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1 | INTRODUCTION
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Abstract

Diabetes mellitus (DM) is a chronic metabolic disorder with various complications that
poses a huge worldwide healthcare burden. Wounds in diabetes, especially diabetic
foot ulcers (DFUs), are difficult to manage, often leading to prolonged wound repair
and even amputation. Wound management in people with diabetes is an extremely
clinical and social concern. Nowadays, physical interventions gain much attention
and have been widely developed in the fields of tissue regeneration and wound heal-
ing. Magnetic fields (MFs)-based devices are translated into clinical practice for the
treatment of bone diseases and neurodegenerative disorder. This review attempts to
give insight into the mechanisms and applications of MFs in wound care, especially
in improving the healing outcomes of diabetic wounds. First, we discuss the patho-
logical conditions associated with chronic diabetic wounds. Next, the mechanisms
involved in MFs’ effects on wounds are explored. At last, studies and reports regard-
ing the effects of MFs on diabetic wounds from both animal experiments and clinical
trials are reviewed. MFs exhibit great potential in promoting wound healing and have
been practised in the management of diabetic wounds. Further studies on the exact
mechanism of MFs on diabetic wounds and the development of suitable MF-based

devices could lead to their increased applications into clinical practice.

phase, proliferation phase and remodelling phase involving crosstalk

between different cells, extracellular matrix (ECM) and cytokines in

Skin, the largest organ in human body, has important immune and
protective traits also with amazing ability to self-repair.}® After
injury, multiple biological pathways become activated resulting in
re-establishment of tissue integrity. Based on the time required for
healing, wounds can be classified into acute and chronic wounds.
Acute wounds can be repaired by themselves through the normal
healing process resulting in the functional restoration; chronic
wounds cannot be repaired through the normal and timely way
resulting in prolonged or incomplete repair.4 Normal wound repair

follows coordinated sequence of haemostasis phase, inflammation

time and spatial dimensions.>¢ Chronic wounds develop when there
are disruptions in normal healing process and are big challenges to
people with diabetes.”

In diabetes mellitus (DM), chronic wounds are common on the
lower extremities, particular happening at foot, it is so-called dia-
betic foot ulcer (DFU).%? Development of chronic wounds in people
with diabetes possibly results in high risk of limb amputation if they
are not treated effectively.® Diabetic wounds are hard to care and
manage in clinics. Development of more effective managements for

diabetic wounds is urgent and imperative. Many efforts and studies
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have been focused on wound care with an emphasis on the physical

approaches and the development of related device for enhancing
the healing rate of diabetic wounds.!**?

Over the history, people have explored magnetic fields (MF)
from not only nature but also artificial sources for therapeutic
uses. Nowadays, MF has been developed as an alternative, non-
invasive and safe therapeutic tool for tissue repair due to the ben-
eficial effects on cell migration, proliferation and adhesion.*38
In spite of MFs’ potential for their therapeutic application, the
safety of MFs including static magnetic field (SMF), extremely
low-frequency electromagnetic field (ELF-EMF) and pulsed elec-
tromagnetic field (PEMF) is still widely discussed and considered.
International Commission on Non-lonizing Radiation Protection
(ICNIRP) demonstrates that no evidence supports the adverse
effect on human after exposure to up to 8 T SMF.YY There is no
adverse effect to experimental mice that are short-termly or long-
termly exposed to high or even ultrahigh SMF.2%?2 At present, it
reaches no exact conclusion about the adverse impact of dynamic
MFs on human body, moreover, dynamic MFs are widely used in
clinics for treatment of bone diseases and neurodegenerative and
related disorder.232

MFs affect cellular function and activities by their actions of
electric/magnetic properties or magnetic property alone on cellular
processes and functional molecules and act as a kind of potential
therapy for wound repair as far as wounds in DM.1¢1%27-2% The pres-
ent review focuses on the pathological conditions associated with
chronic wounds in DM. Then, the possible mechanisms involved in
MFs’ effects on wound healing are explored. Last, we review the
therapeutic effects of MFs on diabetic wounds both from animal ex-
periments and clinical studies and attempt to arouse the interest of
pushing forward the applications of MFs on wound healing in DM.

