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Abstract

Analysis of high-resolution inertial sensor and global navigation satellite system (GNSS)

data collected by mobile and wearable devices is a relatively new methodology in forestry

and safety research that provides opportunities for modeling work activities in greater detail

than traditional time study analysis. The objective of this study was to evaluate whether

smartwatch-based activity recognition models could quantify the activities of rigging crew

workers setting and disconnecting log chokers on cable logging operations. Four productive

cycle elements (travel to log, set choker, travel away, clear) were timed for choker setters

and four productive cycle elements (travel to log, unhook, travel away, clear) were timed for

chasers working at five logging sites in North Idaho. Each worker wore a smartwatch that

recorded accelerometer data at 25 Hz. Random forest machine learning was used to

develop predictive models that classified the different cycle elements based on features

extracted from the smartwatch acceleration data using 15 sliding window sizes (1 to 15 s)

and five window overlap levels (0%, 25%, 50%, 75%, and 90%). Models were compared

using multiclass area under the Receiver Operating Characteristic (ROC) curve, or AUC.

The best choker setter model was created using a 3-s window with 90% overlap and had

sensitivity values ranging from 76.95% to 83.59% and precision values ranging from

41.42% to 97.08%. The best chaser model was created using a 1-s window with 90% over-

lap and had sensitivity values ranging from 71.95% to 82.75% and precision values ranging

from 14.74% to 99.16%. These results have demonstrated the feasibility of quantifying for-

estry work activities using smartwatch-based activity recognition models, a basic step

needed to develop real-time safety notifications associated with high-risk job functions and

to advance subsequent, comparative analysis of health and safety metrics across stand,

site, and work conditions.
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Introduction

Cable logging operations consist of felling, yarding, processing, and loading work phases [1],

with the yarding phase often characterized as six distinct cycle elements (outhaul, lateral out,

hookup, lateral in, inhaul, and unhook) [2]. Many of the yarding tasks, such as pulling the

cable laterally as well as hooking and unhooking logs, are manual, which can cause physiologi-

cal strain [3]. Logging workers are often fatally injured when struck by objects such as falling

trees, limbs, or machines [4–10]. Contact with objects and equipment accounted for 70.9% of

fatalities among logging workers in 2017 [9] and 82.1% of fatalities among logging workers in

2018 [10]. Hand fallers and choker setters are particularly susceptible to these “struck-by” inci-

dents, which accounted for 51.3% of injuries among hand fallers and choker setters between

July 2010 and June 2015 in Montana and Idaho [8]. In an analysis of cable logging accidents,

Tsioras et al. [11] found that broken spar and anchor trees, bouncing cables, and falling objects

contributed to the majority of accidents and most incidents occurred when workers were

struck by or struck against an object. While the increased mechanization of logging has gener-

ally led to a decrease in injury rates, ground crew members working alongside machines, rig-

ging crew workers, and hand fallers are still at risk [4, 6, 8, 12] and may benefit from the use of

a variety of positioning and wearable sensor-based technologies that increase situational

awareness and reduce accidents.

Monitoring the current activities, safety status and location of individuals relative to work-

place hazards on logging operations could be accomplished through (1) real-time location-

sharing methods based on GNSS-RF (global navigation satellite system (GNSS) positioning

paired with radio frequency (RF) transmission) for use in remote areas [13–17], (2) activity

recognition modeling and incident detection, or (3) a combination of both. Human activity

recognition involves using wearable sensors to distinguish between human physical activities.

Most activity recognition models have been developed for everyday activities, such as walking,

sitting, lying, standing, and other common physical movements referred to as activities of

daily living (ADLs) [18–21], as well as for recreation and fitness applications [22–24]. Many

smartphones and smartwatches are equipped with a variety of embedded sensors such as

GNSS chips, accelerometers, gyroscopes, barometers, magnetometers, thermometers, decibel

meters (microphones), and optical heart rate sensors [25–30]. Although a variety of purpose-

built sensors have been developed, smartphones [26, 28, 31] and smartwatches [27, 29, 32–35]

are popular for activity recognition modeling because they are ubiquitous and unobtrusive.

Leveraging a variety of wearable and positioning sensors to develop occupational activity rec-

ognition models in forestry is a first step toward active monitoring that utilizes subsequent

model predictions to help inform algorithms identifying falls or high-risk activities. Real-time

prediction of work cycle elements represents an initial step toward informing smart, location-

and activity-aware algorithms and alerts associated with detecting incidents and periods of ele-

vated health and safety concern.

Development of activity recognition models generally consists of data collection, prepro-

cessing, feature extraction and selection, and model development (Fig 1) [28, 36, 37]. Due to

the advent of microelectromechanical systems (MEMS), inertial sensors have become smaller,

more accurate, and less expensive and have been integrated into a variety of wearable sensors

[38]. Data from these sensors is collected while users perform the activities of interest and is

typically annotated with observed start and stop times. Preprocessing commonly consists of

median filtering to remove noise spikes [39] and low pass or high pass filtering to isolate accel-

eration due to gravity from body acceleration [39–41]. To extract features for model develop-

ment, a moving, or sliding, window is advanced through the dataset, defining subsets of the

data from which relevant time (e.g., mean, median, variance, standard deviation, range,
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skewness and kurtosis) or frequency (e.g., Fast Fourier Transform and Discrete Transform

coefficients) domain features are calculated [30, 31, 42, 43]. In order to reduce dimensionality

and select the most useful features, a variety of techniques such as principal component analy-

sis (PCA), singular value decomposition (SVD), linear discriminant analysis (LDA), or kernel

discriminant analysis (KDA) can be used [41, 44, 45]. Finally, the extracted features are used to

develop activity recognition models, often using machine learning algorithms such as Decision

Trees, Random Forests (RFs), Support Vector Machines (SVMs), k-Nearest Neighbors (k-

NN), Naïve Bayes, k-means, Hidden Markov Models (HMMs), Gaussian Mixture Models

(GMMs), artificial neural networks (ANNs), and multilayer perceptron (MLP) [28, 31, 43, 46].

