] .243 [.236, .250] .241 [.234, .248] .246 [.239, .253]

200 100 100 1.50 .393 [.385, .401] .364 [.356, .371] .289 [.281, .296] .290 [.282, .297] .296 [.288, .303]

240 120 120 1.50 .447 [.439, .455] .416 [.408, .424] .331 [.324, .339] .334 [.327, .342] .339 [.332, .347]

80 40 40 1.75 .294 [.285, .303] .260 [.253, .268] .225 [.218, .232] .221 [.214, .228] .227 [.221, .234]

120 60 60 1.75 .424 [.415, .432] .384 [.376, .392] .325 [.318, .333] .321 [.314, .329] .327 [.320, .335]

160 80 80 1.75 .533 [.525, .541] .497 [.489, .505] .408 [.400, .416] .407 [.399, .415] .414 [.406, .422]

200 100 100 1.75 .630 [.622, .638] .596 [.589, .604] .492 [.484, .500] .494 [.486, .502] .499 [.491, .507]

240 120 120 1.75 .709 [.701, .716] .678 [.670, .685] .569 [.561, .577] .575 [.567, .583] .576 [.568, .584]

80 40 40 2.00 .430 [.420, .440] .383 [.375, .391] .320 [.312, .327] .315 [.308, .323] .323 [.315, .330]

120 60 60 2.00 .586 [.578, .595] .543 [.535, .551] .458 [.450, .466] .460 [.452, .468] .462 [.454, .470]

160 80 80 2.00 .719 [.712, .727] .685 [.677, .692] .574 [.566, .582] .579 [.571, .587] .580 [.572, .588]

200 100 100 2.00 .805 [.799, .812] .782 [.776, .789] .676 [.668, .683] .681 [.673, .688] .681 [.673, .688]

240 120 120 2.00 .862 [.856, .867] .846 [.840, .852] .750 [.743, .757] .753 [.746, .760] .756 [.749, .763]

80 40 40 2.25 .534 [.524, .543] .488 [.480, .496] .428 [.420, .436] .421 [.413, .429] .426 [.418, .434]

120 60 60 2.25 .717 [.709, .724] .678 [.671, .686] .588 [.581, .596] .591 [.583, .599] .591 [.583, .599]

160 80 80 2.25 .832 [.826, .838] .809 [.803, .815] .707 [.700, .715] .710 [.703, .717] .712 [.704, .719]

200 100 100 2.25 .905 [.900, .909] .887 [.882, .892] .797 [.791, .804] .801 [.795, .808] .802 [.795, .808]

240 120 120 2.25 .950 [.946, .953] .941 [.937, .945] .873 [.868, .879] .876 [.871, .881] .877 [.871, .882]

80 40 40 2.50 .637 [.627, .646] .588 [.580, .595] .509 [.501, .517] .504 [.496, .512] .508 [.500, .516]

120 60 60 2.50 .816 [.809, .822] .783 [.776, .789] .689 [.682, .697] .694 [.686, .701] .693 [.685, .700]

160 80 80 2.50 .909 [.904, .913] .892 [.887, .897] .807 [.801, .814] .808 [.802, .815] .813 [.807, .819]

200 100 100 2.50 .957 [.954, .960] .948 [.944, .951] .888 [.882, .893] .889 [.883, .894] .891 [.885, .895]

240 120 120 2.50 .983 [.981, .985] .979 [.977, .982] .934 [.930, .938] .936 [.932, .940] .936 [.932, .940]

80 40 40 2.75 .715 [.706, .724] .677 [.669, .684] .597 [.590, .605] .591 [.583, .599] .599 [.591, .607]

120 60 60 2.75 .881 [.875, .886] .856 [.850, .862] .775 [.768, .782] .776 [.769, .783] .777 [.771, .784]

160 80 80 2.75 .952 [.948, .955] .941 [.937, .945] .884 [.879, .889] .886 [.881, .891] .888 [.882, .893]

200 100 100 2.75 .981 [.979, .983] .977 [.975, .979] .937 [.933, .941] .940 [.936, .944] .940 [.936, .944]

240 120 120 2.75 .994 [.992, .995] .992 [.990, .993] .972 [.969, .975] .973 [.970, .975] .974 [.972, .977]

80 40 40 3.00 .781 [.773, .789] .743 [.736, .750] .665 [.657, .672] .660 [.653, .668] .665 [.657, .673]