2 | IMPAIRED WOUND HEALING IN
DIABETIC MELLITUS

DM is characterized by hyperglycaemia which is a significant cause
in the development of inflammation in diabetic complications.*®
Hyperglycaemic condition and oxidative burden cause modifica-
tions and dysfunctions to cells that participate in wound repair and
promote inflammation resulting in inhibitory effects on wound heal-
ing.3132 Oxidative stress in DM may generate from glucose metabo-
lism and auto-oxidation or through the formation of reactive oxygen
species (ROS) and advanced glycation end products (AGEs). A state
of persistent hyper glycaemic condition the delay of wound healing
in DM and promotes the development of chronic wounds.>* Wound
healing is a highly coordinated biological process.>*3¢ After injury,
various types of cells, such as platelets, neutrophils, macrophages,
fibroblasts, keratinocytes and endothelial cells migrate to wounds to
initiate and regulate the repair process. Intrinsic abnormalities and
pathological factors in DM disturb the normal activities of cells par-
ticipate in wound healing and affect their secretions and the commu-

nication network which further interrupts the coordinated cascade

of events in wound repair process37 (Figure 1). Impaired wound heal-
ing is commonly encountered in people with diabetes and leads to

severely unfavourable outcomes.*?

2.1 | DM affects the function of platelets in
wound healing

Platelets initiate the earliest events after injury and form a platelet
plug in haemostasis phase. Platelet-derived growth factor (PDGF)
stimulates the migration of cells to wounds in inflammation phase,
enhances the proliferation of fibroblasts and production of ECM in
proliferation phase and regulates matrix metalloproteinases (MMPs)
in remodelling phase.®® The abnormalities of platelets in DM are
characterized to be hyperactive with increased autophagy, activa-
tion, adhesion and aggregation.>”*® These abnormalities in plate-
lets lead to wound healing dysfunction. Strategies using functional
platelets and the combination of their secretions exhibit significant

outcomes in managing wounds in DM. %>

2.2 | DM affects the function of neutrophils in
wound healing

Neutrophils are mobilized to inflammatory site upon injury and
involved in the early stage of inflammation phase to form a web-
like structure called neutrophil extracellular traps (N ETs).%61 After
completing their function, neutrophils must be eliminated or migrate
away within a defined time period. Otherwise, excessive infiltration
and retention of neutrophils lead to delayed wound healing.52’53 The
expressions of microRNA in neutrophils involved in inflammatory re-
sponse are changed in DM.>* DM condition increases the release of
NETs through facilitating NETosis, and the exacerbated release of
NETs is a key factor for the delayed wound healing.>>7 Inhibition of
NETosis by using gonadotropin-releasing hormone (GnRH) antago-

nist improves the delayed wound healing in diabetic mice.”®

2.3 | DM affects the function of macrophage in
wound healing

Macrophages affect the whole wound healing process by displaying
different polarization phenotypes.59 The events associated with the
end of inflammation phase to the start of proliferation phase are the
removal of macrophages by lymphatics and the transition of mac-
rophage polarization from M1 to M2 phenotype.®® The hypergly-
caemic environment imprints epigenetic modulation in macrophages
towards a pro-inflammatory phenotype which fails to transit to the
anti-inflammatory state.’? AGEs modulate macrophage polariza-
tion to M1 phenotype which impairs wound healing in DM.%* The
imbalance transition between two functional phenotypes of mac-
rophage induces the delayed healing process in diabetic wounds.®?

Treatments with macrophage-secreting cytokine transforming
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FIGURE 1 Diabetic condition disturbs
the normal activities of cells participate
in wound healing. Abbreviations: NET,
neutrophil extracellular trap
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growth factor (TGF-B1) or macrophage-derived exosomes acceler-

ate diabetic wound healing.6%*

2.4 | DM affects the function of fibroblasts in
wound healing

Fibroblasts are responsible for producing new ECM and releasing
growth factors in wound repair process. Delayed healing in diabetic
wounds is attributed to decreased growth rate of dermal tissue which
suggests the dysfunctions in fibroblasts.®>%® High glucose impairs
the migration and proliferation of human gingival fibroblasts by in-
ducing oxidative stress and apoptosis.“ﬂ'68 Excessive accumulations
of AGEs contribute to the development of chronic wound healing
through inducing autophagic cell death in fibroblasts.®” Human skin
fibroblasts in people with diabetes exhibit accelerated senescence
than the aged-matched ones from normal volunteers.”® Fibroblasts
from the wound edges of human DFUs exhibit abnormally high

expression of connexin protein which may elevate the gap junctional
communication and retard the proliferation of fibroblasts.”* Some
anti-diabetic drugs or healthy human fibroblasts or their exosomes