More recently, deep learning methods such as Restricted Boltzmann Machine, Autoencoders,

Convolutional Neural Networks, and Recurrent Neural Networks have been shown to improve

human activity recognition model performance compared to classical machine learning algo-

rithms [47–50]. While deep learning can overcome some of the drawbacks of traditional

machine learning by automatically extracting features and using more complex features [48–

50], they are generally more computationally expensive and thus have not been widely imple-

mented on resource-limited devices such as smartwatches and smartphones [47].

Model accuracy is thus affected by a variety of factors, such as the type and quality of sen-

sors in the devices, sampling rate, device location on the body, machine learning algorithms

employed for model development, features used for classification, and sliding window size

used to extract these features [31, 42, 51]. In terms of window size, there is a tradeoff between

detection times and recognition performance since smaller windows allow faster recognition

speed [51] but longer windows have been shown to improve recognition performance for

more complex, less repetitive activities [34]. In evaluating this tradeoff, Banos et al. [51] com-

pared activity recognition models created with windows ranging in size from 0.25 s to 7 s and

found that windows of 1–2 s provided the best accuracy while allowing for quick detection

times. The amount of overlap between successive sliding windows also affects model accuracy,

with larger overlap often leading to better model performance but at the cost of increased

computational load [45]. Models with 50% overlap are common [20, 40, 52–55], but high accu-

racies can be obtained using nonoverlapping windows [29, 34, 51, 56]. Recently, “online” activ-

ity recognition, which refers to implementing the entire classification process (i.e., data

Fig 1. Outline of the general activity recognition model development process. Steps involved typically include (1) collecting time study data to pair

with wearable sensor measurements, (2) preprocessing the data through filtering, (3) extracting time and/or frequency domain features using a sliding

window and then selecting relevant features with which to build models, and (4) developing activity recognition models using machine learning or deep

learning techniques. Ultimately, models may be programmed into apps on smartphones and smartwatches and subsequently used to characterize work

activities in real-time to inform health and safety notifications.

https://doi.org/10.1371/journal.pone.0250624.g001
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collection and pre-processing, feature extraction, and classification) locally on the device, has

been investigated to attain near real-time classifications [31, 42]. Online recognition systems

have been shown to have classification accuracies of 45.4–98.1% [42, 57, 58].

While most activity recognition models are specific to ADLs, the high-resolution data col-

lected by these devices may also be useful for quantifying work activities. A limited number of

studies have developed activity recognition for occupational activities based on wearable sen-

sors, primarily for construction [59–63], while others have used visual observation or vision

sensors to detect activities in the workplace [64, 65]. In natural resources, this approach has

recently been proposed by Keefe et al. [30] and Pierzchała et al. [66] developed a method of

automatically distinguishing between work phases in cable yarding by fusing data from multi-

ple sensors. New GNSS-enabled smartwatches may offer lightweight alternatives to smart-

phone-based activity recognition models and may provide additional data that could

supplement and improve these models. These types of wearable-based predictive models that

quantify work activities on logging operations could inform loggers and equipment operators

about their own or their coworkers’ job activity status in near real-time, helping to increase sit-

uational awareness and safety on active timber sales. New, inexpensive mesh network commu-

nications technologies, such as those from goTenna Inc (Brooklyn, NY, USA), enable

location- and data-sharing by connecting to smartphones via Bluetooth and allowing users to

communicate through radio frequency. In addition to facilitating off-the-grid location-shar-

ing, these devices may also be useful for sharing worker safety status derived from activity rec-

ognition models. The record of high-resolution data that results from activity recognition may

also form the basis for quantifying occupational health and safety conditions in comparative

analyses that span forest stand, site, and work conditions.

Time and motion studies [67] have been used extensively in conventional forest operations

research to quantify productive work cycle elements and delay [2, 68–73]. By defining and ana-

lyzing the individual work cycle elements performed by equipment or by individuals engaged

in motor-manual operations, an objective of time study research is often to identify opportuni-

ties for improving occupational production rates and reducing delay time [1, 2, 71, 72, 74].

Time study analyses are used as the basis for regression [1, 2, 69, 71, 74, 75] and machine learn-

ing [76, 77] models that predict work cycle time as a function of stand or site conditions. In

order to estimate logging costs per unit wood volume, machine rate estimates determined

using methods outlined by Miyata [78] and Brinker et al. [79] are paired with these cycle time

prediction models [1, 71, 74, 75, 80]. In recent years, GNSS has been used in time studies to

automate the estimation of cycle times [81], calculate machine productivity [82], characterize

machine movements [83], and improve operational monitoring [84]. Additionally, time and

motion studies have been conducted using both GNSS receivers and accelerometers to moni-

tor tree planting [85], characterize manual felling using brush cutters [86], distinguish between

chipping tasks [87], and monitor tilt and motion of various harvesters and forwarders in order

to analyze operating conditions [88]. The availability of high-resolution sensor data collected

seamlessly from GNSS-enabled mobile and wearable devices in real-time provides an opportu-

nity to further model forestry work activities in greater detail than has been done using tradi-

tional methods, while simultaneously providing the basis for improved characterization of

digital health and safety.

Prior research evaluating use of wearable sensors to monitor and model forestry work activ-

ities includes a small body of recent literature. Fitness and sleep bands have been used (1) to

monitor the physical activity and sleep patterns of forestry workers in order to understand

how these factors may contribute to workplace hazards [89], and (2) to predict forestry worker

fatigue by comparing heart rate and step count data to reaction and decision-making times

[90]. Smartwatches paired with heart rate monitor chest straps have been used to evaluate
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workload associated with manual tree felling [91], while external accelerometers attached to

machines have been used to develop ANNs that classify the activities of manually-driven band-

saws [92] and recognize activities associated with manual felling [93]. Preliminary activity rec-

ognition models have been developed for cable yarding work phases using a combination of

smartphone sensor (global positioning system (GPS) and inertial measurement unit (IMU))

and camera data [66]. However, activity recognition models have yet to be developed for other

forestry work positions, such as rigging crew workers setting and disconnecting log chokers.

