
Pore loops of the AAA+ ClpX machine grip substrates to drive 
translocation and unfolding

Andreas Martin1, Tania A. Baker1,2, and Robert T. Sauer1

1Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 
Cambridge, Massachusetts 02139, USA

2Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts 
Avenue, Cambridge, Massachusetts 02139, USA

Abstract

Proteolytic AAA+ unfoldases use ATP hydrolysis to power conformational changes that 

mechanically denature protein substrates and then translocate the polypeptide through a narrow 

pore into a degradation chamber. We show that a tyrosine in a pore loop of the hexameric ClpX 

unfoldase links ATP hydrolysis to mechanical work by gripping substrates during unfolding and 

translocation. Removal of the aromatic ring in even a few ClpX subunits results in slippage, 

frequent failure to denature substrate, and an enormous increase in the energetic cost of substrate 

unfolding. The tyrosine is part of a conserved aromatic-hydrophobic motif, and the effects of 

mutations in both residues vary with the nucleotide state of the resident subunit, supporting a 

model in which nucleotide-dependent conformational changes in these pore loops drive substrate 

translocation and unfolding, with the aromatic ring transmitting force to the polypeptide substrate.

Introduction

Specialized AAA+ molecular machines harness the energy of ATP hydrolysis to power 

protein unfolding and multimer disassembly in all cells1,2. Such machines, typically active 

as ring hexamers, initiate unfolding by pulling an exposed peptide tag through a narrow 

axial pore and ultimately translocate the unfolded polypeptide into the degradation chambers 

of proteases like ClpXP, ClpAP, HslUV, FtsH, Lon, and the proteasome3–5 (Fig. 1a). How, 

during a power stroke, are nucleotide-dependent changes in the conformation of a AAA+ 

machine transferred to the polypeptide substrate to drive translocation and unfolding? 

Answering this question is essential for understanding how these molecular wrecking 

machines function.

In almost all AAA+ unfoldases, a loop with a conserved aromatic-hydrophobic (Ar-Φ) 

dipeptide protrudes from every subunit into the central pore (Fig. 1b)6,7. Ar-Φ loop 

mutations have been shown to eliminate or reduce the activity of numerous AAA+ 
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proteases, and it is commonly assumed that these loops play critical roles in translocation 

and unfolding by transmitting force to substrates7–17. However, Ar-Φ loops have also been 

implicated in the initial binding of substrates and in controlling rates of ATP hydrolysis, and 

defects in either of these processes could also account for the mutant phenotypes observed. 

An analogy with a macroscopic machine is apt. Imagine trying to determine how an 

automobile functions by altering various parts. The car can be disabled or severely slowed 

by obstructing the flow of fuel to the engine, but it would be incorrect to conclude that the 

fuel pump or carburetor transmits force from the motor to the wheels.

ClpXP is a AAA+ protease that consists of the ClpX ATPase and the ClpP peptidase5. Here, 

we characterize the effects of Ar-Φ loop mutations in ClpX from E. coli. By saturating 

substrate binding and correcting for altered rates of ATP hydrolysis, we demonstrate specific 

roles of the Ar-Φ loops in gripping, translocating, and unfolding substrates. Moreover, we 

show that these loop activities vary as individual ClpX subunits assume ATP-bound, ATP-

hydrolyzing, or nucleotide-free states. These results strongly support a model in which 

nucleotide-dependent conformational changes in the Ar-Φ loops drive substrate 

translocation and unfolding, with the aromatic ring transmitting force to the polypeptide 

substrate.

Results

System and experimental logic

In this work, we use variants of E. coli ClpX with covalently linked subunits to examine Ar-

Φ loop function during proteolysis of native or denatured substrates bearing the ssrA-

degradation tag. This system has several important features. ClpP degradation provides a 

readout of ClpX activity. For example, ClpXP degradation of the folded titin-ssrA protein 

requires recognition, translocation, and robust unfolding by ClpX, whereas degradation of 

titinCM-ssrA, a variant permanently unfolded by carboxymethylation, requires only 

recognition and translocation18. Covalent linkage of ClpX subunits also allows loop 

mutations to be introduced into just a few subunits of the hexamer, thereby preventing 

severe loss of function. Because these single-chain ClpX mutants retain activity, we can 

determine kinetic parameters that distinguish substrate-binding defects from rate-limiting 

translocation/unfolding defects and also can establish whether activity changes are caused 

by alterations in the coupling between ATP hydrolysis and mechanical work.

