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Simple Summary: In order to explore the role of redox as a prognostic indicator in endometrial
carcinoma (EC), we detected the expression patterns of 55 redox-related genes (RRGs) in EC cohorts
from public databases. Performing consensus cluster algorithm, we determined four molecular
subclusters based on RRGs which had significant differences in overall survival (OS) and immune
activities of EC patients. Furthermore, we developed a prognostic risk model on the basis of the
redox-related subtype by stepwise Cox regression analyses. All EC patients were divided into high-
risk and low-risk groups according to the median value of risk score. Our proposed model could
accurately assess the clinical outcome and had favorable independent ability in EC cases. Moreover,
our signature can serve as a predictor for immune status and chemotherapy sensitivity.

Abstract: Redox plays a central part in the pathogeneses and development of tumors. We comprehen-
sively determined the expression patterns of redox-related genes (RRGs) in endometrial carcinoma
(EC) cohorts from public databases and identified four different RRG-related clusters. The prognosis
and the characteristics of TME cell infiltration of RRGcluster C patients were worse than those of
other RRG clusters. When it comes to the gene cluster, there were great differences in clinicopathology
traits and immunocyte infiltration. The RRG score was calculated by Cox analyses, and an RRG-based
signature was developed. The risk score performed well in the EC cohort. Samples were separated
into two risk subgroups with the standard of the value of the median risk score. Low-risk patients had
a better prognosis and higher immunogenicity. In addition, RRG score was closely associated with
immunophenoscore, microsatellite instability, tumor mutation burden, tumor stem cell index, copy
number variation and chemotherapy sensitivity. The nomogram accurately predicted the prognosis
of patients, and our model showed better performance than other published models. In conclusion,
we built a prognostic model of RRGs which can help to evaluate clinical outcomes and guide more
effective treatment.

Keywords: redox; endometrial carcinoma; immune infiltration; drug sensitivity

1. Introduction

Endometrial carcinoma (EC) is a common cancer in female reproductive organs in
developed countries. With the increase of aging and obesity in the population, the inci-
dence rate and mortality rate of EC continue to rise [1–3]. It is believed that there will be
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65,950 new cases and 12,550 deaths in the United States in 2022 [4]. Some patients were
diagnosed in the advanced stage or occult metastasis stage [5] and were prone to tumor
recurrence, which always had a poor prognosis [6]. Due to the high heterogeneity of EC
patients [1,7], the traditional clinical factors-based prognosis systems have limited signif-
icance for prognosis judgment and treatment guidance of patients [5,8]. Researchers are
attempting to identify new biomarkers, improving the risk prediction system by combining
molecular characteristics and traditional clinicopathological factors [7].

Tumor cells carrying characteristic genomic changes exist in the microenvironment of
their host. Tumor cells, stromal cells and immune cells constitute the tumor microenviron-
ment (TME), which promotes tumor malignant transformation to a large extent [9]. The
interactions between tumor cells and the TME is the decisive parameter of oncogenesis,
progression, therapeutic drug resistance and clinical outcome. The TME can promote
tumor cell proliferation and subsequent metastasis-related phenotypes. Moreover, it can be
actively involved in the study of drug-induced drug resistance in cancer cells [10].

Immunotherapy has been presented as an alternative or supplementary remedy for
cancer. Great efficacy has been shown when PD-1 and PD-L1 antibodies are used in cancer
treatment [11]. Cancer cells upregulate negative immune checkpoints through tumor-
infiltrating immunocytes, leading to host immune surveillance and cancer progression [5].

Redox is tightly bound up with the activation of the TME and tumor survival [12].
Compared with traditional targets, the redox species of the TME are known as effective
“regulators” and “targets” of antitumor therapy [12,13]. In addition, the imbalance of
redox homeostasis can lead to cancer cell apoptosis [14]. Apoptosis has been proved to
have the capacity to inhibit the proliferation of EC cells [15]. The curative effect of several
drugs related to redox have achieved encouraging results in preclinical and clinical studies.
For example, thioredoxin and thioredoxin reductase are crucial constituent parts of the
thioredoxin system and are considered to be vital regulators of tumor development [16].
Therefore, the prognostic model customized for redox offers a promising new strategy for
the diagnosis and treatment of EC [17].

2. Materials and Methods
2.1. Data Sources

Gene expression profiles of EC and the related clinicopathological information were
collected from The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/)(accessed
on 13 January 2022) and Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.
gov/geo/)(accessed on 13 January 2022). Cases without complete clinical data were elim-
inated to reduce statistical bias. Finally, 562 samples from TCGA-UCEC and GSE119041
were utilized for subsequent study. The details of these patients are shown in Table S1.
Fragments per kilobase values of TCGA-UCEC were changed to transcripts per kilobase
million for differential analysis [18]. Normalization and removal of batch effects between
the TCGA-UCEC and GEO datasets were performed through the “ComBat” algorithm [19].

