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Cutaneous melanoma (CM) is a very aggressive disease, often characterized

by unresponsiveness to conventional therapies and high mortality rates

worldwide. The identification of the activating BRAFV600 mutations in

approximately 50% of CM patients has recently fueled the development of

novel small-molecule inhibitors that specifically target BRAFV600-mutant

CM. In addition, a major progress in CM treatment has been made by

monoclonal antibodies that regulate the immune checkpoint inhibitors.

However, although target-based therapies and immunotherapeutic strate-

gies have yielded promising results, CM treatment remains a major chal-

lenge. In the last decade, accumulating evidence points to the aberrant

expression of different types of noncoding RNAs (ncRNAs) in CM. While

studies on microRNAs have grown exponentially leading to significant

insights on CM biology, the role of circular RNAs (circRNAs) and long

noncoding RNAs (lncRNAs) in this tumor is less understood, and much

remains to be discovered. Here, we summarize and critically review the

available evidence on the molecular functions of circRNAs and lncRNAs

in BRAFV600-mutant CM and CM immunogenicity, providing recent

updates on their functional role in targeted therapy and immunotherapy

resistance. In addition, we also include an evaluation of several algorithms

and databases for prediction and validation of circRNA and lncRNA func-

tional interactions.

1. Introduction

Cutaneous melanoma (CM) is a malignant neoplasm

that arises from melanocytes, representing the leading

cause of skin cancer-related deaths worldwide, and its

incidence is constantly growing in industrialized coun-

tries [1]. Although surgery remains the definitive treat-

ment for early-stage CM [2], it is rarely curative for

advanced CM; moreover, metastatic CM is character-

ized by a substantial unresponsiveness to conventional
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therapies, including chemotherapy and radiotherapy

[3]. A recent analysis of whole genome alterations in

183 CM samples indicated BRAF and NRAS as the

most frequently mutated genes in CM [4]. In particu-

lar, approximately 50% of patients with CM harbor

activating BRAFV600 mutations, and in 90% of those

mutations, a single nucleotide alteration (nucleotide

1799T>A) results in single amino acid substitution of

valine by glutamic acid (BRAFV600E) [5]. In these

patients, the constitutive activation of MAPK signal-

ing caused by BRAFV600 appears as a major driver of

CM tumorigenic potential and survival [6]. Accord-

ingly, BRAFV600 mutation is an important factor to

guide CM treatment, and BRAF and MEK inhibitors

(BRAFi/MEKi) represent the best therapeutic strategy

for BRAF-mutated CM patients so far. In fact, the

first-line therapy with BRAFi, alone or in combination

with MEKi, has shown remarkable response rates and

a significantly improved progression-free and overall

survival in the advanced disease [7]. Despite these find-

ings, about 15% of CM patients do not achieve tumor

regression, due to primary resistance to BRAFi/MEKi,

and progress more rapidly [8]. In addition, about 50%

of CM patients, who initially respond to targeted ther-

apy, ultimately develop an acquired resistance within

7 months from the start of the treatment [9].

The landscape of therapeutic strategies for CM has

been revolutionized with the development of a new

class of immune modulators, including checkpoint

inhibitors targeting CTLA-4 and PD-1, which have

demonstrated to provide durable responses in the meta-

static disease regardless of mutation status [10]. How-

ever, primary resistance to immune checkpoint

blockade occurs in approximately 40–65% of CM

patients treated with PD-1-targeting therapy and in

about 70% of those treated with anti-CTLA-4 therapy

[11]. Furthermore, late relapses were also reported, sug-

gesting the emergence of acquired resistance; indeed,

43% of CM responders to anti-PD-1 immunotherapy

develop acquired resistance by 3 years [12]. Therefore,

to advance in this field, novel targets and therapeutic

approaches for more effective and long-lasting treat-

ments for CM patients must be explored. Although

noncoding RNAs (ncRNAs) were for years considered

as an irrelevant part of the genome, they have recently

emerged as important modulators of several cancers

[13–15], including CM [16–25], and found to act as

mediators of drug resistance mechanisms [26].

Based on these considerations, this review will pro-

vide novel insights on the function of selected circular

RNAs (circRNAs) and long noncoding RNAs

(lncRNAs) in BRAFV600-mutant CM and in CM

immunogenicity (Table S1). In addition, we present

software algorithms currently available for the predic-

tion and validation of the functional interactions of

circRNAs and lncRNAs.

2. CircRNAs and lncRNAs

CircRNAs are circular loop structures with covalently

linked ends that are mainly generated by pre-mRNA

backsplicing, which connects a downstream 50 splice

donor site to an upstream 30 splice acceptor site [27].

Due to their circular structure, circRNAs are more

resistant to exonucleases that typically degrade linear

RNA and much more stable in biological fluids [28].

CircRNAs are predominantly localized in the
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cytoplasm, whereas a limited number of circRNAs

reside in the nucleus [29]. Exonic circRNAs (ecircR-

NAs) represent more than 80% of total circRNAs, are

mainly cytoplasmic, and in some cases are expressed

higher than their corresponding linear mRNAs [30].

CircRNAs can also arise from intron lariats that escape

degradation after canonical splicing (ciRNAs) or from

introns that have been retained between circularized

exons (EIciRNAs), and both are primarily located in

the nucleus, where they regulate the expression of their

parental genes [31]. So far, two models of ecircRNA

and EIciRNA formation have been proposed: the

lariat-driven circularization and the intron-pairing-

driven circularization which differ for the order in

which canonical and backsplicing occur [30] (Fig. 1).

LncRNAs are expressed at lower levels in compar-

ison with mRNAs and display more tissue-specific

expression patterns [32]. Additionally, lncRNAs can be

distributed either in the nucleus or the cytoplasm, or

in both compartments simultaneously [summarized in

[33]], and may or may not be subject to polyadenyla-

tion or alternative splicing [34]. Although few

lncRNAs have been characterized in detail, it is clear

that lncRNAs regulate various biological processes

[35] in a number of different ways [summarized in

[36]]. Based upon their genomic location, lncRNAs

can be classified into five categories: (a) sense or (b)

antisense, when the lncRNA overlaps the neighboring

protein-coding gene on the same, or opposite, strand,

respectively; (c) bidirectional, when the lncRNA tran-

scription start site (TSS) is located within 1 kb, but on

the opposing strand, of the TSS of the nearest protein-

coding gene; (d) intronic, when lncRNA derives from

intronic regions of protein-coding genes; and (e)

Fig. 1. Biogenesis of circRNAs. During mRNA maturation, competition between linear splicing and backsplicing can lead to the formation of

intron lariats, which can be further processed into circRNAs. Alternatively, the presence across flanking introns or within them of repeated

sequences (i.e., Alu repeats with opposite directions) can produce intron-driven circularization of RNA. In both lariat-pairing-driven

circularization and intron-pairing-driven circularization, introns can be removed to originate an exonic circRNA (ecircRNA), or retained to form

an intron-containing circRNA (ciRNA or EIciRNA). CiRNA biogenesis relies on a consensus motif of a 7 nucleotide GU-rich element near the

50 spliced site and an 11 nucleotide C-rich element adjacent to the branchpoint site. RNA-binding proteins (RBPs) may actively participate in

this process. EcircRNAs (exonic circRNAs) are mainly distributed in the cytoplasm, whereas ciRNAs (circular intronic RNAs) and EIciRNAs

(exon- and intron-containing circular RNAs) are primarily located in the nucleus.
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intergenic, or long intergenic noncoding RNAs (lincR-

NAs), when lncRNA is located within the genomic

interval between two genes [37].

Besides acting as competitive endogenous RNAs

(ceRNAs), both circRNAs and lncRNAs can also act

through different mechanisms, as shown in Fig. 2.

Interestingly, circRNAs or lncRNAs might also origi-

nate from chromosomal DNA translocations. How-

ever, the expression patterns and functions of these

ncRNAs in solid tumors are still unclear [summarized

in [38]].

3. LncRNAs as regulators of the
MAPK-signaling cascades

MAPK pathways are cascades of four kinases that reg-

ulate a range of biological processes [summarized in

[39,40]]. So far, there are a number of studies aimed at

elucidating lncRNA-MAPK-signaling interaction net-

works in CM harboring BRAF or RAS mutations,

whereas no information on circRNAs is available

(Table 1, Fig. 3).