Moreover, the use of covalently linked ClpX variants allows the importance of nucleotide 

state to be probed. ClpX and related hexameric ATPases function by asymmetric 

mechanisms in which individual subunits assume ATP-bound, ATP-hydrolyzing, or 

nucleotide-free empty states during the ATPase cycle19–23. By using mutations in subsets 

of linked ClpX subunits, we mimic asymmetry in the wild-type enzyme and can probe the 

relationship between the nucleotide state of a subunit and the role of its pore loop in ClpX 

function. For example, RWE/RWE ClpX is a dimer of covalent trimers, each containing an 

ATPase-defective subunit in a permanent empty-state conformation (R subunit; R370K 

mutation), a wild-type subunit (W subunit), and a hydrolysis-defective ATP-state subunit (E 

subunit; E185Q mutation)21,22,24. W subunits can cycle through all of the normal 

nucleotide states (ATP-bound, ADP-bound, empty), whereas the non-hydrolytic E and R 
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subunits appear to be restricted to a single state. Despite having only two catalytically active 

subunits and lacking the N-terminal domain of the wild-type enzyme, the RWE/RWE ClpX 

variant supports ClpP degradation of ssrA-tagged substrates with the same efficiency per 

active subunit as wild-type ClpX22.

The Ar-Φ motif and substrate recognition

Previous studies showed that the Y153A and V154F mutations in the Ar-Φ motif of 

homohexameric ClpX abrogated or severely diminished ClpXP degradation activity12. To 

determine the mechanistic effects of substitutions at these positions in greater detail, we 

constructed mutations in just the R subunits, just the W subunits, or just the E subunits of 

RWE/RWE ClpX, purified the mutant enzymes, and determined steady-state KM and Vmax 

values for degradation of the unfolded substrate, titinCM-ssrA. The Y153A, V154F, and 

V154A mutations increased KM for degradation of titinCM-ssrA substrates from 3-fold to 60-

fold depending on the mutation and subunit type (Table 1; Fig. 1c). For example, V154F 

increased KM about 60-fold in W subunits, 10-fold in R subunits, and 3-fold in E subunits. 

Because the Y153A and V154F mutations were most deleterious in the wild-type subunits of 

RWE/RWE ClpX, the Ar-Φ pore-loops of hydrolysis-competent subunits seem to play 

primary roles in binding ssrA-tagged substrates, with support from the Ar-Φ loops of 

neighboring ATP-bound and/or empty-state subunits.

ATP-hydrolysis control

For each Ar-Φ mutant, we measured the rate of ATP hydrolysis in the presence or absence 

of saturating substrate and ClpP (Table 1). Some Ar-Φ mutations decreased basal and 

working ATPase rates, whereas others increased these rates (Table 1; Fig. 2a, 2c). Large 

increases were observed for mutations in the R and E subunits, despite the fact that these 

subunits cannot hydrolyze ATP. Hence, ATP hydrolysis is coupled with conformational 

changes in the Ar-Φ loops of all types of subunits in the hexamer. Mutations with decreased 

side-chain volumes (Y153A, V154A) tended to increase basal and working ATPase rates, 

whereas the enzyme with the lowest ATPase rates had a larger mutant side chain (V154F) 

(Table 1). ClpX conformational changes may be the slow step in the ATP cycle, with tighter 

packing of residues in the pore resulting in slower conformational transitions and vice versa. 

Similar bidirectional coupling of ATP hydrolysis and conformational changes has been 

suggested for FtsH and HslU7,14.