Furthermore, smartwatches have not previously been used in forestry activity recognition, so

it is unknown how the prediction accuracy of models developed using these devices will com-

pare to smartphone-based models. Specifically, smartwatches may record different movement

patterns than smartphones due in part to different device locations on the body (i.e., wrist vs.

hip) [27, 34]. In this study, we developed smartwatch-based activity recognition models for rig-

ging crew workers on cable logging operations in order to address two specific research objec-

tives. Our first objective was to develop models that predict choker setter rigging crew work

activities with at least 80% sensitivity. Our second objective was to develop models that predict

chaser rigging crew work activities with at least 80% sensitivity. Random forest machine learn-

ing was used to develop watch-based activity recognition models based on time and motion

study data collected on five active timber sales in North Idaho, USA. Model accuracy was cal-

culated based on the percent of time work elements were predicted correctly.

Materials and methods

Ethics statement

Fourteen loggers voluntarily participated in this study. Prior to data collection, the experimen-

tal protocol was approved by the University of Idaho Institutional Review Board (IRB number:

18–202). Participants received both oral and written information regarding the study design

and provided their written, informed consent. Participants were selected based on available,

operational cable-logging activities occurring in the North Idaho region during the sampling

period and reflect the general demographics of the study population. While we did not collect

demographic information from our participants, recent sampling in the region has shown that

55.4% of the logging workforce in Idaho is 50 or more years of age [17]. However, rigging crew

workers are generally younger than the median age.

Data collection and processing

Time and motion study (i.e., observational elemental time analysis) data was collected in con-

junction with GNSS watch sensor data using two days of sampling on each of five timber sales.

Timber sales occurred on state and industrial cable logging operations. Choker setters (who

are responsible for setting chokers on logs to be yarded) and chasers (who are responsible for

disconnecting chokers from yarded logs) were observed visually. Four productive cycle ele-

ments (travel to log, set choker, travel away, clear) were timed for the choker setters and four

productive cycle elements (travel to log, unhook, travel away, clear) were timed for the chasers

(Table 1). For the choker setter activities, travel to log began when the choker setter started

walking toward the carriage to grab the chokers. Set choker began when the choker setter

arrived at a log and began preparing chokers. Travel away began when the choker setter fin-

ished setting chokers and started to walk away from the log. Clear began when the choker set-

ter stopped walking away from the log and was “in the clear”. For the chaser activities, travel to
log began when the chaser started walking toward the landed logs. Unhook began when the

chaser reached for the chokers to begin unhooking them. Travel away began when the chaser

finished unhooking the chokers and started to walk away from the log(s). Clear began when
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the chaser stopped walking away from the logs and was “in the clear”. For both the choker set-

ter and chaser, clear included everything workers did outside of the other three work elements.

In order to develop a generalized model for functional use, minor delay events were included

within the relevant work element during which they occurred. The clock on a Google Pixel

smartphone was used to record the true start and stop times for each work activity cycle using

the TimeStamp application (version 0.4.0) [94]. Workers wore Garmin Fenix 5S Plus watches,

which record GNSS locations, heart rate, and raw accelerometer data, on their non-dominant

wrist. All sensor data was recorded on the Garmin watches using the RawLogger application

(version 1.0.20190520a) [95] from Garmin Connect. The accelerometer sensor data was col-

lected at a 25-Hz frequency, while other sensors were recorded at a 1-Hz frequency, which are

the default frequencies within the RawLogger application. All sensor data was exported as a

Garmin FIT file and subsequently converted into a �.csv file. Only the watch accelerometer

data, collected at 25 Hz and recorded in thousandths of a gravity (mgn), was used in model

development.

All data processing, analysis and model development was done in the R statistical program-

ming environment, version 4.0.0 [96]. After data collection, all observations in the datasets

were labeled according to the manually recorded start and stop times. Specifically, each obser-

vation whose timestamp fell within the start and stop time for a particular activity cycle was

assigned a label for that activity element (i.e., travel to log, set choker, travel away, clear, etc.).

Delay times were included as the corresponding productive work element because the majority

of delays fell within clear, included a diverse range of physical movements associated with the

workers, and because of the intended final use of a general model in continuous, real-time pre-

diction. After labeling, the raw acceleration values (in the x, y, and z dimensions) were filtered

using a Finite Impulse Response (FIR) bandpass filter of order 8. Filter band edges were 0.5

and 0.9. Rather than using the x, y, and z values of the acceleration sensor, the acceleration

magnitude was calculated using Eq (1) and used in an effort to reduce the effects of orientation

on recognition performance:

Amag ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

x þ A2
y þ A2

z

q
ð1Þ

Where Amag is the filtered overall acceleration magnitude, and Ax, Ay, and Az are the filtered

acceleration sensor values in the x, y, and z dimensions, respectively.

Activity recognition model development

Ten time domain features (mean, standard deviation, maximum, minimum, median absolute

deviation, mean absolute deviation, skewness, interquartile range, range, and kurtosis) were

extracted from the filtered acceleration magnitude values from both the choker setter and

Table 1. Summary of productive cycle elements for choker setter and chaser work activities.

Position Activity Activity begins when subject:

Choker setter Travel to log Initiates walking toward carriage to acquire chokers

Set choker Arrives at log

Travel away Finishes setting choker

Clear Stops walking away when safely “in the clear”

Chaser Travel to log Initiates walking toward the landed logs

Unhook Reaches for the chokers to begin unhooking

Travel away Finishes unhooking chokers

Clear Stops walking away when safely “in the clear”

https://doi.org/10.1371/journal.pone.0250624.t001

PLOS ONE Smartwatch-based activity recognition for rigging crew workers on cable logging operations

PLOS ONE | https://doi.org/10.1371/journal.pone.0250624 May 12, 2021 6 / 25

https://doi.org/10.1371/journal.pone.0250624.t001
https://doi.org/10.1371/journal.pone.0250624


chaser work activity data using 15 different sizes of sliding windows (ranging from 1 to 15 s).

For example, using a 3-s window and data recorded at 25 Hz, features were calculated using

the previous 75 observations (representing 3 s of data) each time the window was advanced.