3.1. LncRNAs related to MAPK/ERK signaling

pathway

As stated above, the MAPK/ERK cascade plays a key

role in BRAFV600-mutant CM development, making it

the most prominent and clinically utilized therapeutic

target [summarized in [41]]. In this context, a number

of lncRNAs were shown to actively interact with

BRAFV600 and/or MAPK/ERK pathway in CM,

including the oncogenic BRAF-activated nonprotein-

coding RNA (BANCR). BANCR was originally corre-

lated with BRAFV600 activation since it was found to

be overexpressed in BRAFV600-mutant CM in compar-

ison with normal melanocytes. Although BANCR was

initially described as a regulator of CM migration [42],

subsequent studies demonstrated that BANCR regu-

lated CM progression through activating the ERK1/2

and JNK/MAPK pathways both in vitro and in vivo

[43]. In BRAF-mutant A375 cells, BANCR expression

appeared to depend on the long intergenic nonprotein-

coding RNA p53-induced transcript (LINC-PINT)

[44], which is known to function as a tumor suppressor

[45] and to interact with MAPK [46]. Despite these

findings, the question of whether LINC-PINT might

regulate the BANCR/MAPK axis to inhibit BRAF-

mutant CM progression deserves further study.

In their study, Sang et al. reported a significant

upregulation of the lncRNA ovarian adenocarcinoma

amplified long noncoding RNA (OVAAL) in BRAF-

mutant CM compared with wild-type CM in a TCGA

dataset. Detailed mechanistic insights revealed that

OVAAL was bound to STK3, enhanced the structural

association of STK3 with Raf-1, and activated the

MAPK/ERK signaling pathway which, in turn, pro-

moted c-Myc-driven proliferation. Following treatment

with the MEKi UO126, OVAAL failed to influence c-

Myc levels, thus confirming that the OVAAL-mediated

upregulation of c-Myc was depended on the MAPK

pathway. In addition, silencing of c-Myc reduced,

whereas overexpression of c-Myc increased, OVAAL

expression levels. These results clearly suggested a pos-

itive feedback loop between c-Myc, OVAAL, and

MAPK/ERK signaling pathway in controlling tumor

growth [47]. The same group reported that OVAAL

competed with p27 mRNA for binding to PTBP1, thus

impairing p27 mRNA translation and allowing CM

cells to escape from cellular senescence [47]. However,

since these studies have been performed in BRAFWT/

NRASQ61R CM cells, it would be of interest to address

in more detail the specific role of OVAAL in BRAF-

mutant CM.

Alike to OVAAL, the lncRNA MIR31HG was

implicated in CM senescence. Intriguingly, both activ-

ity and subcellular localization of MIR31HG were

strictly dependent on BRAFV600E [48]. Under normal

conditions, MIR31HG was predominantly located in

the nucleus of CM cells, where it recruited polycomb

group (PcG) proteins to the INK4 locus to repress

p16INK4A expression. Interestingly, MIR31HG

knockdown reduced PcG chromatin occupancy and

induced p16INK4A-dependent senescence, which was

reverted by MIR31HG overexpression. RNA-seq

analysis of CM samples holding normal diploid

INK4A loci revealed a negative correlation between

MIR31HG and p16INK4A expression, indicating that

Fig. 2. CircRNA (A) and lncRNA (B) functions. CircRNAs can modulate gene expression at different levels: by competitive miRNA sponging

and sequestration, thus indirectly enabling the transcription of downstream genes, or by direct interaction with target mRNAs. In rare cases,

circRNAs can be translated into proteins. Lastly, circRNAs can interact with RNA-binding proteins (RBPs) to regulate multiple signaling

pathways. LncRNAs are involved in transcriptional and post-transcriptional regulation of gene expression. In particular, lncRNAs have been

implied in different regulatory mechanisms: by competitively binding to miRNAs, by binding and redirecting chromatin remodeling proteins

or transcription factors to alternatively modulate transcription of target genes, and by regulating mRNA splicing and degradation. In addition,

lncRNAs can serve as scaffold for the formation of multiprotein complexes.
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Table 1. CircRNAs and lncRNAs that are aberrantly expressed in BRAF/RAS-mutant CM.

Functional

pathway NcRNA ID

Expression

change Cell lines

BRAF/RAS

mutational

status Target gene(s) Notes References

MAPK/ERK

pathway

ATB Up A375

A2058

BRAFV600E MiR-590-5p/YAP-1 [119]

BANCR Up A375

1205Lu

SK-MEL-5

BRAFV600E ERK1/2 and JNK

pathway

components

BANCR

expression is

downregulated

by LINC-PINT

[43,44]

MIR31HG Up Human diploid

fibroblasts expressing a

constitutively activated

form of the mouse

BRAFV600E fused to the

estrogen receptor

BRAFV600E p16INK4A [48]

MIR4435-

2HG

Up A375

A2058

BRAFV600E MiR-802/FLOT2

(MAPK/ERK?)

[57]

MIRAT Up DO4

MM415

NRASQ61L MAPK pathway/

IQGAP1

[61]

Orilnc1 Up A2058

LOX-IMVI

UACC-257

WM9

WM983B

1205Lu

451Lu

BRAFV600E Cyclin E1 [51]

SK-MEL-2

WM3936

NRASQ61L

OVAAL Up ME4405 NRASQ61L p27 [47]

RMEL3 Up WM278

WM1617

BRAFV600E MAPK pathway

components

[49]

ZEB1-AS1 Up TGCA data BRAFV600E

NRASQ61L

MAPK/ERK? [52]

p38/JNK

pathway

BANCR Up A375

1205Lu

SK-MEL-5

BRAFV600E ERK1/2 and JNK

pathway

components

BANCR

expression is

downregulated

by LINC-PINT

[43,44]

FENDRR Down A375

SK-Mel-28

BRAFV600E MMP2, MMP9, JNK

pathway

component

[67]

SK-MEL-110 KRASE63K

SPRY4-IT1 Up A375

WM1552C

BRAFV600E MiR-22-3p/

p38MAPK/

MAPKAPK/Hsp27

[73]

SRA Up A375

SK-MEL-1

BRAFV600E p38 [74]

ERK5

pathway

FOXD3-AS1 Up A375

SK-Mel-1

BRAFV600E MiR-325/MAP3K2

(ERK5?)

[79]

PI3K/AKT

pathway

H19 Up C32

SK-MEL-28

BRAFV600E PI3K/AKT and NF-kB

pathway

components

[200]

LINC00961 Down A375

SK-MEL-28

BRAFV600E MiR‑367/PTEN [89]

MHENCR Up A375 BRAFV600E MiR-425/489/PI3K-

Akt pathway

[85]

SK-MEL-2 NRASQ61L
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Table 1. (Continued).

Functional

pathway NcRNA ID

Expression

change Cell lines

BRAF/RAS

mutational

status Target gene(s) Notes References

MIAT Up A375

A2058

M21

SK-MEL-28

BRAFV600E PI3K-Akt pathway

components

[158]

PEG10 Up A375 BRAFV600E MiR-33a/PI3K-Akt

and mTOR

pathways

[83]

RMEL3 Up WM278

WM1617

BRAFV600E PI3K/Akt pathway

components

[49]

GAS6/AXL

pathway

GAS6-AS2 Up A375

SK-MEL-5

BRAFV600E GAS6, AXL [94]

SK-MEL-2 NRASQ61L

MITF

pathway

DIRC3 Down SK-MEL-28

A375

501mel

BRAFV600E IGFBP5 [100]

PRC2

complex

ANRIL Up A375 BRAFV600E CDKN2A/B [130]

CDR1as Up Cancer Cell Line

Encyclopedia

BRAFV600E IGF2 mRNA-binding

protein 3

CD1R arises from

the PRC2-

mediated

epigenetic

silencing of the

lncRNA

LINC00632

[128]

CircANRIL Up BJ BRAFV600E PRC proteins [129]

GAS5 Down A375 BRAFV600E EZH2 [135]

SK-MEL-110 KRASE63K

PVT1 Up A375

SK-MEL-5

BRAFV600E MiR-200c/EZH2 [137]

EMT/

invasion/

metastasis

BANCR Up A375

A875

M14

BRAFV600E MiR-204/Notch2 [201]

CASC2 Down A375 BRAFV600E MiR-18a-5p/RUNX1 [202]

A375

M14

BRAFV600E MiR-181a/PLXNC1 [203]

Circ_0016418 Up SK-MEL-1

SK-MEL-5

BRAFV600E MiR-625/YY1 [115]

Circ_0084043 Up A375

A875

BRAFV600E MiR-153-3p/Snail [119]

A375

SK-MEL-28

BRAFV600E Wnt/b-catenin

pathway through

miR-429/TRIB2 axis

[120]

CRNDE Up A375

M14

BRAFV600E MiR-205/CCL18 [204]

GAS5 Down A375

M21

SK-Mel-28

BRAFV600E MMP2, MMP9 [205]

SK-Mel-110 KRASE63K

HOTAIR Up A375 BRAFV600E MMP2, MMP9 [102]

A375

A875

SK-MEL-1

SK-MEL-5

SK-MEL-28

BRAFV600E MiR-152-3p/c-MET [104]
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Table 1. (Continued).