Translocation defects

Vmax for ClpXP degradation of unfolded titinCM-ssrA is determined by the translocation 

rate18, which is a function of motor speed (the rate of ATP hydrolysis) and the efficiency of 

each power stroke in transmitting force to the substrate. For one set of enzymes—including 

the RWE/RWE parent, mutants with the V154F and V154A substitutions in all types of 

subunits, and the variant with Y153A mutations in the R subunits—we found a roughly 

constant proportionality between Vmax for titinCM-ssrA degradation and the working ATP-

hydrolysis rate (Fig. 2a). Despite running at considerably different speeds, these class-I 

mutants and the wild-type parent all hydrolyzed 100–140 ATPs for each molecule of 

unfolded titinCM-ssrA that was translocated and degraded. Because translocation rates and 
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ATP-hydrolysis rates were highly correlated, the class-I mutants appear to transmit force to 

the substrate as well as the wild-type enzyme. Their major defect is in controlling motor 

speed.

For the Y153A mutation in the W and E subunits of RWE/RWE ClpX, by contrast, 

substantially more ATP was required to degrade a molecule of titinCM-ssrA. These 

mutations increased the ATP cost of titinCM-ssrA translocation and degradation almost 3-

fold compared to wild type or the class-I mutants (Fig. 2a; Table 1). This need for excess 

ATP hydrolysis suggests that some power strokes fail to perform useful mechanical work, as 

might be expected if force is not transmitted to the substrate efficiently. Thus, the aromatic 

side chains in the Ar-Φ loops of W and E subunits seem to play special roles in substrate 

translocation, consistent with a role in “gripping” the polypeptide chain during a ClpX 

power stroke.

Previous studies demonstrated crosslinking of the ssrA tag to the Ar-Φ motif of ClpX under 

conditions where translocation could not occur25. To establish that the first residue of the 

Ar-Φ motif can directly contact a translocating substrate, as required by the “gripping” 

model, we replaced the aromatic side chain with cysteine (Y153C) in the W subunit of the 

WEREER ClpX single-chain hexamer and assayed for disulfide crosslinking to either of two 

cysteines in an unfolded titin-ssrA substrate. This mutant variant of ClpX, in combination 

with ClpP, degraded titinCM-ssrA in an ATP-dependent fashion but more slowly than the 

parental enzyme (not shown). The first substrate cysteine that would be encountered during 

translocation through the pore is 30 residues from the ssrA tag. Robust crosslinking of the 

ssrA-tagged substrate to the WY153CEREER enzyme was observed (Fig. 2b). Several 

controls established specificity. First, crosslinking did not occur with unfolded titin bearing 

a mutant ssrA-DD tag that is not recognized by ClpX (Fig. 2b). Second, when the Y153C 

mutation was placed in the first subunit of EEREER ClpX, which cannot hydrolyze ATP or 

translocate substrates, efficient crosslinking was not observed (Fig. 2b). Because disulfide 

bonding requires atomic contact, these results demonstrate that the Ar-Φ pore loop of ClpX 

can interact directly with a substrate as it is translocated through the working enzyme.

Severe unfolding defects

Unfolding a stable native protein, like titin-ssrA, provides a demanding test of ClpXP 

function. Simple mechanics ensure that when ClpX pulls on a folded substrate, the substrate 

resists denaturation and pulls back on the enzyme, amplifying any deleterious consequences 

of “grip” mutations. The energetic cost of titin-ssrA unfolding is high, even for wild-type 

ClpXP, because most denaturation attempts fail and many rounds of binding, pulling, and 

release occur before unfolding is successful26. For the parental RWE/RWE enzyme and all 

V154F variants, unfolding, translocation, and ClpP degradation of a single titin protein 

required hydrolysis of 1500–2400 ATPs (Table 1; Fig. 2c). By contrast, enzymes with 

Y153A mutations in R, E, or W subunits hydrolyzed from 10-fold to almost 40-fold more 

ATP than RWE/RWE during processing of a single titin-ssrA molecule. Because these 

mutants hydrolyzed far less ATP while degrading unfolded titinCM-ssrA, the excess ATP 

must be expended during efforts to denature titin. Thus, the aromatic residues in the Ar-Φ 
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loops of ClpX subunits in all nucleotide states play key roles in increasing the probability of 

substrate unfolding.