Windows with 0%, 25%, 50%, 75%, and 90% overlap were used, resulting in five feature extrac-

tion methods for each window size. For instance, using 25% overlap meant that the next win-

dow did not begin until the current window was 75% complete. After filtering and applying

sliding windows, the resulting datasets were separated into 2/3 training and 1/3 testing data.

Data was separated randomly, but the relative ratios of each activity were preserved because

the data was highly imbalanced. The randomForest function in the R randomForest package

(version 4.6–14) [97] was used to create random forest models to predict the four work cycle

elements of both the choker setter and chaser based on the sensor measurements (Fig 2).

Because the data was imbalanced, models were created using stratified sampling according to

Fig 2. Overview of a hypothetical choker setter activity recognition model running on a smartwatch. The activity recognition model depicted is using a 5-s window

with 50% overlap to predict the four work activities. The figure shows filtered acceleration magnitude data, which is colored according to the actual work cycles. Each

time a window (shown as rectangles with dashed lines) is used to extract features, the model predicts the work cycle (shown as labels above the windows).

https://doi.org/10.1371/journal.pone.0250624.g002
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activity, with sample size based on the number of instances of the least common activity. In

terms of the choker setter models, the least common activity was travel away. The least com-

mon chaser activity was travel to log. Random forest models can be tuned via a variety of

parameters, such as the number of trees to grow (ntree) and the number of predictor variables

randomly selected at each node (mtry) [97, 98]. In this study, random forest models were cre-

ated using 150 trees, since previous work has suggested that using 64–128 trees is appropriate

for balancing performance and processing time [99]. Because varying mtry generally does not

have a significant effect on model performance [97, 100], models in this study were built with

the default value of mtry (the square root of the total number of variables). The relationship

between the number of trees and model accuracy was evaluated using the out-of-bag (OOB)

sample error rates calculated internally by the random forest algorithm.

Initially, choker setter and chaser models were created for the 15 window sizes using 90%

overlap and all ten features, but model accuracy was poor. Thus, principal component analysis

(PCA) was used to reduce the number of features in the models. The same ten time domain

features described above were calculated for each activity cycle for both the choker setter and

chaser datasets using the filtered acceleration magnitude values. PCA was performed on these

ten features for both the choker setter and chaser datasets. Principal components (PCs) that

accounted for > 95% of the variation in each dataset were considered and individual variables

with loadings > |0.4| within these PCs were used as predictors in the final models.

After selecting model predictors, a total of 75 choker setter models and 75 chaser models

were created using the 15 window sizes for each of the five levels of overlap. Models were cre-

ated using the training datasets and the confusionMatrix function in the R caret package (ver-

sion 6.0–85) [101] was used to calculate a variety of model accuracy metrics based on the

testing datasets. All models were initially evaluated using sensitivity, specificity, and precision

to compare the effects of overlap levels and window sizes. Sensitivity, specificity, and precision

were calculated using Eqs (2–4):

Se ¼
TP

TP þ FN
ð2Þ

Sp ¼
TN

TN þ FP
ð3Þ

Pr ¼
TP

TP þ FP
ð4Þ

Where Se is the sensitivity, Sp is the specificity, and Pr is the precision. TP is the number of

true positives (i.e., the number of correctly classified instances of a given class), TN is the num-

ber of true negatives (i.e., for a given class, the number of instances of all other classes that are

classified as anything other than the class of interest), FP is the number of false positives (i.e.,

the number of instances that are incorrectly classified as belonging to a given class), and FN is

the number of false negatives (i.e., the number of instances of a given class that are incorrectly

classified as a different class). Sensitivity, specificity, and precision were then converted to and

reported as percentages. Sensitivity, or recall, is the true positive rate and represents the per-

centage of correctly identified activities of a particular class [102]. Specificity is the true nega-

tive rate and measures the percentage of correctly detected negative occurrences of a particular

class [102]. Precision, or positive predictive value, measures the percentage of detected

instances of an activity that represents a real occurrence [102]. Finally, the multiclass area

under the Receiver Operating Characteristic (ROC) curve, or AUC, was calculated for each

model. The AUC corresponds to the probability that a classifier will rank a randomly chosen
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positive instance higher than a randomly chosen negative instance, with higher AUC values

indicating better performance [103]. AUC is a common criterion for evaluating the perfor-

mance of classification algorithms [104, 105]. It has also been shown to be relatively robust to

data imbalance [106–108]. The multiclass.roc function in the R pROC package (version 1.16.2)

[109] was used to compute the multiclass AUC according to the method defined by Hand and

Till [110]. The multiclass AUC value was then used to compare models and choose the best

window size and overlap level for the choker setter and chaser models. Final models were eval-

uated based on the three metrics described previously (sensitivity, specificity, and precision) as

well as F1 values and balanced accuracy. F1 values and balanced accuracy were calculated using

Eqs (5 and 6):

F1 ¼
2 � Pr � Se
Pr þ Se

ð5Þ

BA ¼
Seþ Sp

2
ð6Þ

Where F1 is the F1 value and BA is the balanced accuracy. Pr is the precision, Se is the sensitiv-

ity, and Sp is the specificity. The F1 value represents the harmonic mean of precision and recall

(sensitivity) and is generally thought to be more robust when dealing with imbalanced classes

[51]. It ranges from zero to one, with zero representing no capacity for recognition and one

corresponding to perfect recognition [51]. The F1 value was calculated using the rate of preci-

sion and sensitivity (rather than the percent). Balanced accuracy is simply the mean of sensitiv-

ity and specificity and was calculated using the percentage values of these two metrics.

Results

Work activity cycle times

For the choker setter work activities, travel to log averaged 17.27 s (s = 12.30 s), set choker aver-

aged 19.80 s (s = 16.06 s), travel away averaged 13.11 s (s = 6.83 s), and clear averaged 220.31 s

(s = 519.17 s) (Table 2). For the chaser work activities, travel to log averaged 4.59 s (s = 4.42 s),

unhook averaged 8.00 s (s = 6.42 s), travel away averaged 6.69 s (s = 3.73 s), and clear averaged

264.48 s (s = 481.49 s) (Table 2). Mean work activity cycle times for the chaser were generally

shorter than the mean cycle times for the choker setter, and the maximum cycle times tended

to be slightly longer for the choker setter activities compared to the chaser activities (Table 2).