2.2. Consensus Clustering Analysis of RRGs

Two redox-related gene (RRG) sets were collected from MSigDB (https://www.gsea-
msigdb.org/gsea/msigdb) (accessed on 13 January 2022) and a total of 55 RRGs were
collected. Consistency cluster analysis was employed by the “ConsensusClusterPlus”
package in R and the patients were divided into different subtypes in light of the expression
of the RRGs mentioned above [20]. This process was repeated 1000 times to assure the
stability of typing. In addition, principal component analysis (PCA) was implemented by
the “ggplot2” R package.

2.3. Functional Annotation and Enrichment Analysis

Differentially expressed genes (DEGs) between the clusters were identified by the R
package “limma” with the standard of adjusted p value < 0.05 [21]. Next, two different
gene clusters were identified by the consistent clustering algorithm. Gene Ontology and
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Kyoto Encyclopedia of Genes and Genomes analyses were applied to detect the underlying
function of DEGs by the R package “clusterprofiler” [22,23].

2.4. Establishment of the Prognostic Model in Light of RRGs

The TCGA-UCEC cohort was used as training set, while samples from GSE119041
and the set consisting of the TCGA-UCEC cohort and GSE119041 were utilized to confirm
the prediction capacity of the model. In the training group, univariate Cox analysis was
applied to determine the DEGs associated with the survival of EC patients. Then, least
absolute shrinkage and selection operator (LASSO) regression was employed to minimize
the risk of over fitting by the “glmnet” package [24]. Finally, multivariate Cox analysis was
applied to screen candidate RRGs to establish a prognostic RRG-based signature (RBS). The
formula was as follows: risk score = ∑n

i=1(Coe fi × RRGexpi), where coef and exp mean
the coefficient and expression level of each gene, respectively. According to the median risk
score, patients were separated to two risk groups. The “survminer” package was employed
to perform Kaplan–Meier survival analysis.

2.5. Stratification Analyses

Chi-square tests were employed to analyze the correlations between RRG score and
clinicopathological features (age, grade, fustat, stage, histological type). To estimate the
independence of the RBS, we utilized univariate and multivariate Cox analysis on the
set consisting of TCGA-UCEC and GSE119041. In addition, we also conducted stratified
analysis according to age, grade, stage and historical type to further examine the predictive
ability of the model.

2.6. Correlation between the RBS and Other Biological Processes

Rosenberg et al. identified biological process-associated gene sets, including epithelial
mesenchymal transition markers, DNA damage repair, nucleotide excision repair and
the CD8 T-effector signature [25]. We performed a correlation analysis of the immune
infiltration score of these biological pathways between the two subtypes.

2.7. Exploration of Immune Status between Different Subgroups

The ESTIMATE algorithm was employed to predict the immune status through
the R package “estimate” [26]. Single sample gene set enrichment analysis (ssGSEA)
was employed to evaluate the distinction of immunocyte and immunity between dif-
ferent subgroups [27]. It can quantitatively evaluate the composition of immune cells
from gene expression data [28]. To calculate the fraction of tumor-infiltrating immune
cells (TIICs), CIBERSORTx was employed (https://cibersortx.stanford.edu/) (accessed on
13 January 2022). We analyzed the association between 22 TIIC scores and risk scores. A
bubble plot was drawn to display the positive and negative correlation between RRG score
and immune cell types.

2.8. Prediction of Immunotherapy Response

Evaluation of immunophenoscore (IPS) based on gene expression Z-score was com-
puted in accordance with gene expression levels in representative cells, ranging from 0 to
10 [29]. Tumor mutation burden (TMB) means the number of mutations per megabase of
DNA sequenced in a particular cancer [30]. It can be employed to reflect the response of
checkpoint blocking immunotherapy [31]. After analyzing from The Cancer Immunome
Atlas database (https://www.tcia.at/home) (accessed on 13 January 2022), we obtained
the MSI data, which is a powerful factor for evaluating the clinical outcome of patients [32].

2.9. Phenotypes of DNAss and RNAss Differentiation

A cancer stem cell score was designed to gauge cancer stem cell association [33]. The
score ranges from 0 to 1. The closer the score approaches to 1, the stronger the degree
of stemness and the lower the degree of differentiation. Both RNAss and DNAss scores

https://cibersortx.stanford.edu/
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were collected from the Xena browser (https://xenabrowser.net/datapages/) (accessed on
13 January 2022).