Functional

pathway NcRNA ID

Expression

change Cell lines

BRAF/RAS

mutational

status Target gene(s) Notes References

KCNQ1OT1 Up A375

A875

MuM-2C

BRAFV600E MiR-153/c-MET [206]

LINC00173 Up A375

A2058

HT144

SK-MEL-1

BRAFV600E MiR-493/IRS4 [207]

LINC00518 Up A375

A2058

SK-MEL-28

BRAFV600E MiR-204-5p/AP1S2 [112]

LINC00963 Up A375

A2058

BRAFV600E MiR-608/NACC1 [208]

MALAT1 Up A375

SK-MEL-5

BRAFV600E MiR-22/MMP14/

Snail

[209]

SK-MEL-2 NRASQ61L

MIAT Up A375

SK-MEL-28

BRAFV600E MiR-150 [210]

NEAT1 Up A375

A2058

SK-MEL-28

BRAFV600E MiR-495-3p/E2F3 [211]

A375

A875

A2058

M14

451LU

BRAFV600E MiR-23a-5p/KLF3 [144]

MEG3 Down A375

A875

BRAFV600E MiR-499-5p/CYLD [126]

MiR-21/E-cadherin [127]

SSATX Up A375

A875

BRAFV600E Wnt/b-catenin

pathway

Alternative

splicing variant

of the SAT1

gene, it might

function as a

lncRNA prior to

its degradation

[212]

SLNCR1 Up A375 BRAFV600E MMP9 [213]

TUG1 Up A375

SK-MEL-5

WM35

BRAFV600E MiR-129-5p/AEG-1 [123]

SK-MEL-2 NRASQ61L

A375 BRAFV600E MiR‑29c‑3p/RGS1 [214]

SK-MEL-2 NRASQ61L

UCA1 Up A375 BRAFV600E MiR-507/FOXM1 [215]

SK-MEL-2 NRASQ61L MiR-185-5p/Wnt/b-

catenin pathway

[122]

A375

A2058

HS294T

WM266-4

BRAFV600E

Metabolism CircMYC Up Mel-CV BRAFV600E MiR-1236/LDHA c-MYC-SRSF1

axis regulates

the production

of circMYC

[141]
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MIR31HG-mediated repression of p16INK4A might

drive CM progression. The same authors also observed

that following BRAFV600E activation, MIR31HG

translocated to the cytoplasm, whereas CM cells

acquired an oncogene-induced senescence (OIS) pheno-

type along with an increased expression of p16INK4A

protein. Consistent with this, MIR31HG depletion

reduced BRAFV600E CM cell growth and promoted

OIS. However, although p16INK4A levels decreased

upon MIR31HG overexpression, OIS was not reverted,

thus highlighting the complexity of molecular mecha-

nisms involved in BRAFV600E-induced senescence [48].

Compared with wild-type CM, BRAFV600-mutant

CM exhibited a significant upregulation of the onco-

genic restricted to melanocyte 3 (RMEL3) [49].

Enforced RMEL3 expression enhanced BRAFV600-

mutant CM cell proliferation and clonogenic ability

both in vitro and in vivo [50], whereas RMEL3 abroga-

tion decreased cell survival and proliferation along

with an increase in PTEN and cell cycle inhibitors p21

and p27 protein levels [49]. Aberrant expression levels

of MAPK/ERK and PI3K/AKT pathway effectors

were also observed upon RMEL3 silencing [49], thus

indicating that MAPK/ERK activation and RMEL3

expression might be coordinately regulated through a

positive feedback loop. Similarly to RMEL3, the

oncogenic RAS-induced lncRNA 1 (Orilnc1) was

found increased in BRAFV600-mutant CM in respect to

wild-type CM. In line with the observation that Oril-

nc1 was induced by RAS-RAF-MEK-ERK pathway

activation, Orilnc1 acted as a mediator of RAS signal-

ing and promoted an oncogenic CM phenotypes by

regulating cyclin E1 in BRAF-mutant CM cells [51]. In

addition to RMEL3 and Orilnc1, CM samples carry-

ing BRAF or NRAS mutations overexpressed the

lncRNA ZEB1 antisense RNA 1 (ZEB1-AS1) [52].

However, the correlation between ZEB1-AS1 deregula-

tion and MAPK activation in BRAF-mutant CM has

not been assessed so far.

The lncRNA activated by TGF-beta (ATB) could

enhance the expression of YAP-1 by sponging miR-

590-5p to promote proliferation, migration, and inva-

sion of BRAF-mutant CM cells. Of note, YAP-1 acti-

vation induced the ERK/MAPK-signaling pathway in

gallbladder [53] and papillary thyroid cancers [54]

which commonly harbor BRAF mutations [55,56].

Hence, it would be interesting to study ATB regulation

and to investigate whether the ATB/YAP-1 axis trig-

gers the ERK/MAPK pathway in BRAF-mutant CM.

Recently, a positive correlation between MIR4435-

2HG and flotillin 2 (FLOT2) expression was identified

in A375 and A2058 cells, where MIR4435-2HG

Table 1. (Continued).

Functional

pathway NcRNA ID

Expression

change Cell lines

BRAF/RAS

mutational

status Target gene(s) Notes References

Circ_ITCH Down A375

M21

BRAFV600E GLUT1 Circ_ITCH is

generated from

several exons of

ITCH

[140]

Circ_0016418 Up A375

A875

BRAFV600E MiR-605-5p/GLS [145]

Circ_0025039 Up A375

A2058

SK-MEL-1

BRAFV600E MiR-198/CDK4 Circ_0025039

originates from

the NM_202002

fragment of

chromosome

12, which is

homologous to

the protein-

coding gene

FOXM1

[142]

Circ_0084043 Up A375

A378

BRAFV600E MiR-31/KLF3 axis [143]

H19 Up A375

SK-MEL-1

SK-MEL-5

BRAFV600E MiR-106a-5p/E2F3 [216]

OIP5-AS1 Up A375 BRAFV600E MiR-217/GLS [146]
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sponged miR-802 to upregulate FLOT2 [57]. Small

interfering RNA (siRNA) targeting FLOT2 restrained

A375 cell proliferation, migration, and invasion,

whereas MIR4435-2HG upregulation or miR-802

silencing abrogated the inhibitory effects of FLOT2

knockdown. FLOT2 is highly expressed in CM and was

related to lymph node CM metastasis [58]. Of interest,

MAPK/ERK pathway was predicted to play a key role

in the signaling cascade caused by FLOT2 overexpres-

sion in CM [59]. Hence, further investigation is needed

to determine whether MIR4435-2HG/miR-802/FLOT2

axis might affect BRAF-mutant CM progression

through modulating MAPK/ERK signaling.

The above reported data clearly indicate that altered

lncRNA expression contributes to the abnormal

MAPK signaling in BRAFV600-mutant CM. In addi-

tion, considering that MAPK pathway activation rep-

resents a frequent mechanism of resistance for small

molecules directed against BRAFV600, it is reasonable

to believe that aberrant lncRNA expression might also

influence CM resistance to BRAFi. Actually, little is

known about the role of lncRNAs in the establishment

Fig. 3. LncRNAs associated with the MAPK pathways in CM. Red arrows and green blocking bars indicate a positive or negative regulation,

respectively.
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of CM resistance to BRAFi [60], and only few studies

have explored the impact of lncRNA silencing in

restoring sensitivity to target therapies in CM. For

instance, an induced expression of the lncRNA-

MAPK inhibitor resistance-associated transcript

(MIRAT) was found in NRAS-mutant CM cells with

acquired resistance to BRAFi/MEKi [61]. Gain- and

loss-of-function assays, as well as RNA–protein inter-

action assays, indicated that MIRAT modulated the

MAPK-signaling pathway by binding to the scaffold

protein IQGAP1 [61], which could promote RAS-

MAPK-driven cancer invasion [62]. Interestingly,

MIRAT depletion did not significantly affect cell via-

bility in resistant NRAS-mutant CM cells, thus sug-

gesting that, despite its role in regulating MAPK

activation, MIRAT silencing was not sufficient to

revert resistance to targeted therapy [61]. However,

since no additional studies have been performed corre-

lating MIRAT with BRAFi/MEKi resistance in

BRAF-mutant CM, this lncRNA should be further

investigated. Differently, the silencing of the lncRNA

survival-associated mitochondrial melanoma-specific

oncogenic noncoding RNA (SAMMSON) drastically

impaired CM cell viability irrespective of their BRAF,

NRAS, or p53 mutational status and improved sensi-

tivity toward targeted therapy in patient-derived xeno-

graft models of BRAFV600-mutant CM [63].