When expressed as a percentage of the mean elemental time for individual work cycles other

than clear, the coefficient of variation (CV) ranged from 52.11% to 81.09% for the choker setter

and from 55.70% to 96.28% for the chaser (Table 2). Clear was the only element for which the

CV> 100% for both the choker setter and chaser (Table 2).

Table 2. Summary statistics (in seconds) of cycle times for choker setter and chaser work activities.

Position Activity Mean (s) SD (s) CV (%) Range (s) Median (s) 1st Quartile (s) 3rd Quartile (s)

Choker setter Travel to log 17.27 12.30 71.23 0.72–105.56 13.96 9.06 21.82

Set choker 19.80 16.06 81.09 1.14–188.21 14.73 9.46 24.61

Travel away 13.11 6.83 52.11 2.5–55.74 11.87 8.74 15.44

Clear 220.31 519.17 235.65 5.7–8441.34 120.22 93.55 166.14

Chaser Travel to log 4.59 4.42 96.28 0.54–89.92 3.85 2.74 5.49

Unhook 8.00 6.42 80.31 0.86–71.58 6.52 4.17 10.07

Travel away 6.69 3.73 55.70 1.19–26.14 5.61 3.95 8.85

Clear 264.48 481.49 182.06 4.93–8238.2 174.55 144.49 229.41

https://doi.org/10.1371/journal.pone.0250624.t002
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Participant data

Due to the observational nature of data collection, the amount of data used to train and test

the random forest models varied between participants. The average amount of data per choker

setter ranged from 0.80 hrs (s = 0.01 hrs) to 6.74 hrs (s = 0.05 hrs) for training and from 0.40

hrs (s = 0.01 hrs) to 3.31 hrs (s = 0.05 hrs) for testing. The average amount of data per chaser

ranged from 0.80 hrs (s = 0.02 hrs) to 4.59 hrs (s = 0.04 hrs) for training and from 0.39 hrs

(s = 0.02 hrs) to 2.26 hrs (s = 0.04 hrs) for testing. When expressed as a percentage of the mean

training and testing sample times for individual choker setters, the standard deviation ranged

from 0.69% to 1.65% of the training sample times and from 1.39% to 3.34% of the testing sam-

ple times. Similarly, for individual chasers, the standard deviation ranged from 0.93% to 2.04%

of the training sample times and from 1.90% to 4.10% of the testing sample times.

Principal component analysis

In terms of the choker setter, the first PC accounted for 98.13% of the variation in the dataset

and the only variables with loadings > |0.4| in the first PC were the acceleration maximum

and range (Table 3). Similarly, in terms of the chaser, the first PC accounted for 97.92% of the

variation in the dataset and the only variables with loadings > |0.4| in the first PC were the

acceleration maximum and range (Table 3). Thus, acceleration maximum and range were

selected as predictors in the final models for both workers. Biplots of the first two PCs for both

the choker setter and chaser datasets illustrate the strong effect of acceleration maximum and

range on the two datasets (Fig 3).

Number of trees

At the 90% overlap level, the classification accuracies determined internally by the random for-

est algorithm for both the choker setter and chaser models leveled off after 25–50 trees for

most window sizes (Fig 4), and similar trends were observed for the other overlap levels (not

shown). This suggests that building our models with 150 trees was sufficient.

Table 3. Summary of choker setter and chaser PCA results.

Position Choker setter Chaser

PC PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4

Percent of Variance 98.13% 1.77% 0.05% 0.03% 97.92% 1.83% 0.14% 0.08%
Variable Mean -0.038 0.554 0.235 -0.303 -0.030 0.527 -0.221 0.029

Standard deviation -0.054 0.398 -0.686 -0.353 -0.053 0.443 0.395 -0.624

Maximum -0.705 -0.036 0.056 -0.062 -0.705 -0.024 -0.014 0.028

Minimum 0.000 0.039 0.092 -0.158 0.000 0.041 -0.042 -0.002

Median absolute deviation -0.021 0.356 0.354 0.163 -0.014 0.321 -0.299 0.285

Mean absolute deviation -0.031 0.329 -0.264 -0.063 -0.028 0.349 0.125 -0.278

Skewness -0.001 -0.009 0.010 -0.036 -0.001 -0.011 -0.020 -0.022

Interquartile range -0.035 0.524 0.296 0.345 -0.025 0.501 -0.323 0.284

Kurtosis -0.009 -0.131 0.422 -0.771 -0.020 -0.208 -0.763 -0.607

Range -0.705 -0.074 -0.036 0.096 -0.705 -0.064 0.028 0.030

The percentages of variance for the first four PCs as well as the individual loadings for each variable for the first four PCs are shown. Numbers in bold indicate variables

with loadings > |0.4|.

https://doi.org/10.1371/journal.pone.0250624.t003
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Choker setter models

The sensitivity, specificity, and precision of the choker setter models were highest when using

sliding windows with 90% overlap for all activities and window sizes (Fig 5). Using sliding win-

dows with 75% overlap resulted in the second-highest values of these same metrics for all activ-

ities and window sizes (Fig 5). The remaining overlap levels (50%, 25%, and 0%) resulted in

the lowest values of these metrics (Fig 5). Finally, sensitivity, specificity, and precision generally

did not vary noticeably between window sizes for most activities (Fig 5).

Chaser models

The sensitivity, specificity, and precision of the chaser models were highest when using sliding

windows with 90% overlap for all activities and window sizes (Fig 6). Using sliding windows

with 75% overlap resulted in the second-highest values of these same metrics for many activi-

ties and window sizes (Fig 6). The remaining overlap levels (50%, 25%, and 0%) generally

resulted in the lowest values of these metrics (Fig 6). Additionally, sensitivity tended to

decrease as window size increased for most activities (Fig 6, first row) while specificity

decreased slightly with increasing window size for the travel to log activity but did not show

much variation with window size for the other three activities (Fig 6, second row). Precision

Fig 3. Biplots of PCs 1 and 2 for the choker setter and chaser datasets. The color of points on each plot indicates work cycle element

categories.

https://doi.org/10.1371/journal.pone.0250624.g003
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decreased with increasing window size for the travel to log and unhook activities at the higher

overlap levels but did not vary as noticeably for the travel away and clear activities (Fig 6, third

row).