120 60 60 3.00 .926 [.922, .930] .908 [.903, .913] .841 [.835, .847] .841 [.835, .847] .843 [.837, .849]

160 80 80 3.00 .975 [.973, .978] .968 [.965, .971] .929 [.925, .933] .929 [.925, .933] .930 [.926, .934]

200 100 100 3.00 .992 [.991, .994] .990 [.988, .992] .967 [.964, .969] .968 [.965, .970] .969 [.966, .972]

240 120 120 3.00 .998 [.997, .999] .997 [.997, .998] .987 [.985, .989] .988 [.986, .989] .988 [.986, .989]

Point estimates of the statistical power and 95% Wilson confidence intervals are reported
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Table 2 Statistical power of the SCIM total sum score model M2 for all simulation settings (1:1 allocation) compared with that of
conventional approaches

Experimental conditions (1:1 allocation) Novel model-basedmethods Conventional approaches

N total N trtmt N ctrl Odds ratio Asymptotic ePolr
test based on
model M2

Permutated ePolr
test based on
model M2

t-test M2 Wilcoxon rank
sum test M2

ANCOVA M2

80 40 40 1.00 .060 [.056, .063] .048 [.044, .051] .049 [.046, .053] .047 [.044, .051] .049 [.045, .052]

120 60 60 1.00 .064 [.060, .068] .053 [.050, .057] .055 [.051, .059] .053 [.050, .057] .052 [.049, .056]

160 80 80 1.00 .059 [.055, .063] .051 [.047, .054] .051 [.048, .055] .050 [.046, .053] .050 [.047, .054]

200 100 100 1.00 .058 [.055, .062] .050 [.047, .054] .049 [.045, .052] .051 [.047, .054] .050 [.046, .053]

240 120 120 1.00 .055 [.052, .059] .048 [.045, .052] .050 [.046, .053] .050 [.047, .054] .049 [.045, .052]

80 40 40 1.25 .099 [.094, .104] .084 [.079, .088] .078 [.074, .082] .076 [.072, .080] .080 [.075, .084]

120 60 60 1.25 .123 [.118, .129] .108 [.103, .113] .095 [.091, .100] .099 [.094, .104] .094 [.089, .099]

160 80 80 1.25 .140 [.134, .145] .125 [.120, .130] .105 [.101, .110] .110 [.105, .115] .106 [.101, .111]

200 100 100 1.25 .161 [.155, .167] .144 [.138, .150] .120 [.115, .126] .126 [.121, .131] .123 [.118, .129]

240 120 120 1.25 .187 [.181, .193] .172 [.166, .178] .139 [.133, .144] .149 [.143, .154] .141 [.135, .147]

80 40 40 1.50 .196 [.189, .202] .170 [.164, .177] .148 [.142, .154] .151 [.146, .157] .149 [.143, .155]

120 60 60 1.50 .265 [.258, .273] .238 [.232, .245] .196 [.190, .202] .205 [.198, .211] .201 [.195, .208]

160 80 80 1.50 .338 [.330, .346] .315 [.307, .322] .253 [.246, .260] .268 [.261, .275] .261 [.254, .268]

200 100 100 1.50 .403 [.395, .410] .377 [.369, .384] .308 [.301, .315] .323 [.315, .330] .310 [.303, .318]

240 120 120 1.50 .465 [.457, .473] .439 [.431, .447] .355 [.347, .363] .377 [.369, .385] .368 [.360, .375]

80 40 40 1.75 .317 [.310, .325] .286 [.278, .293] .241 [.234, .248] .248 [.241, .255] .247 [.240, .254]

120 60 60 1.75 .444 [.436, .452] .410 [.402, .418] .342 [.334, .350] .355 [.348, .363] .345 [.337, .352]

160 80 80 1.75 .542 [.534, .550] .510 [.502, .518] .428 [.420, .436] .448 [.440, .456] .437 [.429, .445]

200 100 100 1.75 .640 [.633, .648] .617 [.609, .624] .517 [.509, .525] .541 [.533, .549] .527 [.519, .535]

240 120 120 1.75 .718 [.711, .726] .696 [.689, .704] .590 [.582, .597] .620 [.612, .628] .605 [.597, .613]

