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Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are the standard
of care for advanced non-small-cell lung cancer (NSCLC) patients. However, most
patients will eventually develop resistance. For EGFR-TKI resistance mediated by MET
amplification, the combination of EGFR and MET TKIs has shown promising results in
early clinical trials. However, acquired resistance to MET inhibitors forms a formidable
challenge to this dual blockade approach. Here, we presented an NSCLC patient with
EGFR exon 19 deletion (ex19del) who was resistant to first-line erlotinib treatment but
responded to chemotherapy. Given the finding of MET overexpression/amplification after
disease progression, the patient received gefitinib plus crizotinib with a partial response.
Her disease progressed again, and molecular testing revealed a novel MET Y1230H
mutation and a PD-L1 TPS score of 75%. She received a salvage regime consisting of
gefitinib, cabozantinib, and pembrolizumab with a partial response. Since we now know
that EGFR ex19del NSCLC patients generally do not respond to PD-1 blockade therapy,
this response is more likely the contribution from gefitinib plus cabozantinib. Therefore,
sequential use of type I and II MET inhibitors in EGFR/MET dual blockade may be an
effective therapeutic option for EGFR-mutant, MET-amplified NSCLC.

Keywords: non-small cell lung cancer (NSCLC), EGFR mutation, targeted therapy resistance, MET amplification,
case report
INTRODUCTION

Epidermal growth factor receptor (EGFR) mutations are present in ~30-50% of non-small cell lung
cancer (NSCLC) cases in East Asia and ~10% of cases in North America and Western Europe (1).
EGFR tyrosine kinase inhibitors (EGFR-TKIs) are the standard of care for advanced EGFR-mutated
NSCLC (2). As most NSCLC patients initially treated with EGFR TKIs will eventually acquire
December 2021 | Volume 11 | Article 7388321

https://www.frontiersin.org/articles/10.3389/fonc.2021.738832/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.738832/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.738832/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.738832/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.738832/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.738832/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:liufangfsq@163.com
mailto:xiaomo.li@genetronhealth.com
https://doi.org/10.3389/fonc.2021.738832
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.738832
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.738832&domain=pdf&date_stamp=2021-12-02


Cai et al. Sequential EGFR-MET Inhibitor Combination Therapy
resistance, strategies to overcome EGFR TKI resistance are
needed to improve patient outcomes. EGFR T790M mutation
andMET amplification are the dominant on-target and off-target
EGFR TKI resistance mechanisms, respectively (3). While the
third-generation EGFR TKI osimertinib can overcome resistance
mediated by EGFR T790M, resistance mediated by MET
amplification remains a challenge (4).

Genetic alterations of MET are new therapeutic targets in
NSCLC (4, 5). Three MET TKIs (capmatinib, tepotinib, and
savolitinib) have been approved as first-line treatment for
NSCLC patients with MET exon 14 skipping (METex14)
mutations (6–8). Based on the mechanism of action, MET
TKIs are divided into two groups, type I and type II, which
bind to the active and inactive form of the ATP-pocket of MET,
respectively (9). However, some acquired MET mutations such
as Y1230H result in resistance to all type I MET inhibitors
approved for NSCLC (10, 11). Furthermore, there is no approved
targeted therapy for NSCLC patients with MET amplification, a
less frequent driver in NSCLC compared with METex14
mutations (4). Therefore, the clinical management of MET-
amplified NSCLC and acquired MET TKI resistance represent
two clinical challenges.

To overcome EGFR TKI resistance mediated by MET
amplification, clinicians are testing different EGFR/MET TKI
combinations in clinical trials (12–15). Additionally, off-label use
of type II MET TKI cabozantinib can be a feasible strategy to
overcome acquired MET TKI resistance in METex14-NSCLC
(4). Here, we described a metastatic EGFR-mutant NSCLC
patient who developed EGFR TKI resistance mediated by MET
overexpression/amplification and subsequently responded to
gefitinib plus crizotinib. This patient then developed resistance
to crizotinib due to an acquired MET Y1230H mutation, which
was overcome by cabozantinib.
CASE PRESENTATION

A 49-year-old Chinese female never-smoker without personal or
family history was diagnosed with stage IV NSCLC (T4N3M1b)
in June 2013 (Supplemental Table 1). PCR testing of the biopsy
revealed the presence of EGFR exon 19 deletion (ex19del)
mutation. The treatment timeline and molecular alterations are
shown in Figure 1. The patient was administered erlotinib
(150 mg daily). Progressive disease in the right lower lobe
of lung and supraclavicular lymph nodes was noted after
one month. Treatment was then changed to chemotherapy
with cisplatin, pemetrexed, and bevacizumab for 6 cycles
with partial response followed by 5 cycles of pemetrexed and
bevacizumab maintenance.