have been proved to improve wound healing in DM.”?7°

2.5 | DM affects the function of keratinocytes in
wound healing

Keratinocyte is the major cell type of epidermis, its migration and
proliferation are important for re-epithelialization in wound heal-
ing process.”® Under diabetic condition, keratinocytes exhibit re-
duced proliferation potential, less migration capacity, abnormal
gap junction and expression of MMPs.”””? Diabetic condition re-
duces keratinocytes migration through indirectly changing the ac-
tivity of macrophage and creating a micro-environment with high
level of tumour necrosis factor o (TNF-a).2% Human keratinocyte-

derived micro-vesicle that expresses miR-21 mimic promotes
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120 uT increases proliferation potential and upregulates endothelial
nitric oxide synthase (eNOS) expression in human umbilical vein en-
dothelial cells.?® A double-blind placebo-controlled pilot study also
demonstrates that application of SMF device promotes leg ulcer
healing.”” Contrasting studies, however, suggest that there are no
differences between gross healing parameters, mechanical strength
and hydroxyproline deposition regarding wound healing processes
in rat with a magnet in contact with wound or not.”®

3.2 | The effects of dynamic MFs on wound healing

Dynamic MFs are also able to affect cell morphology, differentiation
and function.?®”? As to their applications in wound healing, it mainly
includes ELF-EMF and PEMF.100:10

ELF-EMF represents a form of non-ionizing and low energy
radiation with frequency induce a variety of biological effects.'®!
Several studies demonstrate that ELF-EMF exhibits driving actions
on the progression of wound healing. On one hand, ELF-EMF mod-
ulates cytokine profile which drives transition from chronic pro-
inflammatory state to anti-inflammatory state in wound healing
process.’%? On the other hand, exposure to ELF-EMF also drives a
shift in wound healing process from inflammation phase to prolif-
eration phase.'%® ELF-EMF exposure enhances the proliferation of
keratinocyte HaCaT cells and improves early NOS activity, while
decreases cyclooxygenase 2 (COX-2) which indicates its role in ac-
celerating the transition from inflammation phase to remodelling
phase.’®* These results hint that ELF-EMF may play different roles
in different phases of wound healing and promote the progression
of wound healing.

Moreover, ELF-EMF has been shown to alter the function of
other participants in wound healing. Exposure to ELF-EMF with fre-
quency of 50 Hz and intensity of 1 mT increases cytokine release
and activates the expression of MMP-9 in human immortalized ke-
ratinocytes.'®® The upregulation of MMP-9 represents the effect of
ELF-EMF on promoting cell migration and inducing phagocytosis in
inflammation phase of wound healing.!°® ELF-EMF increases cellu-
lar ROS production in human keratinocyte cell line NCTC 2544.1%7
On the contrary, ELF-EMF activates glutathione peroxidase with
decrease in malondialdehyde in the live tissue of rats during wound
healing process.!°® ELF-EMF promotes the proliferation and differ-
entiation of transplanted epidermal stem cells in the full-thickness
defect nude mice with more mature generated skins and viable cell
layers and rich hair follicles’ structure at the wound sites.*®” ELF-
EMF also directly acts on the ion channel to affect cellular func-
tion. Exposure to 50 Hz ELF-EMF activates macrophage/monocyte
through regulating Ca®* ion channel.}° After being exposed to ELF-
EMF, the morphology of macrophages change to elongated shape,
because the cluster of cation channel receptor alters Ca?" homeo-
stasis and further affects actin polymerization.**

PEMF is a kind of low-frequency magnetic field with specific
wave shape and amplitude.'® PEMF exposure decreases the pro-
duction of interleukin-8 (IL-8), chemoattractant protein-1 (MCP-1)
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and macrophage inflammatory protein-1a (MIP-1a) in human kera-
tinocyte cell line HaCat.**? Short-term exposure to PEMF enhances
the re-epithelialization process and decreases the contraction area
at the early stage of wound healing.}'® Short duration of PEMF ex-
posure accelerates wound healing in a rat wound model through
promoting the appearance of loose connective tissue, forming cap-
illaries, increasing re-epithelization and improving the structure of
newly formed collagen fibres.'** In a 3D artificial skin stimulated
model, PEMF treatment stimulates the early formation of connec-
tive tissue, vascular network and collagen synthesis by inducing cell
proliferation as well as increasing the adhesion ability and paracrine
activity of fibroblasts.}'®> PEMF also increases tensile strength at an
early phase of wound healing, but there is no significant increase
over time as wounds in the PEMF-treated group and sham group
both reach the maximum mechanical strength at the late phase of
wound healing.**® PEMF shortens the time for bridging the gap
through increasing the proliferation of patellar tendon fibroblasts in