80 40 40 2.00 .446 [.438, .454] .404 [.396, .412] .344 [.336, .351] .355 [.348, .363] .356 [.348, .364]

120 60 60 2.00 .605 [.597, .613] .572 [.564, .580] .487 [.479, .495] .507 [.499, .515] .495 [.487, .503]

160 80 80 2.00 .722 [.715, .729] .697 [.689, .704] .598 [.590, .605] .618 [.610, .626] .610 [.602, .617]

200 100 100 2.00 .817 [.811, .824] .799 [.793, .805] .703 [.695, .710] .729 [.722, .736] .714 [.707, .722]

240 120 120 2.00 .873 [.867, .878] .859 [.853, .864] .772 [.765, .778] .796 [.789, .802] .780 [.773, .786]

80 40 40 2.25 .566 [.558, .574] .526 [.518, .534] .449 [.441, .457] .462 [.454, .470] .461 [.453, .469]

120 60 60 2.25 .728 [.721, .736] .700 [.693, .708] .606 [.598, .614] .624 [.616, .632] .619 [.611, .627]

160 80 80 2.25 .847 [.841, .853] .827 [.821, .833] .736 [.729, .743] .755 [.748, .762] .749 [.742, .756]

200 100 100 2.25 .916 [.911, .920] .904 [.899, .909] .829 [.823, .835] .849 [.843, .854] .841 [.835, .846]

240 120 120 2.25 .951 [.947, .954] .943 [.940, .947] .885 [.879, .890] .899 [.894, .904] .893 [.888, .898]

80 40 40 2.50 .660 [.653, .668] .624 [.616, .631] .538 [.530, .546] .554 [.546, .562] .554 [.546, .562]

120 60 60 2.50 .828 [.822, .834] .806 [.800, .813] .713 [.706, .721] .735 [.728, .742] .728 [.720, .735]

160 80 80 2.50 .915 [.911, .920] .903 [.898, .908] .834 [.828, .840] .852 [.846, .857] .843 [.837, .849]

200 100 100 2.50 .959 [.956, .962] .953 [.949, .956] .903 [.898, .908] .918 [.913, .922] .912 [.907, .917]

240 120 120 2.50 .983 [.981, .985] .980 [.978, .982] .950 [.946, .953] .958 [.954, .961] .955 [.952, .959]

80 40 40 2.75 .747 [.739, .753] .710 [.703, .717] .626 [.618, .634] .636 [.628, .643] .641 [.633, .648]

120 60 60 2.75 .891 [.886, .896] .872 [.866, .877] .799 [.793, .806] .817 [.810, .823] .809 [.803, .816]

160 80 80 2.75 .958 [.954, .961] .949 [.945, .952] .896 [.891, .901] .905 [.901, .910] .904 [.899, .909]

200 100 100 2.75 .985 [.983, .987] .982 [.979, .984] .950 [.947, .954] .959 [.955, .962] .955 [.951, .958]

240 120 120 2.75 .995 [.994, .996] .994 [.992, .995] .977 [.974, .979] .981 [.979, .984] .980 [.978, .982]

80 40 40 3.00 .805 [.798, .811] .776 [.769, .783] .700 [.693, .708] .707 [.700, .715] .710 [.702, .717]

120 60 60 3.00 .934 [.930, .938] .923 [.919, .928] .867 [.861, .872] .879 [.874, .885] .873 [.868, .879]

160 80 80 3.00 .979 [.977, .982] .975 [.973, .978] .945 [.941, .949] .951 [.947, .954] .949 [.946, .953]

200 100 100 3.00 .993 [.991, .994] .992 [.990, .993] .978 [.976, .981] .981 [.979, .983] .981 [.978, .983]

240 120 120 3.00 .998 [.997, .999] .998 [.997, .999] .991 [.989, .992] .994 [.992, .995] .993 [.991, .994]

Point estimates of the statistical power and 95% Wilson confidence intervals are reported
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Table 3 Statistical power of the SCIM self-care subscore model M3 for all simulation settings (1:1 allocation) compared with that of
conventional approaches

Experimental conditions (1:1 allocation) Novel model-basedmethods Conventional approaches

N total N trtmt N ctrl Odds ratio Asymptotic ePolr
test based on
model M3

Permutated ePolr
test based on
model M3

t-test M3 Wilcoxon rank
sum test M3

ANCOVA M3

80 40 40 1.00 .071 [.067, .075] .050 [.046, .053] .050 [.046, .053] .049 [.046, .053] .050 [.046, .053]