We envision that ATP hydrolysis in a ClpX subunit causes a movement of its Ar-Φ loop, 

like the power stroke of an oar in rowing. Interactions between the aromatic ring and the 

substrate would then propel a segment of unfolded polypeptide through the pore (Fig. 3a). 

Folded substrates cannot enter the narrow ClpX pore, however, and thus power strokes 

involving the degradation tag would occur against resistance and apply a deforming force to 

the native protein. If the Y153A mutation in a wild-type subunit weakens interactions 

between the Ar-Φ loop and substrate, then the resulting loss of grip would affect 

translocation and unfolding. The unfolding defect would be far more severe than the 

translocation defect, as we observe, because the strong resisting force during denaturation 

would break weak interactions between the pore loops and the substrate, allowing Ar-Φ loop 

movement with little concomitant transmission of force to the substrate. The defects caused 

by the Y153A mutation would be akin to trying to row a boat with an oar shaft lacking a 

blade.

Y153A mutations in non-hydrolytic subunits, which cannot power conformational changes, 

also had large effects on ClpX unfolding (Table 1; Fig. 2c). The Ar-Φ loops in non-

hydrolytic subunits might structurally support, guide, or move in concert with the loops of 

neighboring hydrolyzing subunits. The Ar-Φ loops in non-hydrolytic subunits could also 

prevent or decrease substrate ”slipping” between power strokes. For example, Fig. 3a shows 

a model in which a hydrolysis-competent subunit cycles through polypeptide binding, 

translocation, and release steps, while an adjacent subunit binds the polypeptide after the 

translocation step and before the next power stroke to prevent slipping.

Additional evidence for reduced grip during translocation

As another test for a role of the Ar-Φ loop in “gripping” substrates, we examined 

degradation of the fusion protein GFP-titinCM-ssrA. RWE/RWE ClpXP degrades most of 

the titin portion of this substrate but stops when it reaches GFP, leaving a 38-residue titin tail 

that spans the distance from the entrance of the ClpX pore to the active sites in ClpP27. 

When variants bearing Y153A mutations in R, W, or E subunits were used to attempt ClpXP 

degradation of GFP-titinCM-ssrA, an additional product, corresponding to GFP with a 45-

residue tail was produced (Fig. 3b). We note that the 7-residue difference between these two 

tails need not correspond to any integral number of power strokes or translocation steps 

because ClpP only cleaves the polypeptide chain of substrates at some amino-acid 

positions28. These results support a reduced grip on the substrate, leading to slipping once 

GFP reaches the entrance of the pore or to a reduced ability to pull GFP tightly against 

ClpX. The ratio of the two truncated products varied for different mutants, consistent with 

our finding that the Y153A mutation causes more severe defects in some classes of subunits 

than in others.

Discussion

Taken with previous studies12, our current results show that Y153A mutations in the Ar-Φ 

pore-loop motif of ClpX have multiple effects. These mutations diminish binding to the ssrA 
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tag of substrates, change rates of ATP hydrolysis, change rates of translocation and 

unfolding, and alter the ability of ClpX to pull substrates tightly against the pore. All of 

these effects may contribute to the fact that ClpX hexamers with the Y153A mutation in 

each subunit are completely inactive in supporting degradation12. Notably, after eliminating 

mutation-induced effects in substrate binding and ATP hydrolysis, we find that ClpX 

variants bearing the Y153A substitution are also defective in gripping substrates to drive 

translocation and unfolding. By contrast, variants bearing the V154F and V154A mutations 

at an adjacent position in the pore loop are not defective in these activities. Although 

mutations in the Ar-Φ pore-loop motif of ClpX and other AAA+ ATPases have previously 

been reported to compromise activity7,9–17, our current studies provide the first 

demonstration of a role for this loop in gripping substrates directly.

