
sensors

Article

An Irregular Graph Based Network Code for
Low-Latency Content Distribution

Weiwei Yang 1 and Ye Li 2,*
1 National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health,

School of Textile and Clothing, Nantong University, Nantong 226019, China; yangweiwei@ntu.edu.cn
2 School of Information Science and Technology, Nantong University, Nantong 226019, China
* Correspondence: yeli@ntu.edu.cn

Received: 16 July 2020; Accepted: 3 August 2020; Published: 4 August 2020
����������
�������

Abstract: To fulfill the increasing demand on low-latency content distribution, this paper considers
content distribution using generation-based network coding with the belief propagation decoder.
We propose a framework to design generation-based network codes via characterizing them as
building an irregular graph, and design the code by evaluating the graph. The and-or tree evaluation
technique is extended to analyze the decoding performance. By allowing for non-constant generation
sizes, we formulate optimization problems based on the analysis to design degree distributions from
which generation sizes are drawn. Extensive simulation results show that the design may achieve
both low decoding cost and transmission overhead as compared to existing schemes using constant
generation sizes, and satisfactory decoding speed can be achieved. The scheme would be of interest
to scenarios where (1) the network topology is not known, dynamically changing, and/or has cycles
due to cooperation between end users, and (2) computational/memory costs of nodes are of concern
but network transmission rate is spare.

Keywords: content distribution; low-latency; network coding; belief propagation

1. Introduction

1.1. Background and Motivation

Low-latency content distribution to multiple users over a lossy and dynamic network is an
important requirement in many emerging wireless applications. For example, in disaster recovery
efforts, it is commonly required to disseminate content to a number of wearable devices or protective
equipment in a timely and robust manner [1–3]. In these scenarios, random linear network coding
(RLNC) [4] has potential as its coding nature enables fountain-like packet transmissions. Over a
lossy network, RLNC can achieve reliable transmission without the need of packet acknowledgment.
For example, RLNC can work atop user datagram protocol (UDP) similar to the quick UDP Internet
connection (QUIC) protocol [5], which would considerably reduce the feedback cost and latency.
Compared to conventional fountain codes such as the Raptor code [6], RLNC can further increase the
throughput by allowing intermediate nodes of the network to recode packets. These benefits make
RLNC quite attractive for fast content distribution.

One drawback of RLNC is its decoding computational/memory cost. When the number of source
packets involved in coding, Ns, is large, the cost of using Gaussian elimination (GE) for decoding
can be prohibitive, especially for wireless nodes. For Ns in the order of tens or several hundreds,
straightforward sparse RLNC such as [7–10] where many encoding coefficients are zero can be used.
For larger Ns of more than tens of thousands, which are commonly seen in content distribution,
however, the decoding of the above schemes may again suffer performance deterioration because the

Sensors 2020, 20, 4334; doi:10.3390/s20154334 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-3279-8083
http://dx.doi.org/10.3390/s20154334
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/15/4334?type=check_update&version=2

Sensors 2020, 20, 4334 2 of 15

number of nonzero encoding coefficients is still large. By splitting the packets into small generations of
sizes much smaller than Ns, generation-based network coding (GNC) [11] can partly resolve this issue
by only performing RLNC in the generation, and the multiple generations can be scheduled randomly
throughout the distribution process (to avoid generation-by-generation notification). The coupon
collector’s problem due to randomly scheduling the disjoint generations, which would cause many
non-innovative (i.e., not linearly independent) coded packets being received by the users, can be
alleviated by using overlapping generations [12,13]. Various overlapping GNC schemes have been
proposed, including [14–19].

Two major decoding methods exist for GNC. One direction of research is to treat the encoding
vector (EV) of each coded packet (from a generation) as a sparse vector over the Ns original source
packets (which is the same as in the straightforward sparse RLNC schemes), and then use sparse
variants of GE to decode. This approach would succeed as soon as Ns innovative packets (across
all the generations) are received. However, the approach usually requires to pivot a sparse matrix
of Ns columns to exploit the sparseness of GNC, e.g., [8,20]. This, in programming implementation,
still imposes high memory requirement for efficient random access of sparse matrix elements [21],
otherwise the pivoting speed is significantly sacrificed. In practice, even for a moderate Ns as a few
hundreds, the decoding speed of sparse GE can be unsatisfactory [22].