120 60 60 1.00 .071 [.067, .075] .052 [.049, .056] .052 [.049, .056] .054 [.051, .058] .052 [.049, .056]

160 80 80 1.00 .068 [.064, .072] .050 [.046, .053] .051 [.047, .055] .049 [.046, .053] .050 [.047, .054]

200 100 100 1.00 .069 [.065, .073] .051 [.048, .055] .051 [.047, .055] .051 [.048, .055] .050 [.047, .054]

240 120 120 1.00 .067 [.064, .072] .049 [.045, .052] .050 [.047, .054] .049 [.046, .053] .050 [.047, .054]

80 40 40 1.25 .113 [.108, .119] .087 [.083, .092] .080 [.076, .084] .079 [.075, .084] .080 [.076, .085]

120 60 60 1.25 .136 [.131, .142] .108 [.103, .113] .096 [.092, .101] .099 [.094, .104] .098 [.093, .102]

160 80 80 1.25 .152 [.147, .158] .122 [.116, .127] .109 [.104, .114] .113 [.108, .118] .108 [.103, .113]

200 100 100 1.25 .178 [.172, .184] .142 [.136, .147] .124 [.118, .129] .128 [.123, .134] .125 [.120, .131]

240 120 120 1.25 .205 [.199, .212] .168 [.162, .174] .149 [.144, .155] .151 [.145, .156] .150 [.144, .155]

80 40 40 1.50 .212 [.206, .219] .172 [.166, .178] .151 [.146, .157] .155 [.149, .161] .152 [.146, .158]

120 60 60 1.50 .285 [.278, .292] .237 [.230, .244] .205 [.199, .212] .211 [.205, .218] .207 [.200, .213]

160 80 80 1.50 .357 [.349, .364] .306 [.299, .314] .263 [.256, .270] .270 [.263, .277] .263 [.256, .270]

200 100 100 1.50 .422 [.414, .430] .369 [.361, .376] .313 [.306, .321] .325 [.317, .332] .314 [.306, .321]

240 120 120 1.50 .482 [.474, .490] .429 [.421, .436] .366 [.358, .373] .375 [.367, .383] .368 [.361, .376]

80 40 40 1.75 .330 [.322, .338] .282 [.275, .289] .245 [.238, .252] .246 [.239, .253] .247 [.240, .254]

120 60 60 1.75 .463 [.455, .471] .408 [.401, .416] .353 [.346, .361] .360 [.353, .368] .355 [.347, .362]

160 80 80 1.75 .575 [.567, .583] .522 [.514, .530] .455 [.447, .463] .464 [.456, .472] .457 [.449, .465]

200 100 100 1.75 .655 [.648, .663] .606 [.598, .614] .533 [.525, .541] .549 [.541, .557] .533 [.525, .541]

240 120 120 1.75 .728 [.721, .735] .686 [.679, .693] .609 [.601, .617] .623 [.615, .631] .609 [.601, .617]

80 40 40 2.00 .466 [.458, .474] .414 [.406, .422] .362 [.354, .370] .368 [.360, .376] .366 [.358, .374]

120 60 60 2.00 .622 [.614, .630] .569 [.561, .577] .504 [.496, .512] .515 [.507, .523] .505 [.497, .513]

160 80 80 2.00 .739 [.732, .746] .695 [.687, .702] .626 [.618, .634] .639 [.632, .647] .628 [.621, .636]

200 100 100 2.00 .828 [.822, .834] .794 [.787, .800] .721 [.714, .728] .732 [.725, .739] .721 [.713, .728]

240 120 120 2.00 .886 [.881, .891] .860 [.855, .866] .793 [.787, .800] .806 [.799, .812] .796 [.789, .802]

80 40 40 2.25 .585 [.577, .592] .534 [.526, .542] .470 [.462, .478] .473 [.465, .481] .474 [.466, .482]

120 60 60 2.25 .749 [.742, .756] .700 [.693, .708] .634 [.626, .642] .644 [.636, .652] .637 [.629, .644]

160 80 80 2.25 .856 [.851, .862] .825 [.819, .831] .760 [.753, .767] .767 [.760, .774] .761 [.754, .768]