Asymmetric Ar-Φ loop function in AAA+ unfoldases

In previous studies of the Ar-Φ pore-loop, mutations were present in all six subunits of the 

hexameric AAA+ enzymes examined7,9–17. By using single-chain ClpX variants, however, 

we have been able to mutate selected pore loops in the hexamer and thus to probe their roles 

in subunits at different stages of the ATP cycle. We find that mutations in Ar-Φ pore loops 

of ClpX have distinct effects on ssrA-tag recognition, polypeptide translocation, ATP 

hydrolysis, and protein unfolding depending on the ability of the host subunits to hydrolyze 

ATP and/or respond to ATP binding. These results are inconsistent with models in which all 

six Ar-Φ loops in the central pore of a ClpX hexamer function symmetrically, but suggest 

instead that individual subunits play specialized roles depending on asymmetric nucleotide 

states21,22.

In our experiments, mutations restricted the activities of specific ClpX subunits, but 

asymmetry must also occur in the wild-type ClpX hexamer, where only some subunits are 

ATP-bound21. Moreover, some crystal structures of AAA+ unfoldases and related 

homohexameric helicases show asymmetry in structure, nucleotide interactions, and pore-

loop conformations of individual subunits8,9,29,30. The strong conservation of the Ar-Φ 

motif and architectural homologies among AAA+ unfolding machines suggest that all of 

these enzymes will operate by a similar mechanism in which asymmetric conformational 

movements of specific Ar-Φ loops are transmitted directly to substrates, resulting in protein 

unfolding and polypeptide translocation through the central pore.

Methods

Protein expression and purification

Linked single-chain variants of ClpX-ΔN (residues 62–424) were constructed by PCR and 

cloned into pACYCDuet-1 (Novagen), encoding a His6 tag at the N terminus of single-chain 

trimers and at the C terminus of single-chain hexamers22. ClpX variants, ClpP-His6, and 

titin-I27-ssrA were expressed and purified as described18,26,31,32. Titin-ssrA was alkylated 

for 3 h at 22 °C with a 100-fold excess of iodoacetic acid at pH 8.8 in 6 M GdmCl, resulting 

in carboxymethylation and unfolding. In titin-DD, the C-terminal AA dipeptide of the ssrA 

tag is changed to DD. GFP-titinCM-ssrA was obtained by selective unfolding and 

carboxymethylation of the titin (V15P) domain of the GFP-titinV15P-ssrA fusion protein31.
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Biochemical assays

Degradation of 35S-labeled titin-ssrA and titinCM-ssrA by ClpX-ΔN variants (0.3 mM 

pseudo-hexamer equivalents) and ClpP14 (0.9 mM) was performed at 30 °C in PD buffer (25 

mM HEPES (pH 7.6), 100 mM KCl, 20 mM MgCl2, 1 mM EDTA, 10% (v/v) glycerol) with 

an ATP regeneration system (5 mM ATP, 16 mM creatine phosphate, 6 mg ml−1 creatine 

phosphokinase) and was assayed by the release of acid-soluble peptides18. Degradation of 

GFP-titinCM-ssrA (20 µM) by ClpX RWE/RWE or variants (1 µM hexamer equivalents) and 

ClpP14 (2 mM) at 30 °C in PD buffer was assayed after 60 min by SDS-PAGE. Partial 

degradation products were identified by mass spectrometry.

Steady-state ATPase assays were performed using 0.3 mM ClpX-DN variants (hexamer 

equivalents), in the absence or presence of 0.9 mM ClpP14 and saturating amounts of titin-

ssrA or titinCM-ssrA at 30 °C in PD buffer with an NADH-coupled regeneration system as 

described32.