Model selection

The multiclass AUC plot indicates that the 90% overlap level resulted in the highest AUC val-

ues across all window sizes for both the choker setter and chaser models (Fig 7). AUC did not

vary much with window size for the choker setter models (Fig 7, top row). For the chaser mod-

els, AUC decreased with increasing window size for the 90% and 75% overlap levels but varied

less with window size for the other overlap levels (Fig 7, bottom row). A 3-s window with 90%

overlap had the highest AUC (94.42%) for the choker setter models (Fig 7, top row) and a 1-s

window with 90% overlap had the highest AUC (93.62%) for the chaser models (Fig 7, bottom

row). Thus, these two models were chosen as the optimal choker setter and chaser models.

Sensitivity for the selected choker setter model (3-s window, 90% overlap) ranged from

76.95% to 83.59% for the four activities (Table 4). Precision for this model ranged from

41.42% to 97.08% for the four activities, specificity ranged from 91.36% to 94.73%, F1 values

ranged from 0.55 to 0.86, and balanced accuracy ranged from 85.02% to 88.90% (Table 4). The

confusion matrix for the selected choker setter model (3-s window, 90% overlap) illustrates

Fig 4. Choker setter and chaser random forest model accuracy as a function of the number of trees. The plots are grouped by worker type

(choker setter or chaser) and window size. Line color indicates overall model (OOB) accuracy as well as accuracy for the work cycle elements.

Only the 90% overlap of the 1-, 5-, 10- and 15-s windows are shown.

https://doi.org/10.1371/journal.pone.0250624.g004
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that the set choker activity was most often confused with travel to log (Table 5). Travel away
was somewhat equally confused with the other three activities (set choker, travel to log, and

clear), while travel to log was most often confused with either set choker or clear (Table 5).

Finally, clear was most often confused with either set choker or travel to log (Table 5).

Sensitivity for the selected chaser model (1-s window, 90% overlap) ranged from 71.95% to

82.75% for the four activities (Table 6). Precision for this model ranged from 14.74% to

99.16% for the four activities, specificity ranged from 89.76% to 92.43%, F1 values ranged from

0.25 to 0.83, and balanced accuracy ranged from 81.97% to 86.54% (Table 6). The confusion

matrix for the selected chaser model (1-s window, 90% overlap) shows that clear was most

often confused with travel away but was also frequently mistaken for unhook (Table 7). Travel
away was most often confused with either unhook or clear, while travel to log was most often

mistaken for clear (Table 7). Finally, unhook was most often confused with either clear or travel
away (Table 7).

Fig 5. Choker setter sensitivity, specificity, and precision as a function of window size. The plots are grouped by metric and work

activity. Line color indicates window overlap level.

https://doi.org/10.1371/journal.pone.0250624.g005
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Discussion

Our results show that activity recognition models based on smartwatch accelerometers can

characterize work activities for rigging crew workers setting and disconnecting log chokers on

cable logging operations, with the best model sensitivities ranging from 76.95% to 83.59% for

choker setters and from 71.95% to 82.75% for chasers. While not all activities met our objective

of 80% sensitivity, these values are consistent with models based on smartwatches and wrist-

worn accelerometers developed for other activities in previous studies [27, 29, 32, 33, 35, 54–

56]. The benchmark of 80% sensitivity was established ahead of time as part of project develop-

ment. While we recognize that a combination of metrics may be more suitable for future use,

particularly when dealing with imbalanced datasets, this was a pilot study intended to help

establish methods prior to a larger modeling effort.

Fig 6. Chaser sensitivity, specificity, and precision as a function of window size. The plots are grouped by metric and work activity. Line

color indicates window overlap level.

https://doi.org/10.1371/journal.pone.0250624.g006
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In contrast to the fairly high sensitivity values, precision was poor for most activities for

both the choker setter and chaser models. This may be due to the imbalanced nature of the

data. The proportions of choker setter activities were 10.26% travel to log, 12.41% set choker,
4.29% travel away, and 73.04% clear. The proportions of chaser activities were 1.64% travel to
log, 2.95% unhook, 2.45% travel away, and 92.95% clear. Furthermore, the high CV values in

Table 2 suggest there was high variability within individual work cycle elements, especially

within the clear activity for both the choker setters (CV = 235.65%) and chasers

(CV = 182.06%), which likely resulted at least in part from the inclusion of delay time in work

elements. Additional variability may have been introduced to the clear activity due to the fact

that clear encompassed everything workers did outside of the other three work elements. The

Fig 7. Choker setter and chaser multiclass AUC as a function of window size. The plots are grouped by worker type (choker setter or chaser).

Line color indicates window overlap level.

https://doi.org/10.1371/journal.pone.0250624.g007

Table 4. Accuracy metrics for the best choker setter model (created with a 3-s window and 90% overlap).

Activity Sensitivity (%) Precision (%) Specificity (%) F1 Balanced Accuracy (%)

Travel to log 78.42 51.68 91.63 0.62 85.02

Set choker 83.59 57.82 91.36 0.68 87.48

Travel away 83.06 41.42 94.73 0.55 88.90

Clear 76.95 97.08 93.72 0.86 85.33

https://doi.org/10.1371/journal.pone.0250624.t004
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combination of this variability with the large proportion of time workers spent in the clear

likely reduced prediction accuracy and could account for the generally low precision and F1

values. Since this form of analysis is very new in natural resources work, there is relatively little

prior research on how delay, misclassified activities, or low precision in general may impact

real-time summaries of work, or worker health and safety considerations, when interpreted in

practice. Rather than a shortcoming of our study, we feel this is an important consideration for

subsequent research and for development of wearable-based digital health and safety analytics

for operational forestry. Additionally, conventional time study analysis distinguishes between

quantifying individual productive cycle elements and quantifying overall productive and delay

components of occupational work. Future modeling studies may benefit from distinguishing

sampling efforts to quantify these separately. This may influence the way in which low preci-

sion and high false positive rates affect metrics such as productivity that may be calculated

from model predictions in real-time. Thus, future work should consider how clear is defined

and whether delay times are included in sampling and developed models in an effort to

improve precision. Future work should also address issues of low precision through improved

data collection, processing, and modeling (e.g., utilizing video recording, faster sampling rates,

different sensors, deep learning, additional features, etc.), all of which are discussed below.