2.10. Assessment of Drug Sensitivity

In order to estimate the efficacy of chemotherapeutic drugs on EC patients, the half
maximum inhibitor concentration (IC50) of chemotherapeutic drugs was generated by
the “pRRophetic” R package. We obtained and calculated drug sensitivity information
according to the CellMiner database (http://discover.nci.nih.gov/cellminer/) (accessed on
13 January 2022) [34].

2.11. Construction of a Nomograph System

The R package “rms” was employed to construct a nomograph system visualizing the
role of various factors in predicting the prognosis of EC according to clinical characteristics
and risk score [35]. The restricted mean survival (RMS) package was employed to assess
the C-index for all features. Decision curve analysis assesses the clinical application of
the RBS by evaluating the net benefit rate. The prediction performance of the RBS was
achieved through c-index and area under the curve (AUC) [36,37].

2.12. Statistical Analysis

p < 0.05 was considered as statistically significance. All data were input into R4.1.0
software for processing. The distinction between the two groups were evaluated by Stu-
dent’s t-test and analysis of variance. Spearman and distance correlation analyses were
applied to estimate relationship coefficients between the expression of RRGs and infiltrating
immune cells.

3. Results
3.1. Genetic Features of RRGs in EC

The research process of our study is displayed in Figure S1.
Firstly, we carried out a summary analysis of the somatic mutation status of these

55 RRGs (Figure 1A). Among 529 samples, 216 samples were mutated, and the incidence of
somatic mutation was 40.83%. The mutation frequency of RYR2 was the highest, which was
21%, followed by NOS1 and NOS2. GPX1, FKBP1B, RNF7, ERO1A, SELENOS, SELENOT
and TXN had no mutation. Then, we analyzed the copy number variations (CNVs) of these
genes. CNVs occurred in almost all genes, with the greatest gain in PRDX2 (Figure 1B).
The RRGs’ chromosomal locations of the CNV alterations are revealed in Figure 1C. The
expression levels of most of these RRGs between normal and tumor tissues were different
(Figure 1D). The protein–protein interaction network diagram shows the interrelationships
that exist between these genes (Figure 1E). In addition, we screened out 34 RRGs presenting
significant prognostic values (Figure S2).

3.2. Identification of Redox-Associated Molecular Subtype in EC

We first integrated samples from the TCGA-UCEC and GSE119041 cohort. Figure 2A
reveals the interactions and prognostic value of all RRGs (Figure 2A). To determine a novel
molecular subtype in EC, the consistent cluster method was conducted according to the
expression profiles of RRGs, and all patients were divided into four RRG clusters (Figure S3).
PCA showed significant differences in redox transcriptional profiles between four RRG
clusters (Figure 2B). Survival analysis displayed that the people in cluster C had the shortest
OS (Figure 2C). Furthermore, significant differences in clinicopathological characteristics
were shown between the four clusters (Figure 2D). RRGcluster A was preferentially related
to younger age, earlier stage and grade, lighter histological types and better survival status.

https://xenabrowser.net/datapages/
http://discover.nci.nih.gov/cellminer/
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Figure 1. Genetic features of RRGs in EC: (A) mutations occurring in 216 of 529 EC patients; (B) CNV
frequency in RRGs; (C) the location of CNV changes on 23 chromosomes in RRGs; (D) the differences
of RRG expression levels between normal and EC tissues; and (E) the PPI network of RRGs.
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Figure 2. Consistent clustering analysis: (A) interactions among RRGs in EC; (B) the result of
PCA analysis; (C) difference in survival probability between RRG clusters; and (D) differences in
clinicopathologic features between the two RRG subtypes.