an in vitro wound healing experiment.117

4 | MAGNETIC FIELDS PROMOTE
DIABETIC WOUND HEALING

After being exposed to the actions of MFs, cellular participants, cy-
tokines and ion channel exhibit alterations in their performance in
wound healing process.’°® MFs promote the progression of wound
healing by driving the timely transitions of wound healing stages
from pro-inflammation state to anti-inflammation state or from pro-
liferation state to remodelling state. MFs exert positive effects on
the functions of various cell types that participate in wound healing
by promoting their migration, proliferation and regulating their se-
cretory activities. Except the enhanced effects on cellular functions,
MFs also improve the mechanical strength of newly formed skin tis-
sue. MFs enhance wound healing process due to its role for generat-
ing a favourable environment for tissue repair through stimulating
the production of cytokine, increasing cell proliferation and enhanc-
ing collagen formation. In diabetic wounds, normal repair process is
impaired or dysfunctional. It wonders whether MFs affect the im-
paired communications and enhance the stagnant stage in diabetic
wounds or not. How do MFs affect wound healing process in diabetic
environment? The effects of MFs on diabetic wounds from both ani-

mal experiments and clinical trials are concluded in Tables 1-3.

4.1 | The effects of MFs on diabetic wound healing
from animal experiments

180 mT gradient SMF with the North pole orienting towards the
wound promotes the development of capillaries, increases the heal-

ing rate and reduces the gross healing time in streptozotocin (STZ)-

induced diabetic rats with an open circular wound in the dorsum.!!®

SMFs exhibit different effects at different wound healing phases.'*?

SMF exposure decreases the number of inflammatory cells and
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a. macrophage of pro-inflammatory
M1 polarized phenotype

b. increase secretion of cytokines
chemokines and growth factors

c. promote cell migration

d. promote cell proliferation

a. macrophage of anti-inflammatory
M2 polarized phenotype

b. increased density of endothelial cells

¢. promote deposition of collagen

d. promote re-epithelialization

e. promote revascularization

f. promote ECM synthesis

a.increase tensile strength of scar
b. promote collagen fiber remodeling
d. enhance myofibroblast

FIGURE 2 The possible mechanism of the effects of MFs on diabetic wound healing. Abbreviations: ECM, extracellular matrix

necrosis level at the wound site in the early stage of wound heal-
ing in diabetic rats; furthermore, SMFs treatment activates the re-
epithelialization process and the development of the capillaries in the
middle wound healing stage; finally, SMFs promote organized deposi-
tion of mature collagen fibres at the wound sites. SMFs also facilitate
the transition of wound healing phases in diabetic conditions. 0.6 T
SMF accelerates wound closure and elevates re-epithelialization and
revascularization in diabetic mice by skewing macrophage polariza-
tion towards M2 phenotype and upregulating the anti-inflammatory
signalling. In a diabetic rat model, the wound healing effect of 230 mT
SMF is demonstrated by evaluating the wound area reduction rate,
the mean time to wound closure and the wound tensile strength.'2°

Several studies show that dynamic MFs improve the various
stages of wound healing, but they play different roles. PEMF gen-
erating from a commercially available bone-healing device improves
wound closure rate by increasing fibroblast growth factor 2 (FGF-2)
and endothelial cell density in diabetic mice and prevents necrosis
and breakdown of diabetic tissues.'?! Biomechanical properties of
wounds are mainly decided by the amount of collagen, fibril align-
ment and fibre orientation and reflect the structural recovery of
wounds and function. PEMF with frequency at 25 Hz and intensity
of 10 mT improves the tensile biomechanical properties associated
with increased maximum load and energy absorption capacity in the
early diabetic wound healing phase, but in the remodelling phase,

it weakens the wounds possibly through the prolonged collagen

deposition.'??> Another study also supports that PEMF exhibits
different effects at the different phases of diabetic wound heal-
ing. After exposure to a commercially available PEMF unit, there is
greater abundance of collagen fibre and enhancement of myofibro-
blasts in the early phase of diabetic wound healing, while the align-
ment and orientation of collagen fibril seem no change.'?®> PEMF
enhances wound closure and re-epithelialization with production of
myofibroblasts which play a key role in wound closure and collagen
synthesis in wound healing process.*?* In an animal study, diabetic
rats exposed to LF-PEMF show reduced time of wound healing and

increased tensile strength of scar.?’