In May 2014, the patient reported neck swelling, upper limb
edema, dyspnea, and dysphagia with a PS score of 4. The barium
swallow study demonstrated the presence of esophageal stricture.
Imaging revealed new bilateral pulmonary nodules and
supraclavicular lymph nodes enlargement. Her oxygen
saturation values dropped to 70-85%, and she received
supplemental oxygen by noninvasive ventilation. A biopsy
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revealed MET overexpression (IHC 3+), and ctDNA next-
generation sequencing confirmed the EGFR E746_A750del
mutation (Figures 1A, B). Crizotinib is an ALK, ROS1, and
MET tyrosine kinases inhibitor approved for advanced ALK-
positive lung cancer at that time (16). Crizotinib has shown
antitumor activity in lung cancer patients with de novo MET
amplification (17, 18), and was under validation in clinical trials
(NCT01441128, NCT00585195). Therefore, treatment was
changed to crizotinib (250 mg BID) plus gefitinib (250 mg
QOD). On day 5, the patient’s neck swelling, upper limb
edema, dyspnea, and dysphagia improved. Her oxygen
saturation values improved to 85-95%, and ventilation was
discontinued. After 16 days, computed tomography imaging
showed an almost complete reduction of the target lesions
(Figure 2). In March 2015, disease progression occurred, and
she underwent radiotherapy (DT40Gy/20F) for metastatic
lesions of the brain. In May 2015, treatment was changed to a
combination of carboplatin, paclitaxel, and cetuximab for two
cycles, and discontinued due to grade 4 myelosuppression. The
patient reported dyspnea and chest pain with a PS score of 3. She
was rechallenged with gefitinib plus crizotinib (reduced dose, 250
mg QD) for three months with stable disease. Her dyspnea
improved, but chest pain remained. In November, imaging
revealed new liver metastases and progressive disease in the
lung. Genomic profiling of a biopsy confirmed the same EGFR
ex19del mutation and MET amplification. Crizotinib was
increased to 250 mg BID. On day 16, imaging showed a
dramatic improvement of the target lesions (Figure 2).

In February 2016, the patient developed progressive dyspnea,
cough, left-sided limb edema, chest pain, swelling of her left
breast, and multiple chest wall/pulmonary nodules. Analysis of
her left breast biopsy revealed an acquired MET Y1230H
mutation and a high PD-L1 expression level (TPS 75%).
She received induction radiotherapy (DT18Gy/3F) for
supraclavicular metastases. The function of MET Y1230H
mutation in lung cancer was unknown at that time. One in
vitro study demonstrated that Y1230H mutation resulted in
resistance to type I but not type II MET inhibitors in BaF3
cells (19). We reasoned that a type II MET inhibitor might
overcome this acquired resistance. Additionally, given the latest
approval of PD-1 antibody pembrolizumab in NSCLC and its
distinct mechanism of action, we believed that pembrolizumab
could benefit this patient independent of targeted therapy. With
the informed consent from the patient, she received a salvage
therapy comprising of gefitinib (250 mg QOD), cabozantinib (40
mg QD), and pembrolizumab (100 mg every two weeks). At one-
month follow-up, her chest wall nodules and left breast swelling
regressed, and her dyspnea improved. Imaging demonstrated a
dramatic radiographic response which lasted for 13 months
(Figure 3). In April 2017, the patient developed new
metastases in the left erector spinae muscle and posterior
abdominal wall. Bevacizumab was added to the combination
regime with stable disease. Unfortunately, the patient’s condition
further deteriorated in October. Cognitive deficits and
electroencephalograms (EEG) abnormalities were noted.
Imaging revealed pleural effusion and new lesions in the liver.
December 2021 | Volume 11 | Article 738832
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Both bevacizumab and pembrolizumab were discontinued.
Genomic profiling of a biopsy revealed the original EGFR
mutation, a TP53 c.376-1G>A splice site mutation, and the
clearance of MET amplification/Y1230H mutation (Figure 1).
The patient chose to continue gefitinib plus cabozantinib, and
died of multiple organ dysfunction two months later. From the
diagnosis of metastatic EGFR-mutant NSCLC in 2013, this
patient achieved an overall survival of 54 months.
DISCUSSION