3.3. Characteristics of the TME in Distinct RRG Clusters

For the purpose of deeply analyzing the potential biological significance of these four
clusters, GSVA was conducted. The enrichment of cluster D was significantly different
from that of the other three clusters; we found that the enrichment levels of some processes
related to immune activation in cluster D were the lowest, suggesting cluster D groups tend
to develop immunosuppression (Figures S4 and S5). Then, ssGSEA analysis was conducted
to evaluate immune infiltration in these clusters. We noticed that the immune infiltration of
cluster B was very abundant, and the degree of infiltration was significantly higher than
that of the other RRG clusters. Innate and adaptive immune cells, such as B cells, CD4
T cells, CD8 T cells, macrophages and natural killer cells, were significantly enriched in
RRGcluster B (Figure 3A). Then, we evaluated the differences of 22 TIICs between the
four RRG clusters (Figure 3B). Naïve B cells, regulatory T cells (Tregs) and macrophages
had the most significant difference among the four RRG clusters. In addition, we applied
ESTIMATE to generate three types of TME scores in the RRG clusters and evaluated the
tumor purity, which indicated that the TME score of RRGcluster B was the highest and that
of RRGcluster C was the lowest (Figure 3C–F). The tumor purity was the opposite. Based
on these analyses, we noted that the four RRG clusters had different immune infiltration.
Among them, RRGcluster C corresponds to “cold” tumors, which are characterized by
less invasive immune cells and a weak response to immunotherapy, while RRGcluster B
is roughly equivalent to “hot” tumors, which are characterized by more active immune
cell infiltration and will receive more benefits from immunotherapy. Comparing the
expression levels of immune checkpoints, it was found that CTLA4, PD1, PD-L1 and PD-L2
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(Figure 3G–J) were highly expressed in RRGcluster B. The human leukocyte antigen (HLA)
expression levels of RRG clusters were also significantly different (Figure 3L). Figure 3
suggests that some immune biological processes were more prominent in RRGcluster B,
including CD8 T effector and antigen processing machine (Figure 3).

Figure 3. Cont.
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Figure 3. The TME of the four RRG clusters: (A) comparison of immune infiltration levels of the
RRG clusters; (B) the differences of 22 TIICs between the four RRG clusters; comparison of the
stromal score (C), immune score (D), estimated score (E) and tumor purity (F) of the RRG clusters;
(G–J) expression levels of immune checkpoints between four RRG clusters; (K) HLA expression
levels of RRG clusters; and (L) comparison of the scores of biological processes between the RRG
clusters. * p < 0.05; ** p < 0.01; *** p < 0.001; ns, not significant.

3.4. Identification of Gene Clusters Based on DEGs

A total of 70 DEGs related to RRG clusters were determined for subsequent analysis
(Figure S6A). Enrichment analysis disclosed immune-related pathways including T cell
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activation, neutrophil activation involved in immune response, natural killer cell-mediated
cytotoxicity and others (Figure 4A,B). Subsequently, we performed univariate Cox analysis
and consistent clustering algorithm to classify EC samples. When k = 2, the clustering
performance is the best. Thus, all the EC cohorts were assigned into two gene clusters:
genecluster A and genecluster B (Figure S6B–E). Survival curves illustrated that the survival
probability of cases in genecluster A was higher (Figure 4C). These two gene clusters also
had different clinical characteristics. The two gene clusters showed significant differences
in RRG expression (Figure 4D).

Figure 4. Gene subtype identification based on DEGs: Gene Ontology (A) and Kyoto Encyclopedia
of Genes and Genomes (B) analysis of the four RRG clusters; (C) survival probability of the gene
subtypes; (D) associations between clinicopathologic characteristics and the gene clusters; (E) the
expression of RRGs among the gene clusters; (F) immunological behavior in the two gene clusters;
(G) the results of CIBERSORT algorithm in the two gene clusters; and (H) comparison of TME score
of three gene clusters. * p < 0.05; ** p < 0.01; *** p < 0.001; ns, not significant.
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Subsequently, we further investigated immunological behavior in the two gene
clusters. Results of ssGSEA showed that the infiltration level of immune cells such as
activated B cells, activated CD4 T cells, activated CD8 T cells and natural killer cells
was higher in group A (Figure 4E,F). The results of the CIBERSORT algorithm also
showed that the adaptive infiltrating immune cells, such as CD8 T cells, CD4 T cells,
M0 macrophages and M1 macrophages, had a higher fraction scale in genecluster A
(Figure 4G). Furthermore, patients of genecluster A had higher TME scores (Figure 4H).
The expression of immune checkpoints was higher in genecluster A. The expression
level of HLA between the two gene clusters was also higher in genecluster A. Classical
biological pathways were more prominent in genecluster A. Based on these immune
characteristics, the tumors of patients in genecluster A correspond to “hot” tumors, while
genecluster B corresponds to “cold” tumors (Figure S7). Clinical correlation analysis
showed that patients in both gene clusters had older age and higher grade. In terms
of the clinical stage, patients in genecluster A presented lower stage. In addition, the
histological type of EC cases in genecluster A was mainly endothelial, while genecluster
B was mixed and serous (Figure S8).