Mechanistically, SAMMSON interacted with p32 to

maintain its mitochondrial localization and to enhance

its function. Concordantly, SAMMSON targeting

using antisense oligonucleotides (ASOs) decreased

mitochondrial ribosome biogenesis, oxidative phospho-

rylation, and respiratory chain complex activity.

Therefore, the synergistic killing of BRAFV600-mutant

CM cells observed upon co-targeting of SAMMSON

and MAPK pathway components was likely to arise

because BRAFi elevated oxidative phosphorylation

[64], whereas SAMMSON silencing led to mitochon-

drial dysfunction.

3.2. LncRNAs related to JNK and p38 MAPK-

signaling pathways

Besides MAPK/ERK cascade, stress-activated MAPK

pathways, such as JNK and p38, play important mod-

ulatory roles that can influence the response of CM

cells to targeted therapy [65,66]. For instance, as

reported above, BANCR was demonstrated to activate

JNK along with MAPK/ERK signaling pathway [43].

Another lncRNA, namely FOXF1 adjacent noncoding

developmental regulatory RNA (FENDRR), mediated

proliferation, migration, and invasion of BRAF- and

KRAS-mutated CM cells through the JNK pathway.

Contrary to BANCR, FENDRR was downregulated

in CM with the lowest expression in CM with metasta-

sis [67]. In vitro and in vivo functional analyses

revealed that FENDRR not only antagonized the

JNK pathway, but also inhibited matrix metallopepti-

dases expression. So far, three different JNK isoforms

have been identified, namely JNK1, JNK2, and JNK3.

Interestingly, a paper of Du et al. [68] reported that

JNK2 expression was significantly higher than JNK1

in CM and was specifically required for cell prolifera-

tion, invasiveness, and adaptive BRAFi resistance.

However, the studies of Li et al. and Chen et al. did

not indicate which JNK isoform interacted with

BANCR and FENDRR, respectively.

Other studies reported that p38/MAPK might

mediate cell survival [69] or cell death in BRAF-

mutant CM [70] depending on the cell context and

the type of stimulus. For instance, p38/MAPK signal-

ing was reported to be involved in biological pro-

cesses associated with CM progression and mediated

by the lncRNAs SPRY4 intronic transcript 1

(SPRY4-IT1), which was initially identified to be

upregulated in BRAF-mutant WM1552C and A375

cells in comparison with melanocytes. SiRNA-

mediated SPRY4-IT1 knockout was shown to inhibit

CM cell proliferation, motility, and invasion, while

increasing apoptosis [71]. SPRY4-IT1 is transcribed

from the second intron of the SPRY4 gene, a regula-

tor of the MAPK cascade [72], indicating that

SPRY4-IT1 may also affect the MAPK-signaling

pathway. To investigate this further, A375 cells were

transfected with short hairpin RNA targeting

SPRY4-IT1. Results demonstrated that SPRY4-IT1

depletion reduced the phosphorylation levels of p38,

MAPKAPK, and Hsp27. In addition, SPRY4-IT1

knockdown enhanced miR-22-3p levels and inhibited

CM proliferation and metastasis. Hence, Li et al. [73]

proposed that SPRY4-IT1 could act as ceRNA via

sponging miR-22-3p to activate the p38 MAPK-

signaling pathway in CM.

Alike to SPRY4-IT1, the lncRNA steroid receptor

RNA activator (SRA) was upregulated in A375 and

SK-MEL-1, both of which are BRAF-mutant CM cell

lines. Functional assays showed that SRA mediated

cell proliferation and regulated cell invasion in the

A375 cell line and in B16 murine CM cells. Of interest,

a shift from p38 to MEK1/2 and BRAF phosphoryla-

tion emerged in B16 cells when SRA was inhibited

with siRNAs [74]. However, since B16 cells do not

harbor a BRAF mutation, future studies would be nec-

essary to further explore whether SRA influences

MAPK signals in BRAF-mutant CM.
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3.3. LncRNAs related to ERK5 signaling pathway

ERK5 was recently shown to be activated in BRAF-

mutant CM and to be involved in BRAFi/MEKi resis-

tance [75–78]. Of interest, the lncRNA FOXD3 anti-

sense RNA 1 (FOXD3-AS1) sponged miR-325 to

positively regulate MAP3K2, an upstream activator of

ERK5, in A375 and SK-MEL-1 cells. In addition,

MAP3K2 overexpression could rescue the effect

induced by FOXD3-AS1 silencing and improved pro-

liferation, invasion, and migration of BRAF-mutant

CM [79]. At the moment, however, it remains to be

clarified whether the FOXD3-AS1/miR-325/MAP3K2

axis also affects the ERK5 pathway and/or has a role

in targeted therapy resistance.

4. Pleiotropic effects of circRNAs and
lncRNAs in BRAF-mutant CM

In addition to MAPK-related lncRNAs, several other

circRNAs and lncRNAs have demonstrated aberrant

expression in CM. Since these studies were mainly con-

ducted in BRAF- and RAS-mutant CM cell lines, cir-

cRNA and lncRNA deregulation likely represents a

mechanism for strengthening the already activated

MAPK signaling. Consistent with this hypothesis,

most of these ncRNAs were proven to target molecu-

lar pathways that cooperate with MAPK family mem-

bers and/or are known to be involved in BRAFi/

MEKi resistance of CM cells. More importantly,

restoration of their expression could revert the malig-

nant phenotype both in vitro and in vivo, thus confirm-

ing their pathogenic relevance (Table 1).

4.1. LncRNA modulation of PI3K/AKT signaling

The PI3K/AKT signaling pathway is one of the major

regulators of cell survival and apoptotic cell death.

PI3K/AKT and MAPK/ERK pathways strictly regu-

late each other; therefore, the inhibition of one of

these two pathways can promote the activity of the

other one [80]. PI3K/AKT aberrant activation is a

common phenomenon in CM cells, where increased

PI3K/AKT signaling, with or without concomitant

MAPK activity, represents an alternative path to both

innate and acquired BRAFi/MEKi resistance [81].

Microarray analysis in 18 melanocytic nevi with and

four nevi without the BRAFV600E mutation revealed 92

upregulated genes in nevi with the BRAF mutation,

including the lncRNA paternally expressed gene 10

(PEG10) [82], thus suggesting that gain of PEG10

expression might occur early during BRAF-mutant

CM development. Functional analyses demonstrated

that PEG10 silencing reduced cyclin D1 and CDK4

expression, triggered apoptosis, and impaired A375

CM cell migration and invasion. More specifically,

PEG10 knockdown obstructed PI3K/AKT pathway by

enhancing the expression of miR-33a [83] which func-

tions as a tumor suppressor in CM [84]. Although

these results enforced PEG10 involvement in the pro-

gression of BRAFV600 CM, the deeper correlation

between PEG10 and PI3K/AKT pathway remains to

be further explored.

Chen et al. [85] identified melanoma highly expressed

noncoding RNA (MHENCR) as a critical regulator of

PI3K/AKT. Mechanistically, MHENCR associated with

miR-425 and miR-489 which inhibit PI3K/AKT path-

way via targeting IGF1 and spindlin 1, respectively.

PI3K/AKT activation through IGF1 deregulation has

been shown to result in CM metastasis [86] and resis-

tance to BRAFi-induced apoptosis [81]. In patients with

BRAFi resistance, deregulation of the PI3K/AKT path-

way may be mediated by several mechanisms, including

the loss of function of the tumor suppressor PTEN [87].

NcRNAs have been shown to regulate PTEN, thus con-

tributing to the aberrant activation of the PI3K/AKT

pathway. Among them, miR-367 was reported to

directly regulate PTEN protein expression to promote

CM development [88]. Recently, Mu et al. provided the

first evidence that the lncRNA LINC00961 acted as a

micro-RNA (miRNA) sponge for miR-367. By sponging

miR-367, LINC00961 restored PTEN expression and

suppressed migration and invasion of the BRAF-mutant

A375 and SK-MEL-28 cells [89]. Hence, whether

MHENCR and LINC00961 are involved in CM resis-

tance to BRAFi/MEKi requires further study.