The best model performance metrics for both workers were obtained using the highest level

of window overlap (90%) and smaller window sizes. The increasing accuracy we obtained with

higher levels of window overlap is consistent with previous work [45]. However, many wrist-

based models developed with either no overlap [27, 29, 56] or 50% overlap [54, 55] have

achieved high accuracies. In terms of window size, previous work has suggested that simpler,

more repetitive activities may be accurately captured with shorter windows, while more com-

plex, less repetitive activities may need longer windows [34, 55]. In general, we observed

slightly decreasing performance metrics with increasing window size. While some previous

studies have found improved accuracies with increasing window size [34, 56], others have

observed that increasing window size did not result in significant model improvement [55]

and have developed accurate wrist-based models using smaller window sizes [35, 54, 55].

Smartwatches, smartphones, and other wearables generally have limited resources in terms

of battery power, memory, storage, and computational power, so the effects of window size,

window overlap, and sampling rate must be considered when designing and implementing

occupational activity recognition models [31, 42, 111, 112]. For instance, using longer

Table 5. Confusion matrix for the best choker setter model (created with a 3-s window and 90% overlap).

Actual

Set choker Travel away Travel to log Clear

Predicted Set choker 18655 455 1898 11254

Travel away 888 6409 554 7622

Travel to log 1743 365 14455 11407

Clear 1031 487 1526 101095

https://doi.org/10.1371/journal.pone.0250624.t005

Table 6. Accuracy metrics for the best chaser model (created with a 1-s window and 90% overlap).

Activity Sensitivity (%) Precision (%) Specificity (%) F1 Balanced Accuracy (%)

Travel to log 78.53 14.74 92.43 0.25 85.48

Unhook 82.75 20.66 90.34 0.33 86.54

Travel away 81.93 16.75 89.76 0.28 85.84

Clear 71.95 99.16 91.99 0.83 81.97

https://doi.org/10.1371/journal.pone.0250624.t006
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windows [45, 111], higher levels of window overlap [45], and faster sampling rates [31, 42]

requires more computational resources during implementation. In our study, the difference

between the 90% and 75% overlap levels was noticeable for many of the model accuracy met-

rics. While lower levels of overlap may be preferable for real-time implementation on

resource-limited devices such as smartwatches, the improved accuracies observed with the

higher overlap levels seem to justify the additional computational power needed. On the other

hand, our results suggest that the highest accuracies for both the choker setter and chaser mod-

els can be obtained with smaller window sizes, which indicates real-time implementation may

be achieved with relatively minimal computational complexity and fast detection rates. Finally,

future work should evaluate the effects of different sampling rates. While previous work has

shown that higher frequencies can lead to improved accuracies [42, 111], others have achieved

high performance using lower sampling rates such as 2-Hz [111] and 10-Hz [30]. The RawLog-

ger application used to record the watch sensor data in this study did not allow us to adjust the

sampling frequency, and Garmin Connect allows a maximum rate of 25-Hz for the accelerom-

eter. However, different devices could be used in future work to assess whether higher frequen-

cies may improve performance and whether lower sampling frequency may achieve similar

performance, as this would have the benefit of reducing power consumption on the device.

Other considerations related to performance and resource consumption on wearable

devices are the types of features used for classification and the tradeoffs between classical

machine learning and deep learning methods. We chose to use time domain features primarily

because they are less computationally complex and consume less energy during implementa-

tion [42, 113]. Additionally, it has been shown that the use of frequency domain features

should be paired with faster sampling rates in order to achieve high model performance [42].

However, the use of frequency domain features should be investigated as a potential method of

improving model performance [114]. Similarly, we chose to use a traditional machine learning

approach because deep learning methods are generally more computationally expensive [47].

As devices become more powerful, deep learning offers opportunities to overcome some of the

limitations of classical machine learning [48–50].

Activity recognition models based on wearables such as smartphones and smartwatches

have practical applications for quantifying productivity and reporting work analytics to sup-

port digital health and safety. In terms of rigging crew productivity, models may inform the

real-time reporting of productive work elements such as mean time per turn, number of chok-

ers set or disconnected per turn, and related analytics. Models developed using conventional

time studies in forestry have been limited to very specific operations and time periods under

consideration, or deployed broadly in generalized predictive models (e.g., Bell et al. [115]). Uti-

lizing our activity recognition models and subsequent, improved models using similar

approaches makes it possible to quantify work day-in, day-out over the course of the work

week and indefinitely in the future when incorporated into predictive apps on smartwatches.

This is a major advancement and opens new possibilities for analysis of big data accumulated

over time. For example, when summarized at the individual and group level, this information

Table 7. Confusion matrix for the best chaser model (created with a 1-s window and 90% overlap).

Actual

Clear Travel away Travel to log Unhook

Predicted Clear 366814 972 1022 1099

Travel away 53458 11028 372 978

Travel to log 39715 409 7061 714

Unhook 49828 1052 536 13385

https://doi.org/10.1371/journal.pone.0250624.t007
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could be used to improve productivity, reduce costs, and enhance work quality and worker

safety by allowing workers to adapt treatment methods in near real-time. Furthermore, in

broader meta-analysis, use of wearables to quantify productivity with greater temporal resolu-

tion than traditional time study techniques may provide opportunities for improving estimates

of work productivity and treatment costs across various stand and site conditions and spatial

scales. To better quantify worker health and safety, activity recognition model predictions may

be paired simultaneously with fall detection algorithms to inform smart alerts indicating lack

of movement associated with potential incidents. These alerts may then be sent to coworkers

at the jobsite using emerging technologies designed to facilitate communication and data-shar-

ing to improve safety in remote work areas. Model predictions may also be combined with

other health-related data, such as heart rate, heat stress, and sleep metrics, to develop alerts

that would be triggered when demanding work activities occur in conjunction with high physi-

cal exertion levels, increased heat stress, excess workload, or a combination of these factors.