3.5. Development and Validation of the RBS

Based on these DEGs, we created an RRG scoring system to measure the prognosis
of individual EC patients. Figure 5A visually shows the distribution of patients in RRG
clusters, gene clusters and RRG score groups. Based on the previous screening results,
LASSO regression analysis retained 12 RRGs in light of the minimum partial likelihood
deviation (Figure S9A,B). Subsequently, we employed multivariate Cox analysis on these
12 genes, and finally obtained 8 genes. The risk formula was structured as follows: risk
score = (−0.3374 × ACAP1) + (−0.5851 × ODF2) + (−0.3704 × RBBP7) + (0.5986 × PHKA1)
+ (0.668 × COG5) + (−0.2790 × NRIP1) + (−0.3796 × ZNF264) + (0.2772 × SOX12). The RRG
scores of different RRG clusters and gene clusters were significantly different (Figure 5B,C).
The risk scores of RRGcluster C and genecluster B were highest. We grouped patients
into two risk score groups (Figure 5D). The expression patterns of eight genes in the two
subgroups are shown in Figure 5E. A scatter plot shows the fustat of patients (Figure 5F).
Survival curves highlight the greater survival probability in low-risk patients (Figure 5G).
The AUC values of ROC curves for 1-year, 3-year and 5-year survival rates were 0.743, 0.743
and 0.773, respectively (Figure 5H). Then, we used the GEO dataset and all the cohorts
were used as a testing set to verify the above results (Figure S10).

3.6. Comparison of the Risk Score of Different Clinical Characteristics and Stratified Analysis

As shown in Figure S11, the risk score corresponding to older age, worse survival
status, more advanced stage and more serious historical type was higher. Cox regression of
RRG score and some clinical characteristics (age, histological type, grade, stage) found that
our proposed signature was an independent prognostic parameter (Table S1). Furthermore,
regardless of grade, stage and historical type, the outcome of the high-risk group was
significantly more dismal than that of the low-risk group.
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Figure 5. Construction of the RRG-based signature: (A) Sankey plot of subtype distributions in
groups with different RRG scores and clinical outcomes; RRG score of the gene clusters (B) and RRG
clusters (C); (D) distribution of risk score between two groups; (E) different expression of the eight
RRGs between two groups; (F) scatter plot applied to show the fustat; (G) the K-M survival curve
highlighting the greater survival probability in the high group; and (H) ROC achieved from the
RRG score.
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3.7. Estimation of TME on the Basis of the RRG Score

To further analyze the TME of the different groups, the GSEA method was con-
ducted. We noticed that the low-risk group was concentrated in immune-related processes
(Figure 6A). As expected, significantly abundant immune pathways, such as CD8 T ef-
fector, were detected in patients with a low risk score (Figure 6B). Figure 6C illustrated
the immune cell landscape of both groups. The low-risk group had higher infiltration
levels of activated CD8 T cells, macrophages, monocytes and type 17 T helper cells. There
were negative correlations between RRG score and almost all immune cells. The relevance
between risk score and immune-related biological pathways is also shown in Figure 6D.
In order to further analyze the characteristics of the TME of the two groups, 496 TCGA
patients were assigned into different immune subtypes. The most common subtypes in
both groups were cluster 1 and cluster 2. The risk scores of the cluster 1 and cluster 2
immune subtypes had no obvious difference, but they were significantly higher than the
risk scores of the cluster 3 and cluster 4 subtypes (Figure 6E,F). The risk score had a neg-
ative correlation with TME cells (Figure 6G–I). The TME scores of the groups were also
compared (Figure 6J). Similarly, the stromal cells and estimated scores between the two
groups are different. Great differences existed in the expression levels of CD8 T cells,
Tregs, M2 macrophages and dendritic cells between the two risk groups (Figure 7A). The
correlation between RRG score and immune cell abundance is shown in Figure 7B. RR
score had a positive correlation with activated dendritic cells activated, M0 macrophages
and M2 macrophages, and had a negative correlation with resting dendritic cells, CD8 T
cells and Tregs (Figure 7C–G). The associations between immune cells and the expression
levels of eight RRGs are shown in Figure 7H. HLA expression was also higher in patients
with lower risk scores (Figure 7I). Also, we calculated the association between immune
checkpoints and RBS (Figure 7J). The IPS score of patients with a low risk score was higher
(p < 0.05) (Figure 7K). Thus, we inferred that high-risk EC belongs to cold tumors and may
receive less benefit from immunotherapy.