The other general decoding method of GNC is belief propagation (BP) decoding, which was originally
proposed in [12]. BP decoding only performs GE within each generation, and the decoded packets
are subtracted from the remaining overlapping generations to help. The computational/memory
requirement is significantly reduced as it is only in the magnitude of the generation size (� Ns).
The penalty is the overhead that the decoding may not succeed as soon as Ns innovative packets
are received because generations are not jointly decoded. However, this trade of overhead for
computational/memory costs may be desirable in some scenarios, in particular where such costs
are constrained but network transmission rate is spare, as commonly seen in the rapidly-growing
Internet-of-Things (IoT) applications. This scenario is the main focus of the present paper.

With BP decoding, one major objective is to suppress the overhead. In this paper, we make the
following contributions addressing this problem: (1) We propose a framework to design the GNC
code via characterizing it as building an irregular bipartite graph, where the and-or tree evaluation
technique [23] is extended to analyze its BP decoding performance, and (2) by allowing for non-constant
generation sizes, we formulate optimization problems to design degree distributions from which
generation sizes are drawn. Through extensive performance evaluations, we show that the code may
achieve both low decoding costs and transmission overhead, as compared to using constant generation
sizes [14,24].

1.2. Related Works

Using packet-level coding for content distribution has been widely studied in several previous works.
One well-known work is the application of the Raptor codes for multimedia broadcast/multicast [25],
which has been standardized in [26]. The Raptor code, however, is end-to-end. Since it does not support
recoding at intermediate nodes, the throughput may not achieve the max-flow capacity over multi-hop
links. In several recent works, e.g., [27–29], RLNC has been considered in content distribution in
IoT scenarios. The works show that RLNC, possibly enhanced by recoding at intermediate nodes
or via device-to-device communication links, can be effective for reducing content completion time.
However, as mentioned, the supported number of packets is no more than several hundreds due to
the high computational cost of RLNC.

It is noteworthy that in networks with known topologies, e.g., (parallel) line networks, there exists
sparse RLNC schemes with low decoding costs and almost zero overhead, e.g., [17,30–34]. However,
we note that these schemes do not apply to our interested scenarios where the network topology may
be not known a priori, dynamically changing, and/or has cycles.

Sensors 2020, 20, 4334 3 of 15

1.3. Organization

The remainder of the paper is organized as follows: Section 2 presents the system model and
describes the encoding, recoding, and decoding operations. Section 3 models GNC schemes using
irregular bipartite graphs. The and-or tree analysis technique is extended to study the BP decoding
process on such graphs. In Section 4, a framework is presented that uses the analysis results for
designing generation size distributions. The code design is evaluated in Section 5, and Section 6
concludes the findings.

2. System Model

We consider a network where a file consisting of Ns packets are to be distributed from a source
node s to a set of destination users via a lossy network. Each packet consists of K symbols from a finite
field Fq of size q. Links are modeled as Bernoulli erasure channels and the erasure probabilities are
assumed to be fixed throughout the transmission. The system is discrete-time. At each transmission
time, each node may send a packet to each of its downstream nodes. If no erasure occurs, the packet
is received immediately by the neighboring node. Nodes are assumed to have no knowledge of
the global network topology and do not exchange their buffer states information with other nodes.
We assume that the destinations only acknowledge the source node upon the successful recovery of all
Ns source packets.

2.1. Precoding and Generation Constructions

Source packets are first precoded using a conventional fixed-rate erasure correction code. A total
of N = (1 + θ)Ns intermediate packets, denoted as S = {si ∈ FK

q , 1 ≤ i ≤ N}, are generated from the
Ns source packets supposing that a precode of rate 1/(1 + θ), θ > 0, is applied. The intermediate
packets are then grouped into generations. For convenience, below we refer to packets in generations
as intermediate packets even if the source packets are not precoded. Each generation is a subset
of S . Assume that we construct L generations, Gl = {s(l)1 , s(l)2 , . . . , s(l)|Gl |

}, 1 ≤ l ≤ L, in which

s(l)i = sj for some j. We assume that ∪L
l=1Gl = S . We define dR , minl |Gl |, DR , maxl |Gl |,

and aR , (1/L)∑L
l=1 |Gl |, where aR is the average generation size and is assumed to be an integer.