Finally, pairing activity recognition model predictions with real-time location information

may be used to inform safety alerts related to proximity to coworkers, jobsite hazards such as

snags or falling trees, and heavy equipment. This information could also be used in post-hoc

analyses to better characterize the activities and other location- and health-related factors pre-

ceding accidents and near miss events.

One limitation to our study was reduced visibility when observing workers. Choker setters

commonly work on steep hillsides, often among shrubs and other vegetation. At times, this

made it difficult to visually observe start and stop times for component work cycle elements

with precision. Chasers working at the landing were occasionally difficult to see when the

yarder’s movement shielded the chaser from view. A related limitation was a slight difference

between the internal clocks of the smartwatches and the phones used to record the start and

stop times for each activity. While these differences were small, there was no practical way to

correct them in the field as they occasionally shift within a 24-hour period. This introduced

additional error when assigning labels to the watch sensor data and is an important consider-

ation in future remote occupational digital health applications, particularly for mobile and

wearable devices that sync National Institute of Standards and Technology (NIST) time via

internet connectivity.

Another limitation to the study was the short duration of many of the work activity cycles,

primarily for the chaser. The chaser often runs in to and away from the yarded logs (both of

which may last only a few seconds), and unhooking can be very quick (i.e., 3–5 s). This makes

it difficult to visually detect and record accurate start and stop times for the rapid cycle ele-

ments that result. While this may explain why the shorter window lengths generally resulted in

higher accuracies, it also made the activities more difficult to capture and model. Development

of subsequent wearable- and mobile-based activity recognition for occupational safety may

benefit from use of video concurrently with smartwatch sensor data collection rather than

direct visual observation, in order to improve work element detection and support model

training. For example, use of body camera videography coupled with post-hoc analysis to

quantify work elements for low visibility tasks in forestry may improve model development.

A few areas that should be considered in future research include evaluating additional sen-

sors, utilizing devices on different body parts, and incorporating more mechanistic approaches

to modeling. The Garmin watches used in this study were only capable of recording raw accel-

erometer data. However, the incorporation of gyroscope sensor measurements into model

development in future studies could potentially help to strengthen predictive power. While

previous research has indicated that watch accelerometers perform better than watch gyro-

scopes for activity recognition [29], others have found that using both accelerometers and

gyroscopes increases accuracy for smartphone-based models [52] and watch-based models
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[32]. Additionally, previous studies have shown that hip-mounted accelerometers may recog-

nize activities like running better than wrist-mounted accelerometers [27] and that using sen-

sors in multiple positions, such as the wrist and pocket, can improve model performance [34].

Thus, future work should evaluate how placing devices on different body parts affects model

predictions. For instance, it is possible that using sensors on the torso or feet may more accu-

rately recognize the movements of choker setters and chasers as they travel to and from logs,

while wrist-based sensors may be better suited to detecting activities that involve hand

motions, like setting and disconnecting chokers. Another consideration when evaluating

device locations is that previous research has shown that participants may prefer wrist-worn

devices compared to hip-worn devices [116], which has implications for designing a relatively

unobtrusive system for real-world adoption. Lastly, use of the random forest machine learning

algorithm to model the occupational activities of rigging crew workers is highly empirical and

doesn’t necessarily help to foster understanding of the underlying processes affecting work

productivity and safety. In future studies, a more mechanistic approach to modeling work

movements may better lend itself to identifying causal relationships associated with safety inci-

dents and possible interventions.

Because logging operations are highly variable and our sampling was observational, the

amount of data collected from each participant varied. We chose to randomly separate the

entire dataset into 2/3 training and 1/3 testing since utilizing either leave-one-subject-out or k-

fold cross-validation implemented at the participant level would have meant creating models

with varying quantities of data in each iteration. Thus, because our validation methods may

randomly include data from participants in both training and testing, the quality of predictive

models presented may be overly optimistic. Future research developing similar models may

benefit from a different approach that avoids cross-over of participant data in training and

testing subsets. Additionally, traditional time and motion and actigraphy analysis in forestry

work has generally been based on relatively small studies. Because use of IMU sensors to quan-

tify work in real-time is relatively new, it is unknown whether the mean and variability of data

in our study would be fully representative of the broad range of field sites, forest stand condi-

tions, equipment, and weather impacts that affect worker movements in the profession overall.

While we believe the quantity of data from each participant used to train and test the models

was sufficient, future studies may benefit from collecting a more balanced sample of data from

a wider variety of participants. Our goals in this study were to evaluate, at a broad level, the

potential for wearable devices to model real-time occupational rigging crew work activities

and to provide an example of the methods, modeling approaches, and sampling considerations

that are important for developing libraries of generalized forestry work activity recognition

models. Prior to use in occupational settings, predictions from real-time models developed,

regardless of the statistical validation methodology used in model fitting and analysis, should

be further evaluated using data collected independently as part of different field operations

reflecting variability in site conditions, weather, workers, and other factors.

Ultimately, future work should include coding the best models developed in this study into

a smartwatch application to support real-time characterization of work activities and further

validate model predictions in a variety of conditions. Pairing of fall detection with activity rec-

ognition model predictions may help to inform development of improved smart alerts to

coworkers notifying them of potential jobsite incidents, particularly when paired with real-

time GNSS mapping in remote forestry work environments. To advance digital health and

safety more broadly, the data resulting from our predictive models, as well as from models

developed subsequently for other common forestry work tasks, may be used to quantify day-

to-day occupational forestry job functions in high resolution. The resulting work effort data

provide a fundamental mechanism through which it may be possible to better quantify factors
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associated with incident occurrence across forest stand, site, weather, air quality, and other

work conditions, particularly when paired with readily available, wearable-based personal

health metrics such as sleep activity, heart rate, and heat stress.
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