3.8. Relationships between RRG Score and Tumor Stem Cells as well as TMB

6×10−4 In the high RRG score group, the microsatellite stability status had a high
percent weight, while the RRG score of high MSI was lower (Figure 8A,B). The interaction
between tumor stem cells and immune cells can promote the progression of various cancers.
We analyzed the regulatory role of RRG score in EC stem cells by analyzing RNAss and
DNAss. RRG score was significantly positively correlated with two indicators, indicating
that RRG cells with higher scores had more obvious stem cell characteristics and lower cell
differentiation (Figure 8C,D).

Increasing evidence showed that higher TMB was related to more neoantigens in the
tumor, and increased the susceptibility of patients to immunotherapy [38]. Therefore, we
next comprehensively evaluated the distribution of TMB in the two groups. There was a
significant negative correlation between risk score and TMB (Figure 8E,F). The outcome
of the low TMB group was dismal (Figure 8G). At the same time, low TMB together with
high risk means a low survival rate (Figure 8H). Next, we calculated the distribution of
somatic mutations in risk groups (Figure 8I,J). The mutation frequency of both groups was
very high (low-risk group: 99.26%, high-risk group: 97.3%), and the mutation frequency
of PTEN and PIK3CA was the highest. Further evaluating the OS in the case of PTEN
and PIK3CA mutations, we found that the OS was significantly lower when PTEN and
PIK3CA mutated and lower combined with high-risk (Figure 8K,L). Figure S12A indicated
the distribution of GISTIC scores calculated in the light of the frequency and amplitude of
gain and loss on all chromosomes in the two groups. Focal amplification and deletion of
different chromosome regions were detected in both groups (Figure S12B,C).
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Figure 6. Estimation of TME on the base of the RRGs GSEA of low RRG score group (A). The ssGSEA
score and immune infiltration score of the two groups (B,C). (D) The association between different
immune cells and risk score and the association between risk score as well as classical biological
pathway score. (E) Immune subtype classification of each risk group in 496 TCGA patients. (F) The
risk scores of 4 immune subtypes. The relationships between RRG score and stromal cells (G),
immune cells (H) and estimated score (I). (J) Comparison of the TME score between the RRG clusters.
* p < 0.05; ** p < 0.01; *** p < 0.001; ns, not significant.



Cancers 2022, 14, 3383 14 of 22

Figure 7. Immune infiltration characteristics between the two subgroups: (A) the immune cell
abundance of the groups; (B–G) the relationship between 8 genes and immune cell abundance;
(H) the correlations between RRGs and immune cell abundance; (I) the expression level of HLA
between the groups; (J) the associations between immune checkpoints and risk score; and (K) the
differences of IPS score in patients with different risk. * p < 0.05; ** p < 0.01; *** p < 0.001; ns,
not significant.
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Figure 8. Calculating the effect of immunotherapy: (A,B) correlations between RRG score and MSI;
(C,D) the result of linear relationship between RRG score and CSC index; (E) comparison of the
TMB between the groups; (F) the associations between TMB and RRG score; (G) the OS of different
TMB patients; (H) the survival probability of patients with different TMB and risk; the mutation
information of genes with high mutation frequency in the high- (I) and low-risk groups (J); (K) the
survival probability of patients with different PTEN mutation and risk score; and (L) the survival
probability of patients with different PIK3CA mutation and risk score.

3.9. Analysis of Drug Sensitivity

We selected chemotherapeutic drugs commonly used in EC treatment to calculate
the sensitivity of patients to these drugs. The IC50 of cisplatin and doxorubicin was



Cancers 2022, 14, 3383 16 of 22

lower in high-risk patients, while the IC50 of methotrexate was lower in the low-risk sub-
group (Figure S13A). The correlation between eight genes and different drugs is shown in
Figure S13B. These results suggest that the eight genes are associated with drug sensitivity.

3.10. Development of Nomograms for Survival Prediction

According to Table S1, risk score, historical type and stage are independent prognostic
factors, so we incorporated risk score, histological type and stage to establish a nomogram
(Figure S14A). The C index of RBS was higher than other clinical features, and the C index
was highest when considered together with other clinical factors (Figure S14B). The AUC
of the RBS was generally higher than that of historical type and stage, and the prediction
effect was better. The nomogram that combined RRG risk, historical type and stage had
a better prediction effect (Figure S14C–E). DCA showed that the combination of RBS and
clinical characteristics displayed a higher benefit in predicting the prognosis of patients
with EC patients (Figure S14F–H). The subsequent calibration diagram showed that the
nomogram has great performance compared with the actual situation (Figure S14I).