4.2. LncRNA regulation of Gas6/AXL signaling

pathway

GAS6 is a ligand for several receptor tyrosine kinases,

including AXL which is usually highly expressed in

BRAFi/MEKi-resistant CM [90–92]. Furthermore,

recent genomic and transcriptomic data from meta-

static CM patients indicated that AXL overexpression

might cause resistance to anti-PD-1 therapy [93]. In a

recent study, Wen et al. found that the antisense RNA

2 of GAS6 (GAS6-AS2) promoted the secretion of

GAS6 in the CM cell supernatants and further

increased the phosphorylation levels of AXL, AKT,

and ERK in an autocrine manner. In addition, GAS6-

AS2 accelerated CM cell proliferation, and inhibited

CM cell apoptosis both in vitro and in vivo. Notably,

ectopic expression of GAS6-AS2 activated the pro-

survival GAS6/AXL/AKT/ERK signals not only in

BRAFV600 CM cells but also in NRAS-mutant CM,
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thus supporting the rationale for further investigation

on the potential implications of GAS-AS2 in BRAFi/

MEKi resistance [94].

4.3. LncRNAs in MITF signaling pathway

MITF is a master regulator transcription factor with

well-documented roles not only in melanocytes, but also

in CM progression. Three major subpopulations of cells

with different MITF expression levels have been detected

in CM, some with high MITF levels, which were more

proliferative, some exhibiting low MITF levels along

with higher invasive and tumor-forming capacities, and

others expressing markers of both signatures [95]. In

BRAFi/MEKi-resistant CM cells, low MITF expression

could induce high levels of tyrosine kinase receptors,

such as AXL and EGFR, thus contributing to prolonged

therapy resistance [92,96]. However, MITF overexpres-

sion could also drive resistance, indicating its complex

role in CM resistance to targeted therapy [97]. SOX10

activates MITF transcription in a cis-acting fashion in

melanocytes and CM [98] and cooperates with MITF in

activating further downstream targets [99]. Coe et al.

identified 245 CM-associated lncRNAs whose loci were

cobound by MITF and SOX10, including disrupted in

renal carcinoma 3 (DIRC3). DIRC3 was described as a

nuclear regulatory lncRNA that activated the expression

of the neighboring IGFBP5 tumor suppressor gene.

DIRC3 loss of function in three BRAF-mutant CM cell

lines led to increased anchorage-independent growth

and SOX10 occupancy at putative regulatory elements

within the DIRC3 locus [100]. Furthermore, DIRC3

depletion enhanced SOX10-mediated repression of

IGFBP5 [100], which negatively regulated MAPK kinase

signaling to inhibit BRAF-mutant A375 cell prolifera-

tion and metastasis [100].

4.4. CircRNA and lncRNA involvement in

epithelial-to-mesenchymal transition (EMT),

invasion, and metastasis

It is widely recognized that oncogenic BRAF and RAS

modulate the expression of cell adhesion-associated

proteins and induce an EMT switch that promotes

metastasis and CM progression [101]. Consistently, a

close correlation between an EMT-like phenotype and

ncRNAs deregulation was found in CM cells carrying

BRAF or RAS mutations. As shown in Table 1, dereg-

ulated circRNAs and lncRNAs can impact CM epithe-

lial plasticity by affecting different target genes, and

their effects are mainly ascribed to their ability to act

as ceRNAs.

HOX transcript antisense RNA (HOTAIR) has

emerged as a critical factor for CM metastatic state

since its expression was dramatically increased not

only in metastatic respect to primary CM [102], but

also in lymphocytes surrounding metastatic CM cells

[103]. Luan et al. [104] suggested that HOTAIR might

promote CM invasion and migration by competitively

binding to miR-152-3p to upregulate the tyrosine

kinase c-MET, which is known to be involved in CM

metastasis [105]. The activation of c-MET by the

lncRNA KCNQ1 opposite strand/antisense transcript 1

(KCNQ1OT1) was also found to increase the meta-

static growth of A375 cells. Importantly, besides pro-

moting CM metastasis, c-MET upregulation was

recognized to contribute to BRAFi resistance [106],

whereas both HOTAIR and KCNQ1OT1 were sup-

posed to play a role in chemoresistance [107–109] and
radioresistance [110,111]. Despite these findings, how-

ever, no study has demonstrated their possible involve-

ment in c-MET-induced BRAFi resistance so far.

LINC00518 promoted in vitro invasion and migra-

tion of BRAF-mutant A375 and A2058 cells and

in vivo pulmonary metastasis through decoying miR-

204-5p to upregulate AP1S2 expression [112]. Interest-

ingly, a previous study demonstrated that BRAFV600

negatively regulated miR-204 through the MAPK/

ERK pathway, whereas treatment with BRAFi/MEKi

induced its expression. Furthermore, miR-204 overex-

pression potentiated anti-migratory activity of BRAFi-

resistant CM cells by targeting mRNA [113].

Using microarray analysis, several aberrantly

expressed circRNAs were identified in the BRAF-

mutant WM35 and WM451 cell lines compared with

normal melanocytes. Functional tests revealed that,

among these circRNAs, circ_0000082, circ_0008157,

circ_0016418, circ_0023988, and circ_0030388 regu-

lated proliferation and invasion of CM cells [114]. Fur-

ther research indicated that circ_0016418 contributed

to SK-MEL-1 and SK-MEL-5 cell proliferation and

metastasis in skin melanoma by sponging miR-625 to

activate YY1 [115]. Of note, Du et al. [116] uncovered

that YY1 suppression enhanced antitumor efficacy of

BRAFi both in vitro and in vivo. Nevertheless, whether

circ_0016418/miR-625/YY1 axis takes part in regulat-

ing the response to BRAFi is still unknown.

In a study by Luan et al., circRNA_0084043 was

reported to directly bind to miR-153-3p, a tumor sup-

pressor capable of regulating EMT through targeting

SNAIL [117,118]. The use of siRNA targeting cir-

cRNA_0084043 and miR-153-3p mimics significantly

repressed proliferation, migration, and invasion abili-

ties of BRAF-mutant A375 and A875 cells. Further-

more, circRNA_0084043 knockdown decreased both
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mRNA and protein levels of SNAIL, and this inhibi-

tion was attenuated by cotransfection of a miR-153-3p

inhibitor. Therefore, circRNA_0084043 might play a

pivotal role in BRAF-mutant CM progression via

sponging miR-153-3p to upregulate SNAIL [119]. In a

subsequent study, Chen et al. further evaluated the

effects of circ_0084043 knockdown through in vivo

and in vitro experiments that confirmed its oncogenic

role in CM. In particular, the authors unveiled that

circ_0084043 positively controlled TRIB2 expression

through sponging miR-429. Notably, the downregula-

tion of TRIB2 following circ_0084043 knockdown not

only reduced proliferation, migration, and invasion of

BRAF-mutant A375 and SK-MEL-28 cells, but also

inhibited b-catenin, c-Myc, and cyclin D1 expression.

These results highlighted the ability of circ_0084043/

miR-429/TRIB2 axis to control the Wnt/b-catenin sig-

naling pathway [120], which is frequently activated in

EMT and metastasis [101], and was recently found to

correlate with overall immune suppression and to drive

immunotherapy resistance in CM as well [121]. Hence,

the potential effects of ncRNAs/Wnt/b-catenin net-

work on resistance to both targeted agents and

immune checkpoint inhibitors should be considered

for future studies. Similarly to circ_0084043, the

lncRNA urothelial carcinoma associated 1 (UCA1)

modulated the expression of b-catenin and c-Myc

through a competitive ceRNA network, leading to

EMT in BRAF-mutant CM cells [122]. Taurine upreg-

ulated 1 (TUG1) sequestered miR-129-5p to upregu-

late AEG-1, a downstream target of Ras and c-Myc

[123]. The use of shRNAs targeting TUG1 alleviated

the invasive and migratory abilities of A375 cells and

inhibited AEG-1 protein expression. Furthermore,

effects of TUG1 silencing were abrogated by AEG-1

cotransfection, thus confirming that TUG1 functions

were mediated by AEG-1. Of interest, Zhang et al.