200 100 100 2.25 .924 [.920, .928] .903 [.898, .908] .854 [.848, .859] .861 [.855, .866] .855 [.849, .861]

240 120 120 2.25 .960 [.956, .963] .946 [.942, .950] .910 [.905, .914] .916 [.911, .920] .912 [.907, .917]

80 40 40 2.50 .677 [.669, .684] .629 [.621, .637] .561 [.553, .569] .563 [.555, .571] .563 [.555, .571]

120 60 60 2.50 .841 [.835, .846] .805 [.799, .812] .740 [.733, .747] .751 [.744, .758] .743 [.736, .750]

160 80 80 2.50 .924 [.919, .928] .903 [.898, .907] .855 [.849, .861] .863 [.858, .869] .857 [.851, .862]

200 100 100 2.50 .965 [.962, .968] .954 [.950, .957] .924 [.920, .928] .929 [.925, .933] .925 [.921, .929]

240 120 120 2.50 .987 [.985, .989] .982 [.979, .984] .961 [.958, .964] .965 [.962, .968] .962 [.959, .965]

80 40 40 2.75 .760 [.753, .767] .715 [.707, .722] .654 [.647, .662] .655 [.647, .663] .655 [.648, .663]

120 60 60 2.75 .900 [.896, .905] .877 [.872, .882] .826 [.820, .832] .830 [.824, .836] .827 [.821, .833]

160 80 80 2.75 .962 [.959, .965] .950 [.947, .954] .915 [.910, .919] .921 [.916, .925] .916 [.911, .920]

200 100 100 2.75 .985 [.983, .987] .980 [.978, .982] .962 [.958, .965] .965 [.962, .968] .962 [.959, .965]

240 120 120 2.75 .995 [.994, .996] .993 [.992, .995] .982 [.980, .984] .984 [.982, .986] .983 [.981, .985]

80 40 40 3.00 .816 [.810, .822] .777 [.770, .784] .726 [.719, .734] .726 [.718, .733] .727 [.720, .734]

120 60 60 3.00 .939 [.935, .943] .921 [.916, .925] .882 [.877, .887] .886 [.881, .891] .883 [.878, .888]

160 80 80 3.00 .980 [.978, .982] .974 [.971, .976] .954 [.950, .957] .957 [.954, .960] .955 [.951, .958]

200 100 100 3.00 .995 [.994, .996] .993 [.992, .994] .983 [.980, .985] .984 [.982, .986] .983 [.980, .985]

240 120 120 3.00 .999 [.998, .999] .998 [.997, .999] .994 [.993, .995] .995 [.994, .996] .994 [.993, .995]

Point estimates of the statistical power and 95% Wilson confidence intervals are reported
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the postulated treatment effect exp(βtrt) = 2.25, the tar-
geted statistical power of 80% for the permutated ePolr
test was reached in the trial setup where at least N ≥ 160
trial participants are recruited. For the three conventional
approaches, the same setup requires at least N ≥ 240 trial
participants to reach the targeted statistical power.

Spinal cord Independencemeasure (SCIM)
Models M2 and M3 also profited from the baseline-
adjusted method. The estimated power also increased
for the stratification based model M2 with SCIM total
sum score and model M3 SCIM self-care subscore mea-
surements. For model M2, the statistical power of 80%
was first reached for the permutated ePolr test in the
trial setup where the postulated treatment effect was
exp(βtrt) = 2 and where there were at least N ≥ 200
recruited trial participants.
The analyses based onmodel M3 profited least from the

new permutated ePolr test compared to the application
with models M1 and M2. However, the statistical power
of the simulation study in Table 3, still was slightly higher
than the power of conventional analysis methods.

Alternative analysis of the sygen® trial
We reanalyzed the Sygen® trial by testing for treatment
effect on the UEMS total sum score. We applied all
five approaches of the above-mentioned simulation study.
None of the five approaches yielded significant results at
the nominal level of 5%. The detailed results of the five
analysis approaches are reported here. For the asymptotic
and permutated Polr tests, we also report the results from
additional stratification by study center.

• t-test: No significant difference in the estimated
mean change control = 11.241 and
treatment = 11.740 of the UEMS between trial arms,
t(333) = 0.439, p-value = 0.661.

• Wilcoxon rank sum test: No significant difference
between trial arms, W = 13816, p-value = 0.812.