In the past decade, precision therapy has gradually become the
standard of care for metastatic NSCLC patients with actionable
biomarkers (20). These predictive biomarkers include immune
biomarker PD-L1 and targetable driver mutations such as EGFR
L858R/ex19del mutations. While next-generation sequencing
and PD-L1 testing have significantly improved the treatment
decision-making process for NSCLC, oncologists need to realize
Frontiers in Oncology | www.frontiersin.org 3
that the optimal treatment for patients with multiple actionable
biomarkers requires evidence-based biological rationale and up-
to-date knowledge of clinical trial results.

The EGFR-mutant NSCLC case we reported involved the
interplay of four biomarkers: EGFR exon 19 deletion (ex19del),
PD-L1, MET amplification (MET-amp), and MET Y1230H
mutation. To make the discussion more relevant to today’s
clinical practice, we constructed three scenarios related to this
case: 1. EGFR ex19del mutation and high PD-L1 expression in
untreated NSCLC patients; 2. acquired MET amplification in
EGFR ex19del NSCLC after first-line EGFR TKI therapy; 3.
acquired MET Y1230H mutation in MET-driven NSCLC after
first-line MET TKI therapy.

For the first scenario, EGFR ex19del NSCLC patients with
high PD-L1 expression levels, three treatment choices are available:
chemotherapy, EGFR-targeted therapy, and immunotherapy. The
decision-making process for this scenario can be simplified by a
review of NSCLCNCCN guidelines and literature. The 2017 NSCLC
NCCN guideline stated that EGFR TKIs resulted in longer PFS and
A

B

C

FIGURE 1 | Case summary. (A) Summary of disease course, treatment timeline, and key molecular findings. (B) Hematoxylin-eosin staining, TTF1 and NapsinA
positive immunohistochemical (IHC) staining before treatment; MET positive immunohistochemical staining during progression after platinum-based chemotherapy.
Scale bars: 100 µm. (C) Detailed molecular alterations of tissue and liquid biopsy. FC, fold change; TPS, tumor proportion score.
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fewer toxicities than chemotherapy in patients with sensitizing EGFR
mutations (21). Additionally, pembrolizumab did not show any
response in the first 11 patients enrolled in a phase 2 trial for EGFR-
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mutant, PD-L1-positive NSCLC, including 8 patients with PD-L1
expression more than 50% (22). In a multicenter, retrospective study
involving 171 EGFR-mutant NSCLC patients treated with
immunotherapy, subgroup analysis demonstrated that the
response rate of PD(L)-1 antibodies was very low in EGFR ex19del
NSCLC irrespective of the PD-L1 status (23). Furthermore, the
combination of EGFR TKIs and immunotherapy had significantly
higher toxicities than either alone (24). For these reasons, Calles et al.
commented in the 2020 ASCO educational book that
immunotherapy alone or combined with EGFR TKI is not
recommended to EGFR-mutant NSCLC (25). For the first
scenario, EGFR TKI should be the first-line therapy choice.