4.2 | The effects of MFs on diabetic foot ulcers from
clinical trials

DFUs, one of the most common and severe complications of DM,
are characterized with severely impaired wound healing.*?¢?” The
aetiology of DFU is multifactorial and classified into neuropathic,
ischaemic and neuro-ischaemic ulcers.*?®1?? Diabetic people with
DFUs are always associated with the prevalence of chronic vascu-
lar diabetic complications.**® Peripheral vascular disease, peripheral
neuropathy which is caused by microvascular complications in DM
and peripheral arterial disease which is caused by macrovascular

complications in DM are risk factors for contributing to DFUs.!%!

A smE ® smr ©) bynamic MF
local exposure i whole-body exposure whole-body exposure
N Pole
& Magnetic I
/Magnet plate _
é- |8 — Ay WMo .

FIGURE 3 The exposure manner of MFs can be classified into local and whole-body manner. Abbreviations: SMF, static magnetic field;

Dynamic MF, dynamic magnetic field
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Thus, in view of the complexity of origins of DFU, it is of great im-
portance to understand the differences and healing process in these
types of DFUs for effective prevention and management.

The physical interventions to improve the healing outcomes
of DFUs include negative pressure, electrical fields, lasers, ultra-
sound, shockwaves and dynamic MFs.13213% Accumulative studies
from cellular level and animal models investigate the effects of MFs
on wound healing process and demonstrate their positive effects.
There are also commercially available MFs devices developed for
clinical applications on wound healing. Trials that apply MFs on
DFUs management are summarized in Table 3.

In a randomized, double-blind and placebo-controlled clinical
trial, patients who receive PEMF therapy with frequency of 12 Hz and
intensity of 12 G for 60 min during one session show 18% decrease in
wound size, 14% increase in capillary diameters, 28% increase in cu-
taneous capillary blood velocity and 16% increase in skin blood flow,
whereas 10% decrease in wound size in the sham MF group after 14
sessions within 3 weeks.!®® With forearm and thorax exposure to
ELF-MF, a clinical phase 2 study through a long-term follow-up shows
that there are no adverse effects or ulcer recurrences at the original
ulcer sites in DFU patients.136 However, there is no sham ELF-EMF
treated group, it is hard to evaluate the effectiveness of ELF-EMF on
DFUs through this trial. Technologic advances allow the development
of EMF device which are portable for daily use.*” In a case report,
four patients using pulsed radio frequency electromagnetic (PRFE)
wearable device for 6-8 hours per day for consecutive 6 weeks show
promising results in reducing the size of foot ulcers which have been
presented in these patients for more than 3 months, among them,
two patients come to complete healing with 3 weeks of treatment.!%8
Therapeutic magnetic resonance (TMR) can generate low-intensity
MFs. In a pilot trial, when diabetic patients with foot ulcers are
treated with TMR, the outcome shows that there is an increase in
healing rate after 6 months treatment.® In addition, this portable
magnetic device is also used in another clinical trial to investigate
its effects on DFUs. After receiving daily home therapy with TMR
device, diabetic patients with ulcers show more healed lesions with
well-organized cells into the epidermal and dermal tissue, enhanced
differentiated keratinocytes, more deposition of collagen fibres, im-
proved quality of granulation tissue and faster healing time.**® The
normal wound healing process is mediated by various cytokines, and
similarly, they play indispensable role in the management and care of
DFUs.** Study has revealed that the impaired formation of granula-
tion tissue stalls wound healing at inflammation phase in non-healing
DFUs.**2 When applying TMR treatment, histological and biological
examinations further show significant signs of wound healing with
higher expressions of collagens, integrin a1, integrin 3, MMPs, cy-
toskeleton proteins, anti-inflammatory interleukin, growth factors
including FGF, FDGF and vascular endothelial growth factor (VEGF),
and a lower expression of pro-inflammatory cytokines.140

So far, the reported clinical trials by using MFs to intervene DFUs
show no adverse events during or at the end of the treatment or
through the follow-up investigation. Although MFs have been ap-

plied for treating DFUs in several trials, the evidence of MFs’ benefit
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effects cannot be fully ruled out as for the shortcoming of the small
number of patients included, the multiple assessment methods, the
different MF device used, the diverse range of treating time and the
inadequate trial groups.*®> Moreover, there is no aetiology classifi-
cation of enrolled diabetic patients with foot ulcers in these clinical
trials, it is hard to explore the potential effectiveness and action of
mechanism of magnetic fields on different origins of ulcers. The cor-
rect and effective approach to treat DFUs may directly influence the
clinical outcome.