The generations are said to be equal-sized if |Gi| = |Gj|, ∀i, j, or unequal-sized if |Gi| 6= |Gj| for some i, j.
The generations are said to be disjoint if Gi ∩ Gj = ∅, ∀i 6= j, or overlapping if there exists Gi ∩ Gj 6= ∅
for some i 6= j. For overlapping generations we have ∑L

l=1 |Gl | > N.
In a GNC code, we assume that the intermediate packets in each generation could be chosen

at random from S as follows. With the generation sizes specified, the N intermediate packets are
randomly permuted and then evenly partitioned into L disjoint subsetsDl (we assume L to be a divisor
of N throughout the paper; if that is not the case, we can append some null packets), one per generation,
i.e., Dl ⊆ Gl . Therefore, dR = N/L = |Dl |, ∀l. Such a partition ensures that each intermediate packet
is present in at least one generation. After that, the remaining |Gl | − |Dl | spots of Gl is filled up by a
random selection of packets from S \ Dl , where \ denotes set-minus.

2.2. Encoding and Recoding

The source node sends coded packets from generations on its outgoing links. For each transmission
opportunity, one generation may be selected randomly or in a round-robin manner. The coded packet
is then formed by combining packets belonging to the generation using RLNC over Fq. For Gl , a coded

packet is in the form of p(l) = ∑
|Gl |
j=1 g(l)j s(l)j , where g(l)j is the coding coefficient uniformly randomly

chosen from Fq. g(l) = [g(l)1 , . . . , g(l)|Gl |
] is referred to as the encoding vector (EV), and is delivered in the

header of p(l).
At each node j other than the source node, L queues Ql

j, 1 ≤ l ≤ L are maintained to buffer
received packets for each generation. A received packet is said to be innovative within Gl if its EV is not

Sensors 2020, 20, 4334 4 of 15

in the span of the EVs of the existing packets in Ql
j. We assume that received packets are processed such

that non-innovative packets are discarded. In practice this may not be necessary, but the assumption
simplifies the model.

Let |Ql
j(n)| be the number of buffered packets in queue l at time n. When a transmission opportunity

is presented on an outgoing link (j, i) of node j to one of its neighboring nodes i at time n, a queue
is chosen according to a scheduling strategy. We denote the index of the scheduled queue as l∗ji(n).

A packet from Q
l∗ji(n)
j is then recoded using RLNC and sent to i. Since the recoding is linear, the recoded

packet is still a linear combination of the intermediate packets of the selected generation, just with the
EV updated. An array [S1

ji(n), S2
ji(n), . . . , SL

ji(n)] is maintained for each (j, i), where Sl
ji(n) indicates the

numbers that Ql
j has been scheduled for sending coded packets on (j, i) so far. We denote Pl

ji(n) =

|Ql
j(n)| − Sl

ji(n) as the local potential innovativeness of the queue on the link. Here terms “local” and
“potential” are used because the innovativeness is only from the sending-node’s perspective and does
not incorporate knowledge of packet loss and reception events downstream from node j. We refer
to arrays Pji(n) = [P1

ji(n), P2
ji(n), . . . , PL

ji (n)], ∀(j, i) as the buffer states of node j at time n. If queue l is

chosen, the value of Sl
ji(n) is increased by one.

In this work, the following maximum local potential innovativeness (MaLPI) scheduling strategy [35]
is adopted, which chooses the queue:

l∗ji(n) = arg max
l

Pl
ji(n) (1)

on (j, i) at time n. If more than one queue attains the maximum, one of them is randomly chosen.
An overview of the system is summarized in Figure 1.

Qj
1

Qj
2

Qj
L

.

.

.

j

i

t

S

Split

Precode

K symbols

…

…

K symbols

K symbols

K symbols

K symbols

K symbols

…

.

S3

S2

SN-1

SN

SN-2

S1

.

.Ns * K symbols
(Fq)

…S1 S3 G1

…SN S3 G2

…S2 SN-1 GL-1

…SN-2 S1 GL

… …

Figure 1. An overview of the system.

2.3. Belief Propagation GNC Decoding

The BP decoding is used at each destination node to recover the source packets from the received
(re)coded packets, which are random linear combinations of the intermediate packets. The algorithm
consists of two parts: The inner decoding, which recovers the intermediate packets and the outer
decoding, which recovers the source packets from the intermediate packets. This paper focuses on the
inner decoding.

The inner decoder decodes intermediate packets of each generation by solving a linear system
of equations AlXl = Bl using GE, where successive rows of Al and Bl are the EVs and the coded K
information symbols of the received packets that originate from Gl , respectively. In practice, on-the-fly
GE [36] can be used for this task, which would progressively process packets and know immediately
when Al becomes full-rank.