The second scenario, EGFR TKI resistance mediated byMET
amplification, is a frontier currently under intensive investigation
(26). There are at least three possible strategies to overcome this
challenge: EGFR TKI plus MET TKI, EGFR-MET bispecific
antibodies, and EGFR TKI plus EGFR-MET bispecific
antibodies. The EGFR/MET TKI combinations evaluated in
early-stage clinical trials include osimertinib/savolitinib,
gefitinib/savolitinib, gefitinib/capmatinib, and gefitinib/
tepotinib. In the phase 1b TATTON study, osimertinib plus
savolitinib achieved an ORR of 64% in osimertinib-naive, EGFR
T790M-negative patients and 48% in a mixed pool of
osimertinib-treated, osimertinib-naive/T790M-positive, and
osimertinib-naive/T790M-negative patients (15). A phase 1b
trial of gefitinib plus savolitinib showed an ORR of 52% (12/
23), 9% (2/23), and 40% (2/5) in EGFR T790M-negative,
-positive, and -unknown patients, respectively (12). In a phase
1b/2 trial, gefitinib plus capmatinib reached an ORR of 47% in
patients with high MET-amplification (MET gene copy number
≥ 6) and 27% overall (14). Similarly, in an early-terminated phase
FIGURE 2 | Gefitinib plus crizotinib treatment and rechallenge for EGFR-mutated NSCLC with MET overexpression/amplification. Based on the result of MET
overexpression, the patient began gefitinib plus crizotinib. A partial response was observed 16 days after the initiation of this combination therapy (upper left panel).
After disease progression, therapy was changed to chemotherapy plus cetuximab for two cycles. Due to chemotherapy-related toxicity, the patient was rechallenged
with gefitinib plus crizotinib (reduced dose, 250 mg QD) with stable disease. Upon the development of new liver metastases, molecular testing of a biopsy confirmed
concurrent EGFR mutation and MET amplification. Crizotinib dose was then increased to 250 mg BID (lower panel). Another partial response was observed 16 days
after the crizotinib dose increase (upper right).
FIGURE 3 | The combination of gefitinib, cabozantinib, and pembrolizumab
for PD-L1-positive, EGFR-mutated, MET-amplified, MET Y1230H NSCLC. A
partial response was observed one month after the initiation of this triplet
regime (upper panel). Bevacizumab was added when the patient developed
new metastases in April 2017. Both bevacizumab and pembrolizumab were
stopped in October 2017 due to acute patient deterioration (lower panel).
December 2021 | Volume 11 | Article 738832
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2 trial (INSIGHT), subgroup analysis revealed that gefitinib plus
tepotinib resulted in longer PFS/OS than platinum duplet
chemotherapy control in 34 patients with high MET
overexpression (IHC3+) (mPFS 8.3 vs 4.4 months, HR 0.35;
mOS 37.3 vs 17.9 months, HR 0.33) as well as 19 patients with
high MET amplification (mean gene copy number ≥5 or MET to
the centromere of chromosome 7 ratio ≥2) (mPFS 16.6 vs 4.2
months, HR 0.13; mOS 37.3 vs 13.1 months, HR 0.08) (13). Our
patient had high MET overexpression (IHC 3+) and high MET
amplification (MET gene copy number = 5.2). Although
she received different gefitinib/MET TKI combination
therapies (gefitinib/crizotinib and gefitinib/cabozantinib), her
PFS and OS are similar to the results of the INSIGHT study
(gefitinib/tepotinib).

In May 2021, FDA granted the accelerated approval of an
EGFR-MET bispecific antibody amivantamab as the first
targeted therapy for NSCLC patients with EGFR exon 20
insertions (ex20ins) based on the phase 1 CHRYSALIS study
(27). Amivantamab inhibits EGFR/MET signaling through three
mechanisms: internalization and degradation of EGFR/MET
receptors, blocking ligand-dependent receptor activation, and
antibody-dependent cell-mediated cytotoxicity (ADCC) (28).
In a preclinical model of EGFR-mutant, MET-amplified
NSCLC, amivantamab showed superior antitumor activity than
the combination of erlotinib and crizotinib (29). Interestingly,
results of the CHRYSALIS trial demonstrated that amivantamab
alone or combined with a third-generation EGFR TKI lazertinib
had antitumor activity in patients with EGFR-mutant, MET-
amplified NSCLC (30). The subgroup analysis showed that
amivantamab plus lazertinib had a 90% (9/10) and 10% (1/10)
response rate in MET IHC-high and MET IHC-low patients,
respectively (31). Therefore, amivantamab could be the game-
changer for this specific patient population.

The third scenario, MET TKI resistance mediated by MET
Y1230H mutation, is associated with METex14 and MET-
amplified NSCLC. Currently, the approval of capmatinib,
tepotinib, and salvotinib are limited to METex14, which is the
only MET alteration included in the 2021 NSCLC NCCN
guideline (2). According to the TCGA data, METex14 and
MET amplification were the first and second most frequent
MET alterations in NSCLC, respectively (32). In agreement,
Y1230H mutation was more frequently observed in METex14
NSCLC than MET-amplified NSCLC (33, 34). Works from
Engstrom and others confirmed that MET Y1230H mutant
was resistant to type I MET TKI capmatinib, salvotinib, and
crizotinib but remained sensitive to type II MET TKI glesatinib
(10). As type I and II MET TKIs bind the ATP-pocket of MET
differently, they have distinct inhibition capacities to MET
mutants. The IC50 values of METex14 single mutant for
capmatinib, crizotinib, and glesatinib in NIH/3T3 cells were
2.4 nM, 28.9 nM, and 80.6 nM, respectively. In contrast, the
IC50 values ofMETex14/Y1230H double mutant for capmatinib,
crizotinib, and glesatinib in NIH/3T3 cells were >3,000 nM, 278
nM, and 56 nM, respectively (10). Similarly, the IC50 values of
MET Y1230H single mutant for capmatinib, savolitinib,
crizotinib, glesatinib, cabozantinib, merestinib in Ba/F3 cells
Frontiers in Oncology | www.frontiersin.org 5
were 401 nM, >1,000 nM, 216 nM, 19 nM, 20 nM, and 8.2
nM, respectively (35). These results predict that acquired MET
Y1230H mutation will confer resistance to all MET TKIs
currently approved for NSCLC.