[124] have previously reported that ectopic expression

and/or silencing of AEG-1 influenced the expression of

several EMT regulators through the Wnt/b-catenin
pathway, suggesting that TUG1 might indirectly regu-

late EMT and Wnt signaling through the miR-129-5p/

AEG-1 axis.

So far, a limited number of lncRNAs with meta-

static suppressor function has been reported in CM,

including maternally expressed gene 3 (MEG3) [125–
127]. MEG3 restoration could limit EMT-like pheno-

type in BRAF-mutant CM cells through regulating E-

cadherin expression by targeting miR-21 [127] and

miR-499-5p, which negatively regulated CYLD [126].

Importantly, high levels of plasma MEG3 were linked

with longer survival in BRAFi-treated CM patients,

whereas CYLD downregulation might protect CM

cells from BRAFi/MEKi-induced apoptosis. Hence,

the role of MEG3/miR-499-5p/CYLD in CM resis-

tance to BRAFi would require further evaluation.

4.5. CircRNA and lncRNA interaction with

epigenetic complexes

Some ncRNAs have shown to affect the chromatin

landscape of CM cells by interacting with epigenetic

enzymes, and, in turn, they can be themselves targets

of these epigenetic mediators. For instance, the cir-

cRNA cerebellar degeneration-associated protein 1 anti-

sense transcript (CDR1as) has been proven to directly

arise from the PRC2-mediated epigenetic silencing of

the lncRNA LINC00632 [128], whose function in CM

has yet to be defined. Downregulation of CDR1as pos-

itively correlated with CM progression since CDR1as

reduction resulted in CM invasion and metastasis by

enhancing IGF2BP3. Interestingly, 18/21 cell lines with

low CDR1as levels (CDR1aslow) harbored BRAF

mutation, suggesting that CDR1as loss might be

required for pro-metastatic functions of IGF2BP3 in

BRAF-mutant CM. Furthermore, CDR1aslow was

more sensitive to several MAPK pathway inhibitors,

suggesting that CDR1as expression levels might be a

useful marker to predict the response to targeted ther-

apy [128].

Antisense noncoding RNA in the INK4 locus

(ANRIL) is a well-established example of lncRNA

that interacts with PRC2 to mediate epigenetic silenc-

ing of p15INK4b and p16INK4a genes [129]. ANRIL was

highly expressed in BRAF-mutant A375 and OM431

cell lines, and its silencing activated p15INK4b and

p16INK4a expression, thus significantly reducing CM

growth both in vitro and in vivo [130]. Recently, Sakar

et al. described several circular isoforms of the

ANRIL, called circANRIL, which were all expressed

in the cytoplasm of CM cell lines, thus suggesting their

involvement in post-transcriptional regulatory mecha-

nisms. Importantly, since the expression of the linear

ANRIL was specifically enriched in the nucleus, these

results also indicated divergent activities for linear and

circular isoforms of ANRIL [131]. Consistent with this

hypothesis, a study of Muniz et al. speculated that, in

proliferative cells, ANRIL would prevent senescence

by repressing INK4 locus through PRC2 recruitment.

On the contrary, during BRAF- and MEK-induced

senescence, circular ANRIL species would sequester

PRC2 proteins in the cytoplasm to prevent them from

being recruited to the INK4 locus [129].

PRC2 contains different catalytic components,

including the histone methyltransferase EZH2 that cat-

alyzes the trimethylation of histone H3 lysine 27
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(H3K27me3) [132]. EZH2 has been evidenced to have

a crucial role in CM progression [133], especially in

BRAF-mutant CM where BRAFV600 mutation and

EZH2 gain often coexist [134]. Mechanistic investiga-

tions revealed that the silencing of the lncRNA GAS5

accelerated EZH2 expression to suppress the transcrip-

tion of CDKN1C in A375 BRAF-mutant CM cells

[135]. On the other hand, when overexpressed, GAS5

inhibited EZH2, prevented H3K27me3, and upregu-

lated CDKN1C expression, thus suppressing CM cells

viability, and inducing apoptosis and oxidative stress

[135]. Oxidative stress is a cellular characteristic of

CM that has acquired BRAFi resistance and that

likely renders them more sensitive to pro-oxidative

agents [136]. Hence, further studies are warranted to

clarify whether the GAS5/EZH2 axis is implicated in

the oxidative state of CM resistant to BRAFi.

By using BRAF-mutant SK-MEL-5, Chen et al.

[137] discovered that the oncogenic plasmacytoma

variant translocation 1 (PVT1) directly bound to

EZH2 in order to epigenetically inhibit the expression

of miR-200c, which has been described as a potential

therapeutic target for overcoming BRAFi resistance

[138]. In fact, loss of miR-200c expression was found

to promote a BRAFi-resistant phenotype in CM cells

and tissues with a mechanism that involved both

MAPK and PI3K/AKT signaling pathways [138].

Therefore, PVT1 might be a key molecule in the devel-

opment of BRAFi resistance in CM.

4.6. CircRNAs and lncRNAs as metabolism

regulators

BRAF mutation dramatically affects CM metabolism,

depending mainly on glycolytic metabolism [summa-

rized in [139]]. In this context, ncRNAs were found to

regulate glucose metabolism and lactate production in

BRAF-mutant CM cells. For example, the overexpres-

sion of a circRNA namely circ_ITCH restrained glu-

cose uptake in BRAF-mutant A375 and M21 cell lines,

thereby preventing CM cell proliferation. Notably, cir-

c_ITCH did not act as a miRNA sponge since it

directly downregulated glucose transporter 1 expres-

sion [140]. On the other hand, circMYC was shown to

promote Mel-CV proliferation and to accelerate gly-

colysis by binding to miR-1236, a negative regulator

of lactate dehydrogenase A. CircMYC silencing signifi-

cantly decreased lactate production, whereas its over-

expression generated opposite effects [141]. Evidence

from both in vitro and in vivo studies revealed that

circ_0025039 also facilitated glucose metabolism in

BRAF-mutant CM cells by negatively regulating miR-

198 to promote CDK4 activity. Circ_0025039 depletion

significantly reduced glucose consumption rate and

inhibited CM cell proliferation and invasion [142].

Circ_0084043 expression was abnormally enhanced in

BRAF-mutant CM cells, as above reported. Of interest,

circ_0084043 could also contribute to glycolysis in A375

and A378 cells via the modulation of the miR-31/KLF3

axis [143]. In a similar way, the lncRNA H19 sponged

miR-106a-5p to upregulate E2F3 expression and conse-

quently enhanced glucose metabolism in A375 cells.

Notably, both KLF3 and E2F3 participated with the

lncRNA NEAT1 to form a regulatory axis that pro-

moted BRAF-mutant CM cell proliferation, migration,

and invasion [144]. These data clearly confirm that

circRNAs and lncRNAs closely cooperate to regulate

BRAF-mutant CM through different pathways.

Besides regulating the miR-625/YY1 axis,

circ_0016418 acted as a decoy for miR-605-5p which

directly bound to glutaminase, the rate-limiting

enzyme in glutamine metabolism [145]. Consequently,

circ_0016418 depletion impeded glutamine catabolism

in A375 and A875 cells and impeded tumor progres-

sion. Similarly, the lncRNA OIP5 antisense RNA

(OIP5-AS1) sponged miR-217 to upregulate glutami-

nase expression, thus promoting glutamine catabolism

in SK-MEL-1 and SK-MEL-5 [146]. A switch from

glucose to glutamine metabolism and an enhanced

dependence on glutamine over glucose for cell prolifer-

ation is usually observed in BRAFi-resistant CM [147].

Hence, these data provide valuable insights for future

research, which may be directed to evaluate relation-

ship between ncRNAs, glutamine metabolism, and

response to targeted therapy in BRAF-mutant CM.

5. CircRNAs and lncRNAs in CM
immune regulation

At present, little is known about the effects of cir-

cRNAs on immune regulation in CM. However, it has

become recently clear that their targeting may have

therapeutic potential for overcoming immunotherapy

resistance. This is supported by the study of Wei CY

et al., who focused on circ_0020710, that derives from

the CD151 gene. Besides promoting CM cell prolifera-

tion, migration, and invasion both in vitro and in vivo,

elevated circ_0020710 levels could favor tumor

immune escape. Mechanistically, circ_0020710 sponged

miR-370-3p to protect CXCL12 from downregulation,

thus creating an immunosuppression microenviron-

ment that finally led to the exhaustion of cytotoxic T

lymphocytes (CTL). Interestingly, the use of a

CXCL12-specific siRNA or the CXCL12 inhibitor

AMD3100 reduced the circ_0020710-induced malig-

nant phenotype of CM cells. More importantly,
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treatment with AMD3100 and anti-PD-1 significantly

attenuated in vivo tumor growth, indicating that the

inhibition of circ_0020710/CXCL12 increased CTL

infiltration and restored the efficacy of anti-PD-1

immunotherapy [148] (Fig. 4).