Crosslinking

The two cysteines in titin-ssrA and titin-DD were activated for crosslinking by formation of 

a mixed disulfide with 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB). Titin variants (40 µM) 

were incubated with 1 mM DTNB in 3.5 M GdmCl for 3 h at 22 °C in XL-buffer (25 mM 

HEPES (pH 7.8), 300 mM KCl, 20 mM MgCl2, 1 mM EDTA, 10% (v/v) glycerol). After 

separation of free DTNB and GdmCl by buffer exchange, the unfolded, DTNB-activated 

titin variants (10 mM) were mixed in XL buffer with ClpX WY153CEREER or 

EY153CEREER (1 mM) in the presence of an ATP regeneration system (25 mM ATP, 80 

mM creatine phosphate, 30 mg ml−1 creatine phosphokinase). Substrate translocation and 

crosslinking was allowed to proceed for 30 min at 30 °C before stopping the reaction by 

addition of 150 mM iodoacetic acid in 400 mM Tris-HCl (pH 8.5), 6.2 M urea, 2 mM 

EDTA. Following non-reducing SDS-PAGE, disulfide-crosslinked titin-ClpX complexes 

were detected by western blotting using anti-ssrA and anti-DD antibodies.
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Figure 1. Substrate binding and degradation
(a) Native substrates are recognized by the ClpX unfoldase via exposed peptide tags and 

unfolded as they are translocated through a narrow axial pore and into the ClpP peptidase for 

degradation. (b) Ar-Φ pore-loop motifs in prokaryotic and eukaryotic AAA+ unfoldases. (c) 

Mutations in the Ar-Φ loop of ClpX weaken binding to ssrA-tagged substrates. KM values 

for titinCM-ssrA degradation by ClpP in complex with ClpX RWE/RWE or variants with the 

Y153A, V154F, or V154A mutations in different classes of subunits were determined by 

Michaelis-Menten analyses of initial degradation rates (Table 1). Errors in KM were ±10% 

based on replicate measurements (n=3).
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Figure 2. The Ar-Φ loop in the central pore of ClpX provides a “grip” on substrates during 
unfolding and translocation
(a) Thermodynamic efficiencies for titinCM-ssrA translocation by ClpX RWE/RWE with 

mutations in the Ar-Φ loop. Maximal degradation rates are plotted against the ATP-

hydrolysis rate at saturating titinCM-ssrA concentrations for ClpX RWE/RWE (○) and 

variants with Y153A (red), V154F (blue), or V154A (cyan) mutations in empty-state R 

subunits (△), hydrolyzing W subunits (□), or ATP-state E subunits (▽). Variants that 

consume similar amounts of ATP for each substrate degraded cluster close to the lines 

shown. (b) The first residue in the Ar-Φ loop contacts translocating substrates. Titin-ssrA 

was unfolded by modification of its cysteines with DTNB, incubated with ATP and single-

chain ClpX hexamers bearing Cys153 in a W or E subunit, and disulfide-crosslinked 

products were detected by western blotting after non-reducing SDS-PAGE. DTNB-modified 

titin with a C-terminal AA→DD mutation in the ssrA tag is not degraded by ClpX and 

serves as a negative control. (c) Thermodynamic efficiencies of native titin-ssrA unfolding 

and translocation by ClpX RWE/RWE with Ar-Φ-loop mutations. Symbols for ClpX 

variants are the same as in panel A.
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Figure 3. Ar-Φ-loop motions propel substrate through the central pore of ClpX
(a) The cartoon depicts two neighboring ClpX subunits cycling through ATP-bound, 

hydrolyzing, and empty states. ATP-dependent conformational changes in the Ar-Φ loop of 

one subunit translocate the substrate, and an adjacent subunit binds the polypeptide and 

prevents slipping before the next power stroke. (b) Weakened grip during substrate 

translocation. Degradation of GFP-titinCM-ssrA by ClpXP RWE/RWE stops at GFP, leaving 

a 38-residue titin tail. Y153A mutations in the R, W, or E subunits of ClpX RWE/RWE 

result in an additional product with a 45-residue tail. These mutations may reduce the 
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enzyme’s ability to pull GFP tightly against the ClpX pore or allow the substrate to slip after 

it reaches the pore.
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