3.11. RRG Score Is a Novel Predictor for EC Patients

To better demonstrate the predictive ability of our model, we screened four EC prog-
nostic models from the published literature and compared them with our model. In order
to make them comparable, according to the four previously established models, we also
applied multivariate analysis to calculate the risk value and prognosis evaluation of each
data set. The survival analysis indicates that the prognosis of people with a high RRG score
was much worse in all four models (Figure S15A). The AUC values of the models were
lower than our proposed RBS (Figure S15B). Therefore, we believe that they are inferior
to our model in predicting prognosis. As shown in Figure S15C, obviously, the C index of
all prognostic features of our model was the highest, which was 0.678 (Figure S15C). Our
genetic characteristics perform best around the 11th year. This suggests that our model is
the best predictor of 11-year survival compared to other models (Figure S15D).

4. Discussion

TME-related redox can regulate redox balance by forming an antioxidant defense
system [39], which play an anti-tumor role to a certain degree [40]. In recent years, many
researchers have devoted themselves to analyzing tumor treatment strategies based on
redox. However, the regulatory mechanism of redox in tumors needs to be further analyzed.

In this academic research, we unearthed the genetic characteristics and clinical po-
tency of RRGs in EC. RRGcluster B had the most abundant immune infiltration, significant
immune activation characteristics and the highest TME score and expression level of im-
mune checkpoints. This indicates that RRGcluster B is roughly equivalent to “hot” tumors,
which will have a higher response to immunotherapy. Patients belonging to RRGcluster C
had the shortest OS. At the same time, RRGcluster C had the lowest TME score and the
highest tumor purity. The enrichment degree of RRGcluster D is significantly different
from that of the other three RRG clusters. The enrichment degree is low in some processes
related to immune activation. Based on the above analyses, we consider RRGcluster C and
RRGcluster D as “cold” tumors, which are less likely to be benefit from immunotherapy.
Furthermore, patients in genecluster A have milder clinicopathological features, higher
levels of immune cell infiltration, a higher expression of immune checkpoints and, not
surprisingly, a higher survival probability. We believe that tumors of patients in genecluster
A correspond to “hot” tumors. We further determined two gene clusters based on 70 DEGs
related to RRG cluster. Survival analysis uncovered that there was a significant difference
in OS among the two gene clusters, indicating that the gene-related subtype derived from
RRG cluster is also effective in predicting patient prognosis.

The RBS consists of ACAP1, ODF2, RBBP7, PHKA1, COG5, NRIP1, ZNF264 and
SOX12. ACAP1 is closely bound up with the level of immunocyte infiltration, immune
regulators and chemokines, and has been used in the prediction of clinical outcomes
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with several tumors, including gynecologic tumors [41–43]. As for ODF2, we have also
explored its role in EC [44]. RBBP7 functions as a subunit of a variety of chromatin-related
complexes in epigenetic regulation and is associated with many cancers [45]. PHKA1
is a regulator of glycogen metabolism [46], but its role in cancer has been less studied.
COG5 is involved in metastatic inflammation and cartilage formation and can represent
a prospective treatment target for chondrosarcoma [47]. NRIP1 exerts a carcinogenic
effect in various solid tumors [48–50]. Furthermore, NRIP1 is a classical mutated gene in
EC cell lines [51], and its overexpression is a common cause driving EC and advanced
myometrial invasion [52,53]. RNA editing levels of ZNF264 are greatly correlated with
the clinical outcome of EC [54]. Overexpression of SOX12 was associated with a loss of
tumor capsule [55,56]. Therefore, the eight genes are potential signature to assess the
prognosis of EC. Additionally, survival analysis indicated that there were 34 RRGs that had
notable prognosis values in EC. Of these genes, 17 are potential risky genes since their high
expressions are associated with a favorable prognosis of EC cases. Meanwhile, the other
17 genes are potential protective genes given that their high expressions are associated with
a poor prognosis of EC patients.

Stratified survival analysis under different pathological characteristics disclosed that
patients with a high RRG score had a dismal survival outcome. The insignificant difference
in the testing set may be owing to the small sample size of this subgroup.