• ANCOVA: No significant difference between trial
arms adjusted for baseline score measurements.
F-statistic: 190.8, p-value = 0.651

• Asymptotic ePolr test: No significant shift in motor
score probabilities associated with trial arm stratified
by UEMS baseline measurements and number of
segments below motor level (#seg),
exp(βtrt) = 1.142 (95%-CI: [0.778, 1.678], odds ratio
of treatment versus control group), p-value = 0.234.
Additional stratification by study center leads to
exp(βtrt) = 1.186 (95%-CI: [0.797, 1.765]),
p-value = 0.399.

• Permutated ePolr test: No significant difference in
score contributions of UEMS measurements at time
acute III and trial arm stratified by UEMS baseline

measurements, Z = −0.655, p-value = 0.5237. Here,
additional stratification by study center results in
Z = −0.890, p-value = 0.3677.

These results can by no means be generalized owing to
the strongly selected subsample of patients considered,
the different outcomes analyzed, and the different scopes
of analysis. Nonetheless, the estimated ORs from the
enhanced proportional odds models showed a tendency
towards positive effect of treatment on the UEMS, which
means that treated patients had on average a slightly better
recovery than patients in the treatment-naive group. Espe-
cially for the baseline-adjusted proportional odds model
(asymptotic ePolr test), the result implies that the odds of
a participant in the treatment group of achieving up to
a given motor score were exp(βtrt) = 1.142 times the
odds of a participant with similar characteristics in the
control arm. This indicates a slightly better recovery of
treated patients with a p-value considerably smaller than
the p-values obtained from the t- or Wilcoxon-tests, and
ANCOVA. Nevertheless, we still believe that generaliza-
tions of our results to the overall validity of the Sygen® trial
and its compound cannot be drawn.

Discussion
Randomized clinical trial simulation
As outlined above, conventional approaches of testing for
treatment effects in two-armed randomized clinical trials
with ordinal sum score outcomes face some limitations.
Our novel method based on the baseline-adjusted pro-
portional odds model estimates a global treatment effect
conditioning on the total sum score, while allowing for
baseline adjustment and confidence interval-based infer-
ence. We exemplified the method by applying the models
to ordinal outcomes of a future neurological clinical trial.
However, the model setup is generalizable to any type
of ordinal response measure with a considerably high
number of non-reducible outcome categories.
A direct comparison of our proposed method and the

routinely employed analysis methods based on statisti-
cal power showed that the permutated ePolr test has
higher statistical power in every postulated trial setting.
However, the differences in statistical power of the model-
based methods and conventional approaches are not as
large for the SCIM total sum score model M2 and for
the SCIM self-care subscore model M3 as for the UEMS
total sum score model M1. Based on discussions with
neurologists, this is likely explained by the influence of
other factors, such as concomitant damage to other body
tissues, inflammation or circulator disturbances. These
factors can diminish the performance of SCIM activity
items, especially at very acute assessment times. Hence,
we conclude that in terms of neurological recovery, a base-
line adjustment is more advantageous for the analysis of
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the UEMS total sum score than for the SCIM total sum
score and self-care subscore.
Although the asymptotic ePolr test might be relatively

liberal, in a clinical setting, it has the clear advantage of
confidence interval-based inference. This significance test
not only gives a p-value for the randomized clinical trial
group comparison, but also quantifies the difference and
provides a model-based confidence interval.
It was recently pointed out [41] that the Wilcoxon rank

sum test can be understood as the permutation score test
in a Polr model. Consequently, the Wilcoxon test is par-
ticularly powerful against OR alternatives. In contrast to
the t-test, which is powerful against shift alternatives, the
Wilcoxon rank sum test implicitly focuses on the same
OR parameter exp(βtrt) that our models M1–3 are built
upon. We can thus conclude that the superior power
demonstrated in the simulation experiments arises from
the incorporation of baseline information by stratification
and not from different parametrizations or distributional
assumptions. This conclusion is also supported by [42],
stating that stratum variables should be considered in
design and analysis when outcome categories are heavily
dependent on membership of some stratum.
Instead of comparing outcome scores obtained at a spe-

cific time point, the score trajectory over time could be
modelled, with a treatment effect parameter distinguish-
ing between the two groups. The procedure described by
Parsons [13] directly targets such a situation by apply-
ing a marginal proportional odds models for repeated
measurements where the baseline log-odds function h is
parameterised by orthogonal polynomials and parameter
inference relies on GEEs. An alternative way of approach-
ing this problem could be motivated by marginally inter-
pretable transformation models for longitudinal observa-
tions [43], where stratum-specific baseline log-odds func-
tions h could be parameterised as described here. The lat-
ter approach allows for simple maximum-likelihood infer-
ence and a head-to-head comparison of both approaches
remains an interesting topic for future research.