On the other hand, no data regarding lncRNAs and

immune checkpoint inhibitors relationship are available

in the literature. However, lncRNAs might play vital

roles in immunotherapy resistance, since they are likely

to control the homeostasis and functions of immune

cells in CM (Fig. 4). In fact, RNA sequencing (RNA-

seq) analysis in diverse immune cell types (i.e., CD4+,

CD8+, and CD14+ cells) identified a differential lncRNA

expression profile between healthy subjects and stage IV

CM patients, which usually develop resistance upon

immunotherapy treatment. Functional enrichment anal-

ysis revealed that these lncRNAs were associated with

several immune-related and the PD-1 checkpoint path-

ways. Metastasis-associated lung adenocarcinoma tran-

script 1 (MALAT1) and SPRY4-IT1 expression was

also detected in stage IV CM patients and showed dif-

ferential expression patterns between healthy subjects

Fig. 4. Roles of ncRNAs in CM-immune system interaction. NcRNAs can impact on immune cell differentiation, function, and interaction

with CM by acting either in cancer cells or in immune cells. In CM cells, the expression of ncRNAs could be both immunosuppressive and

immunostimulating. Indeed, an impaired CTL (cytotoxic lymphocyte) infiltration can be observed in tumors expressing circ_020710, whereas

the translation of lncRNA MELOE into the MELOE-1 protein can improve CM immunogenicity. Immune cells, as well, express plenty of

lncRNA. The mechanistic activity of lncRNA was studied more in detail in myeloid-derived suppressor cells (MDSCs), where Olfr29-ps1 and

Lnc-CHOP, with the possible contribution of tumor factors, are involved in MDSC differentiation and function. In line with the role of

lncRNA in immune cell functions and with notion that the immune system is altered in cancer, CD4, CD8, and CD14 circulating cells from

patients with stage IV CM were demonstrated to have different lncRNA profiles than those in healthy people. Green arrows and blocking

bars indicate, respectively, the positive or negative regulation.
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and patients with stage IV melanoma and in each of the

three cell types [149]. Interestingly, MALAT1 was

recently found to positively regulate PD-L1 in non-

small-cell lung cancer [150] and diffuse large B-cell lym-

phoma (DLBCL) [151]; furthermore, MALAT1 expres-

sion promoted DLBCL immune escape by regulating

the proliferation and apoptosis of CD8+ T cells. This

evidence would support future research aimed at explor-

ing the role of MALAT1 in regulating immune cell func-

tion and immune response in CM. A more recent

analysis found that among lncRNAs whose expression

was correlated with immunology in CM, 56% were sig-

nificantly associated with CD8+ T-cell infiltration in CM

[152], which has been demonstrated to be a useful bio-

marker to predict prognosis and response to therapy in

CM patients [153]. Intriguingly, some of these lncRNAs

have already been demonstrated to participate in

immune regulation. In particular, the integrin subunit

beta 2 antisense RNA 1 (ITGB2-AS1) was found to be

involved in the regulation of T-cell and B-cell activation

[154], whereas the HLA class I histocompatibility anti-

gen protein P5 (HCP5) is known for its functional roles

in adaptive and innate immune responses [155]. Hence,

besides controlling the miR-1286/RARRP3 axis [156],

HCP5 might also regulate CM immunogenicity. The

myocardial infarction-associated transcript (MIAT) was

another lncRNAs which expression was significantly

associated with the infiltration of immune cells in CM

[152,157]. Notably, although MIAT expression pro-

moted CM cell proliferation, invasion, and migration

[158], in a study of Liu et al. [157] CM patients with high

expression of MIAT carried out a better prognosis, rais-

ing questions about its function in the control of

immune response in CM.

Interestingly, lncRNAs were also shown to improve

antigen presentation in CM (Fig. 4). For example,

MELOE RNA represents a polycistronic lncRNA which

is translated into MELOE-1, MELOE-2, and MELOE-3

by different translational approaches: MELOE-1 and

MELOE-2 are translated by an alternative internal ribo-

some entry sequence-dependent mechanism exclusively

in CM cell lines while MELOE-3 is translated in a cap-

dependent manner, both in melanocytes and in CM cell

lines [159–161]. In vitro experiments revealed a very

scarce MELOE-3-specific T-cell repertoire as compared

to MELOE-1 which could be recognized by tumor-

infiltrating lymphocytes and displayed the highest

immunogenicity [159]. Based on these data, MELOE-1

antigen is currently exploited as an immunotherapeutic

target in a T-cell immunotherapy clinical trial to treat

metastatic CM patients (NCT02424916). LncRNAs

have also proven to be associated with immune evasion

since they may regulate the recruitment and activity of

immunosuppressive cells, such as myeloid-derived sup-

pressor cells (MDSCs) (Fig. 4). As published by Shang

et al. [162], the lncRNA olfactory receptor 29, pseudo-

gene 1 (Olfr29-ps1) could sponge miR-214-3p to pro-

mote MDSC differentiation into monocytic MDSCs

with higher suppressive activities. By using a murine B16

melanoma model, in vivo experiments further demon-

strated that Olfr29-ps1 knockdown on MDSC decreased

their immunosuppressive function. Moreover, smaller

tumor volume and lighter tumor weight were detected in

mice injected with Olfr29-ps1-knockdown MDSCs, and

an increased number of CD4+ and CD8+ T cells was

found in the tumor tissues compared with the control

group. On the other hand, the mice injected with Olfr29-

ps1-overexpressing MDSCs exhibited faster tumor

development, larger tumor volume, heavier tumor

weight, and fewer CD4+ and CD8+ T cells respect to

control mice [162]. Likewise, the intronic C/EBP homol-

ogous protein long noncoding RNA (lnc-CHOP) posi-

tively regulated MDSC generation and promoted tumor

growth in murine B16 melanoma model [163]. Mecha-

nistically, as observed by Gao et al. [163], lnc-CHOP

bound to CHOP and liver-enriched inhibitory protein to

regulate a large set of target transcripts in MDSCs, thus

promoting their differentiation and immunosuppressive

function in inflammatory and tumor environments.

Altogether, these data indicate that the targeting of these

immune-related lncRNAs might negatively regulate the

immunosuppressive abilities of MDSCs, and possibly

improve CM patient’s response to immunotherapy.

In summary, there is still a lack of research on how

lncRNAs regulate the function of tumor immune cells;

therefore, further investigation in this field will be crucial

to better elucidate the immune pathway regulation in

CM in order to improve immunotherapy effectiveness.

6. Databases for the prediction and
validation of circRNAs and lncRNAs

The last years have seen a rapid expansion in the num-

ber of bioinformatic resources for circRNA study,

including circRNA identification algorithms, circRNA

annotation databases and other tools implemented to

create networks, or for visualization and computing

their expression.

The two fundamental steps that allow circRNA

identification are represented by the RNA library

construction and sequencing. The RNase R treatment,

polyadenylation, and poly(A)+ RNA depletion (RPAD)

method enable the isolation of highly pure circRNA

[164], whereas the RNA-seq of RPAD-isolated RNA

analysis can be used to uncover new circRNAs. How-

ever, other library preparation strategies can be applied
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for circRNA identification [165], with a variable speci-

ficity in their detection. In addition, paired-end sequenc-

ing method is also preferred to single end, improving

the discovery of back-spliced junction (BSJ) reads, that

represent a molecular signature to detect circRNAs

[166]. Most of the tools implemented for the identifica-

tion of circRNA are stand-alone and perform a remap-

ping of the sequenced reads. A list of representative

circRNAs identification tools is shown in Table 2.

Among them, Find_circ [29], CIRI [167], and CIRCex-

plorer [168] use raw RNA-seq reads, while DCC [169]

employs the output of STAR aligner to detect BJS

reads. Other tools largely used for circRNA identifica-

tion, and based on BJS reads, are KNIFE [170], sege-

mehl [171], Ularcirc [172], and UROBORUS [173].