5 | FACTORS AFFECT THE OUTCOMES OF
MAGNETIC FIELDS ON DIABETIC WOUNDS

Although there are ample studies carried out to support the positive
effects of MFs on wound healing in DM either from cellular level or
animal models, the effects and application of MFs on wound healing
in clinical trials are still poorly demonstrated. The action of MFs on
diabetic wounds is a complex interaction between physical factor
and living organism (Figure 2). Some factors should be considered
when it comes to evaluating the bio-effects and the potential thera-
peutic effects of MFs on diabetic wounds.

In this review, factors that may explain the discrepancy in MFs’
effectiveness in diabetic wound healing are concluded as follow-
ing. First, the constructed and used diabetic wound models should
be considered. As seen in Table 1, several types of diabetic animal
models have been used to evaluate the effects of MFs on diabetic
wounds. Some studies use chemical-induced diabetic condition,
for example STZ or alloxan, while others use genetic diabetic ani-
mals even with different animal strains. Some studies constructed
wounds with small size while others use large ones. Diabetic animal
models of impaired wound healing may lead many to question MFs’
effectiveness.

The next factor is the characteristics of MFs applied. Physical pa-
rameters and patterns of MFs affect their bio-effects. As to SMF, the
difference in field intensity and direction show obvious difference
in affecting wound healing. With regard to dynamic MFs, it is even
more complex for the differences between intensity, frequency,
pulsed width, duration and exposure frequency from dynamic MFs
generating devices.

The third factor is the exposure manner of MFs (Figure 3). It can
be classified into local exposure and whole-body exposure. SMFs
generated from permanent magnets are easily used to directly place
near the wound sites, and it is also possible to achieve whole-body
exposure. The diabetic wounded animals are exposed to dynamic
MFs whole-body, it is hard to investigate whether the positive ef-
fects on wound healing are ascribed to their effects on wound sites
or the regulation on the whole body. The effects of MF exposure
manners make the mechanism involving in diabetic wound healing
even more complex to explain.

The bio-effects of MFs are largely dependent on the stimulation
time, so the forth factor is the duration of MFs exposure. Wound

healing is a complex process that matters of time. It is important to
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choose the suitable duration and frequency of MFs exposure and

in which wound healing stage MFs exposure can work best. As to
dynamic MFs exposure, the tissues experience a heated process, the
short duration of dynamic MFs exposure may protect the biological
tissues from development of increased temperature.

As far as we known from Tables 1-3, dynamic MFs are used in
clinical trials to intervene DFUs, while there is no related report
about the application of SMF in clinical trials. In laboratory-based
experiments for intervening DFUs, magnets are usually adopted to
generate SMF and the field strength is lower and limited to only hun-
dreds mT. The interaction outcomes of SMF with living organisms
are mild and closely related to intensity and largely dependent on
exposure time. The field strength of a magnet is easy to remain sta-
ble. But the stronger the magnetic field intensity, the heavier and
bulkier the magnet. Except for MRI, the higher intensity of SMF is
rarely used in clinical therapy for the inconvenient and possibly using
superconductive technology along with the expensive operating and
maintenance costs. As to dynamic MFs, they have been widely de-
veloped and used in clinics for treating bone and neurodegenerative
diseases. The actions of dynamic MFs on living organisms are fast
and instantaneous with high efficiency through the interactions of
electromagnetic energy and force with biomolecules with electro-
magnetic properties. However, the safety issues of dynamic MFs

exposure are still controversial.

6 | CONCLUSIONS

To summarize, MF as a kind of noninvasive and safe physical ther-
apeutic approach has been shown great potential of application
prospects in diabetic wound healing with no significant side effects.
Although a majority of studies have indicated the positive effects
of MFs on diabetic wounds, there is still no general agreement on
the exact mechanisms related to such biological or therapeutic ef-
fects, and there remain many unknown aspects to focus on. It is
also encouraged to develop more domestically portable equipment
generating MFs to manage chronic wounds for people with diabe-
tes at home, and push forward more accessible usage of physical
therapy to reduce both the mental and financial burden in people
with diabetes.
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