Alternative analysis of the sygen® trial
The alternative analysis of a subsample of patients from
the Sygen® trial underlined the straightforward imple-
mentation of our method. For this specific example, our
model-based method enhanced the conventional analy-
sis approaches of UEMS total sum scores by allowing
for stratification based on the UEMS total sum score at
baseline as well as baseline adjustment by #seg in terms
of the patient’s individual motor level. The confidence
interval-based inference as part of the reported results of
the asymptotic ePolr test is a clear advantage of the new
method. We no longer only report a p-value as a result
of the significance test but also a confidence interval of
the quantified global treatment effect βtrt. The treatment

effect exp(βtrt) directly estimated from the model has the
clear clinical interpretation as an OR that compares the
treatment group with the control group.

Computational details
All computations were performed using R version 3.6.1
[44]. The tram R add-on package [28] was used to esti-
mate the ePolr models. The underlying statistical theory
is described in [24]. A blueprint for the estimation of
the conditional distribution functions of the UEMS at
time acute III (UEMS3) for the treatment group and con-
trol group is shown below. Data are available in a data
frame SCI_OR_3with variables UEMS at time very acute
(UEMS0, numeric) and acute III (UEMS3, numeric), #seg
(factor), and trtmt (binary: 0 for control group and 1 for
treatment group). The factor variable #seg is defined as
the number of left and right spinal segments below motor
level that are at or more caudal than C5 and at or more
rostral than T1 in three strata ([ 0, 6], [ 7, 8], [ 9, 10]).

R> library("tram")

R> ### model estimation
R> modUEMS <- Colr(UEMS3 | 0 + segblw +
UEMS0:segblw ~ trtmt,

data = SCI_OR_3,
support = c(0, 50),
bounds = c(0, 50))

R> ### log odds ratio of control versus
treatment group
R> coef(modUEMS)

trtmtY
-1.13687

R> ### OR with confidence interval of
treatment versus control group
R> round(c(exp(-coef(modUEMS)),
+ "2.5%" = c(exp(-confint(modUEMS)))[2],
+ "97.5%" = c(exp(-confint(modUEMS)))
[1]), 3)

trtmtY 2.5 % 97.5 %
3.115 1.932 5.024

R> ### plot of the conditional distribution
functions for each single observation
R> plot(as.mlt(modUEMS), newdata = SCI_OR_3,
type = "distribution")

The treatment effect βtrt estimated with the readily
implemented Colr() function of the R add-on pack-
age tram compares the control group with the treatment
group on the scale of the log-OR. Hence, large nega-
tive values of the linear predictor βtrt correspond to large
expected total sum scores and thus high treatment effect.
The inversion of the exponential of the treatment effect
exp(βtrt) results in the conventional measure of associa-
tion that compares the treatment group with the control
group on the OR scale. R code implementating the sim-
ulation study is available online (doi: http://dx.doi.org/10.
5281/zenodo.1411339).

http://dx.doi.org/10.5281/zenodo.1411339
http://dx.doi.org/10.5281/zenodo.1411339
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Conclusion
We introduced baseline-adjusted proportional odds mod-
els, which can be considered as extensions of the well-
known proportional odds model to estimate the treat-
ment effect of ordinal outcomes from a clinical trial.
Our proposed method extends the conventional analy-
sis approaches by stratifying based on the specific total
sum score measurements at trial baseline and potentially
additional baseline variables. Further extensions of our
method can be tailored to individual trial designs, which
leads to improved analyses of complex trial designs.
The proposed models result in a global treatment effect

measure that can be directly interpreted on the original
ordinal scale of the outcome measures. Hence, the clear
interpretation of the global treatment effect, the superior
statistical power compared to that of conventional analy-
sis approaches, as well as the open-source availability for
the estimation of such models are strong arguments for
the use of such methods for the analysis of future clinical
trials.
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