Recently, machine learning approaches have also been

applied to predict circRNAs, using several models classi-

fied on their known features (i.e., the conservation of

transposable element, tandem repeats, open reading

frame length, and single nucleotide polymorphism den-

sity). These tools mainly include DeepCirCode [174],

PredcircRNA [175], WebCircRNA [176], and Predi-

circRNATool [177]. It is noteworthy that integration of

different circRNA identification tools can reduce the

false-positive rate [178–180]. Users can combine or com-

pare the results of different circRNA prediction tools to

improve sensitivity and specificity of circRNA identifica-

tion. Most of these pipelines are implemented in Python,

Perl, or R and run in Linux or Unix-like system.

Although these tools are well-documented with tutorials

to help users, some computer science skills may be

needed to perform an analysis. Therefore, a stand-alone

tool with a user-friendly interface or a web-tool could

help users without advanced computational training. Of

note, a comprehensive overview and evaluation of the

circRNA detection tools have recently been described by

Zeng and colleagues [181] and Chen and colleagues

[182]. The quantification of circRNA expression is

another important step in studying this class of

ncRNAs. Generally, it is performed from the tools

designed to identify them, and it is determined comput-

ing the ratio between back-spliced junction reads and

normal splicing junction reads, named circular-to-linear

ratio. It represents the ratio of circRNA and linear

RNA to obtain an overall expression value [183]. How-

ever, other strategies have been implemented, such as

the one applied in Sailfish-circ tool (https://github.com/

zerodel/sailfish-cir) [184] that quantifies circRNA abun-

dance by transforming circRNA to pseudolinear tran-

script.

At present, several circRNA databases have been

established, all containing a large number of circRNAs

(Table 3) [summarized in [185]]. For instance, circBase

[186] annotates circRNAs based on data from nine

published papers, and for each circRNA reports sev-

eral types of information, such as the sequence and the

genomic coordinates. CircFunBase [187] and CIRCpe-

dia [188] also represent useful tools that resume cir-

cRNA expression profiles and annotation from six

species with data from different cell types or tissues.

Table 2. Selected circRNA identification tools. The column

“Category” describes the type of the tool. “Annotation” label

indicates tool using a gene annotation file; otherwise, it is labeled

with “De novo.”

Name

Last

update Category Link Reference

CIRCexplorer 2019 De novo;

annotation

https://github.c

om/YangLab/

CIRCexplore

r2

[168]

CIRI 2017 De novo https://sourcef

orge.net/

projects/ciri/

[167]

DCC 2019 Annotation https://github.c

om/dieterich-

lab/

[169]

DeepCirCode 2019 De novo;

annotation

https://github.c

om/BioData

Learning/Dee

pCirCode

[174]

Find_circ 2015 De novo https://github.c

om/marvin-je

ns/find_circ

[29]

KNIFE 2016 Annotation https://github.c

om/lindaszab

o/KNIFE

[170]

PredcircRNA 2017 De novo;

annotation

https://github.c

om/xypa

n1232/Predc

ircRNA

[175]

PredicircRNA

Tool

2016 Annotation https://sourcef

orge.net/

projects/pred

icircrnatool/

files/

[177]

Segemehl 2018 Annotation https://www.b

ioinf.uni-le

ipzig.de/Sof

tware/sege

mehl/

[171]

Ularcirc 2019 Annotation https://github.c

om/VCCRI/Ula

rcirc

[172]

UROBORUS 2018 Annotation https://github.c

om/WGLab/

UROBORUS

[173]

WebCircRNA 2018 De novo;

annotation

https://rth.dk/re

sources/webc

ircrna/

[176]
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Other databases of note are CircRNADb [189], which

contains information on circRNA with protein-coding

potential, CircInteractome [190,191], that includes

interaction of circRNAs with other ncRNAs as well as

expression data, and CircNet [192], that integrates

miRNA-target networks, genomic annotation, expres-

sion profiles, and circRNA sequences. Due to clinical

implication of circRNAs, some databases link cir-

cRNAs and diseases. For example, circ2Traits [193]

lists 1951 human circRNAs potentially associated with

105 different diseases and details miRNA–circRNA–
mRNA–lncRNA interaction network for each of these

diseases. The main problem in circRNA databases is

given by the nomenclature. To date, there is no unified

nomenclature for circRNAs, and IDs used in the dif-

ferent databases are not universal. A standard unified

nomenclature would facilitate data integration from

different databases.

LncRNA association with other regulatory RNAs

and proteins can be computationally determined using

several approaches, previously used to predict miRNA

or transcription factor targets. These strategies are

generally based on the identification of functional simi-

larity patterns extracted from sequences, of gene co-

expression, and of evolutionary conservation relation-

ships [194]. Machine learning approaches have also

been applied to predict RNA–RNA or RNA–protein
interaction, starting from a large collection of known

lncRNA–RNA interactions [195]. In view of the

increasing interest in lncRNAs, several databases com-

prising experimentally validated and computationally

predicted lncRNA interactions have recently been

developed. For instance, STARBase deciphers protein–
RNA and miRNA-target interactions, thus allowing to

decode lncRNA/miRNA/mRNA interaction networks

[196]. Other databases of interest are listed in Table 4.

7. Conclusions

Recently, circRNAs and lncRNAs have attracted inten-

sive interest due to their potential functions in CM biol-

ogy. These ncRNAs have often pleiotropic effects by

which they can affect different pathways rather than act-

ing predominantly through a specific target gene. There-

fore, by functioning as regulators of gene expression,

they contribute to increase the growth and spread of CM

cancer cells, making them valuable biomarkers and ideal

therapeutic targets. Classical circRNA and lncRNA tar-

geting involves the use of RNA interference approaches,

whereas ASO technology can be employed to ablate

lncRNA expression. Considering that circRNAs and

lncRNAs could be located in the nucleus [197], genome

editing using CRISPR/Cas-9 system could also serve as

an intriguing method to trigger their silencing [198]

Table 3. Selected circRNA databases.

Database Year Annotation tool Link Reference

Circ2Disease 2018 Manually curated http://bioinformatics.zju.edu.cn/Circ2Disease/index.html [217]

Circ2Traits 2019 NA https://github.com/shaoli86/circ2Traits [193]

Circbase 2017 Manually curated http://www.circbase.org/ [186]

CircFunBase 2019 Manually curated http://bis.zju.edu.cn/CircFunBase/index.php [187]

Circinteractome 2018 circBase https://circinteractome.nia.nih.gov/ [190,191]

CircNet 2016 Manually curated http://circnet.mbc.nctu.edu.tw/ [192]

Circpedia 2018 CIRCexplorer2 http://www.picb.ac.cn/rnomics/circpedia [188]

CircR2Disease 2018 Manually curated http://bioinfo.snnu.edu.cn/CircR2Disease/ [218]

CircRNADb 2016 Manually curated http://202.195.183.4:8000/circrnadb/circRNADb.php [189]

CircRNADisease 2018 Manually curated http://cgga.org.cn:9091/circRNADisease/ [219]

Table 4. Selected lncRNA databases.

Database Year Link Reference

ChIPBase 2016 http://rna.sysu.edu.cn/chipba

se/

[220]

LncBase 2016 https://carolina.imis.athena-

innovation.gr/diana_tools/

web/index.php?r=lncbase

v2%2Findex-experimental

[221]

LNCipedia 2019 https://lncipedia.org/ [222]

LncRNAdb 2010 https://rnacentral.org/expert-

database/lncrnadb

[223]

LncRNADisease 2019 http://www.cuilab.cn/lncrnad

isease

[224]

LncRNome 2012 http://genome.igib.res.in/lnc

RNome/

[225]

miRNet 2020 https://www.mirnet.ca/

miRNet/home.xhtml

[226]

Noncode v6.0 2017 http://www.noncode.org/ [227]

STARBase 2013 http://starbase.sysu.edu.cn/

starbase2/index.php

[196]
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[summarized in [199]]; however, additional research is

needed for its eventual application in the clinic. An alter-

native approach to target circRNA and lncRNA interac-

tions would be the use of small-molecule inhibitors that

can disrupt lncRNA secondary structure or inhibit their

association with miRNAs. Despite these findings, at pre-

sent, circRNA and lncRNA therapeutic targeting

remains mainly at the laboratory stage.

Although a large number of studies have indicated

ncRNA deregulation in BRAFV600-mutant CM, only a

number of papers are about the role of lncRNAs in

response to targeted therapies, whereas no information

on circRNA involvement in BRAFi/MEKi resistance

is available. Similarly, research on the role of cir-

cRNAs and lncRNAs in the resistance of CM to

immunotherapy is still at the nascent stage. Therefore,

there are many unknown questions about circRNAs

and lncRNAs that need to be further explored in CM.
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