In recent years, the TME has been recognized as an overwhelming contributor to
tumor progression [5]. Previous reports have focused on TME reactive therapy to achieve
an accurate targeted treatment of cancer [57,58]. Immune and stromal scores have been
found to be positively correlated with the clinical features and fustat of EC [59]. Compared
with the high-risk group, low risk patients had a higher level of immune cell infiltration,
such as activated CD8 T cells, immune B cells, macrophages, monocytes and type 17 T
helper cells, which means strong antitumor immunity. CD8 + T cells are an inhibitor
of tumors [60,61] and are the strongest predictor of EC recurrence [62–64]. B cells also
have a vital effect on anti-tumor response. Their main function is to identify specific
antigens with cell surface immunoglobulin or B cell receptors [65,66]. As one of the most
important components in the TME [67], macrophages can support tumor viability and
survival by secreting immunosuppressive factors, cytokines and growth factors [68]. It has
been demonstrated that increased macrophage infiltration is associated with an adverse
prognosis in EC [69]. The role of helper T cells in EC has not been confirmed. In addition,
regulatory T cells, which inhibit immune activity and antitumor immune response, were
enriched in cohorts with low RRG scores [70,71]. This is consistent with our findings
that patients in RRGcluster B, genecluster A and the low RRG score group have higher
immunocyte infiltration and a better prognosis. Moreover, stromal and estimate scores were
higher in the low RRG score group, suggesting they belong to hot tumors and have a poor
response to immunotherapy. Cold tumors imply a large percentage of immunosuppressive
cells within the tumor [72]. Our results showed that the high-risk group, RRGcluster C,
RRGcluster D and genecluster B belong to cold tumors. This indicates that the high RRG
score group is prone to a lack of immune surveillance function, which facilitates tumor
immune escape [73].

At present, the options of EC treatment are limited. Immunotherapy, especially
checkpoint inhibitors, has made exciting progression in gynecological malignancies [74].
Consistent with previous conclusions, there is a negative correlation between RRG score
and the expression level of common immune checkpoints. IPS score has been reported
as being able to reflect the response to immunotherapy [75]. IPS score in the low-risk
population was higher, suggesting this subgroup had higher immunogenicity. According to
the above results, EC patients with low RRG scores may have a better response to immune
checkpoint therapy. The PD-1 inhibitor pembrolizumab has been identified as an effective
treatment for EC patients [76]. TMB is considered to be another essential predictor of
immunotherapy. Various tumor cases indicated that a higher TMB score means a favorable
outcome after immunotherapy [73], which is consistent with the above results. Furthermore,
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there is evidence that high MSI patients are more likely to benefit from immunotherapy [77].
This further confirmed that the lower RRG score group may benefit from immunotherapy.

RRG score has a positive correlation with RNAss and DNAss, which means that high-
risk people are more prone to EC growth [78]. Consistent with previous studies, PTEN
and PIK3CA are common genetic aberrations in EC [79], and play a central part in EC
development [80,81]. The CNV frequency was higher in patients with a high risk score and
the subgroup with a high copy number had the worst prognosis [82].

Cisplatin and doxorubicin have been identified as effective drugs for EC [83]. Methotrex-
ate is also effective in EC patients [84]. Here, we found that the IC50 of cisplatin and
doxorubicin was lower in high-risk patients while IC50 of methotrexate was lower in
low-risk patients. The results showed that high-risk cases are more sensitive to cisplatin
and doxorubicin and low-risk patients are more sensitive to methotrexate, indicating that
our proposed signature could serve as a potential predictor for chemosensitivity and offer
a valuable reference for individualized treatment.

Finally, by integrating stage, historical type and RRG score, we constructed a nomo-
gram to more intuitively show the role of these factors in predicting EC and to improve
the clinical application of RRG score. Four EC prognostic risk models were selected from
published articles and compared [85–88].

The current research does have some limitations. Firstly, all conclusions come from
the processing and analysis of public database data, and there is a lack of clinical data
and experimental research to verify the results. In the future, we need to further collect
enough EC cases and conduct a large number of prospective clinical analyses to ensure the
effectiveness of the RBS in clinical application. The mechanism of some of these genes in
EC has not been reported and needs to be further explored.

5. Conclusions

We built a prognostic model of EC on the basis of eight RRGs and verified its good
prediction performance. This paper comprehensively analyzed their effects on the TME,
clinical characteristics and prognosis, and determined their therapeutic effects in targeted
therapy and immunotherapy, which can help determine the prognosis and offer new
therapeutic targets for patients. It offers a new direction for guiding the personalized
treatment strategy of EC patients.
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AUC area under curve
CNVs copy number variations
DCA decision curve analysis
DEGs differentially expressed genes
EC endometrial carcinoma
GEO Gene Expression Omnibus
HLA human leukocyte antigen
IC50 half maximum inhibitor concentration
IPS immunophenoscore
LASSO least absolute shrinkage and selection operator
MSI microsatellite instability
OS overall survival
PCA principal component analysis
RMS restricted mean survival
ROC receiver operating characteristic
RRGs redox-related genes
TCGA The Cancer Genome Atlas
TIIC tumor-infiltrating immune cells
TMB tumor mutation burden
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GSVA gene set variation analysis
GSEA gene set enrichment analysis
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