Given the fact that cabozantinib is the only approved type II
MET inhibitor, the combination of cabozantinib and EGFR TKI is
a reasonable and feasible strategy to combat acquired resistance to
type I MET TKI. Bahcall et al. reported acquired D1228V
mutation resulted in resistance to osimertinib plus salvotinib in
an EGFR ex19del/MET-amp NSCLC patient, who subsequently
responded to erlotinib plus cabozantinib (36). In another similar
case, plasma genotyping revealed four acquired MET mutations
(D1228H/N/Y and Y1230C) in an EGFR ex19del/MET-amp
NSCLC patient who became resistant to osimertinib plus
salvotinib (37). Treatment was changed to osimertinib plus
cabozantinib with stable disease and clearance of Y1230C
mutation. However, cabozantinib was soon discontinued due to
toxicities, and the patient died three months later. These clinical
observations are consistent with the report that MET D1228X
mutations are more resistant to cabozantinib than Y1230X
mutations (38).

Lastly, we would like to discuss our treatment decision-
making for crizotinib resistance mediated by MET Y1230H
mutation. In February 2016, we could not find reports of this
mutation in lung cancer except for two preclinical MET TKI
resistance studies (19, 39). Tiedt et al. conducted a drug
resistance screen in BaF3 TPR-MET cells with type I MET
inhibitor NVP-BVU972 and type II MET inhibitor AMG-458
(19). Most NVP-BVU972-resistant clones carry missense
mutations in Y1230 and D1228. Structure study revealed that
NVP-BVU972 interacts with the aromatic side chain of Y1230.
Therefore, a mutation in this residue will disrupt NVP-BVU972
binding and result in drug resistance. The Y1230 mutation was
not detected in the AMG-458 screen. Biochemical assay results
demonstrated that MET Y1230H mutant was sensitive to AMG-
458 but not NVP-BVU972 (IC50 value: 1.6 nM vs. >127 nM).
Similarly, Funakoshi et al. conducted a screen in a MET-
amplified gastric cell line MKN45 with a type I MET inhibitor
PHA665752 and a type II MET inhibitor GSK1363089/XL880/
foretinib (39). MET Y1230H mutation was only identified in
PHA665752-resistant clones but not foretinib-resistant clones.
This result was expected as the IC50 value of Y1230H mutant for
XL880/foretinib was only 0.7 nM (19). Based on these results, we
reasoned that the crizotinib resistance seen in our case was likely
mediated by Y1230H, a MET mutation sensitive to type II MET
inhibitors. Therefore, we replaced type I MET TKI crizotinib
with type II MET TKI cabozantinib in our EGFR/MET dual
blockade regime.

In summary, we presented the efficacy of gefitinib plus
crizotinib in an EGFR-mutant NSCLC patient with high-level
MET overexpression/amplification and resistance to erlotinib.
Because crizotinib is more accessible and affordable than
capmatinib, tepotinib, and salvotinib, this combination
provides a feasible treatment option for EGFR-mutant, MET-
amplified NSCLC patients who can not assess or afford MET-
specific TKIs. Furthermore, the switch from type I MET TKI to
December 2021 | Volume 11 | Article 738832
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type II MET TKI cabozantinib can be an effective strategy to
overcome acquired type I MET TKI resistance in NSCLC. Given
the recent approval of EGFR-MET bispecific antibody
amivantamab, future investigations are required to explore the
safety and efficacy of TKI-based and antibody-based EGFR/MET
dual blockade therapy in EGFR-mutant,MET-amplified NSCLC.
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