When one generation is decoded by on-the-fly GE, the decoded packets are subtracted from
the received packets of other not-yet decoded generations that also contain the decoded packets.
This process is referred to as belief propagation. If no decodable generations can be found after the
subtraction, the node continues to collect packets until another decodable generation is found. When
the number of decoded intermediate packets reaches a threshold, which depends on the precode

Sensors 2020, 20, 4334 5 of 15

rate, outer decoding begins and all the source packets are recovered using conventional erasure
correction techniques.

Suppose that N′ packets need to be received to completely recover Ns source packets, we define
the overhead ε = (N′ − Ns)/Ns. The GNC code should be designed to achieve low ε.

3. Irregular Graph Based GNC and BP Decoding Analysis

3.1. Graph Representation of GNC Code

Generation construction with N intermediate packets resulting in L generations is modeled as
constructing a bipartite graph. The packets and generations correspond to two independent sets of
vertices on the graph, referred to as packet nodes and generation nodes, respectively. An edge is created
to connect a pair of packet and generation nodes if the packet is contained in the generation, so the
total number of edges E = ∑L

l=1 |Gl |. A node is said to be of degree i if i edges are directly connected
to the node. We say an edge is of packet-side degree i if its connected packet node is of degree i and of
generation-side degree i if its connected generation node is of degree i, respectively. We denote, as a
fraction of the E edges, the packet-side and generation-side degree i of the resultant bipartite graph as
λi, 1 ≤ i ≤ L and ρi, dR ≤ i ≤ DR, respectively.

Since generations are constructed at random, a GNC code can be viewed as a random graph
drawn from an ensemble of graphs consisting of all bipartite graphs with the fractions of edges of
packet-side and generation-side degree i being λi, 1 ≤ i ≤ L, and ρi, dR ≤ i ≤ DR, respectively.
We refer to sequences λi and ρi as the packet-side edge and generation-side edge degree distribution, or by
their generator polynomials λ(x) = ∑L

i=1 λixi−1 and ρ(x) = ∑DR
i=dR

ρixi−1, respectively. Equivalently,

the graph can also be described by the packet-diversity distribution Ψ(x) = ∑L
k=1 Ψkxk and generation-size

distribution Ω(x) = ∑DR
d=dR

Ωdxd, where Ψk and Ωd denote the probability that a packet node is
of degree k and a generation node is of degree d, respectively; λ(x) = Ψ′(x)/Ψ′(1) and ρ(x) =

Ω′(x)/Ω′(1) on the graph, where Ψ′(x) and Ω′(x) are derivatives of Ψ(x) and Ω(x) with respect to x,
respectively. We see that Ω′(1) = 1/(∑DR

i=dR

ρi
i) is equal to the average generation size aR.

3.2. Belief Propagation Decoding Analysis

The decoding of GNC codes includes two types of operations: The GE decoding of a generation
and the subtraction of the decoded packets from other generations. Based on the graph representation,
the BP decoding can be viewed as message passing between graph nodes. We use a modified
and-or-tree technique of [23] to analyze the process, where the modification is due to the GE decoding
of the generation nodes.

The graph is fixed throughout the transmission after generation construction. At the decoder
side, each generation node is associated with a random number of received packets. We denote the
probability that a generation node with µ received packets contains k innovative encoded packets as
pk,µ, where k ∈ R = {0, 1, 2, . . . , µ} and we refer toR as the received ranks. When RLNC is used, pk,µ is
equivalently the probability that a µ× k matrix (µ ≥ k) with elements uniformly randomly chosen
from Fq has rank k. The probability is [37]:

pk,µ = (1− 1
qµ)

k

∏
i=2

(
1− qi−1

qµ

)
, 1 ≤ k ≤ µ.

The term (1− 1/qµ) is the probability that the first column of matrix is not all-zero and ∏k
i=2(1−

qi−1/qµ) is probability that i-th column is not a linear combination of the previous i − 1 columns.
We have p0,µ = 1 and pk,µ = 0 for k > µ.

We define a binary message alphabetM = {0, 1}, where 0 and 1 stand for unknown (not decoded)
and known (decoded) of a node on the graph, respectively. At the beginning of the decoding, every node

Sensors 2020, 20, 4334 6 of 15

on the graph sends unknown messages to its neighbors along the edges. Each generation node is
associated with a received rank k ∈ R. The number of adjacent edges of a node carrying inputting
unknown messages is referred to as the unknown degree of the node, denoted as ςp and ςg for packet
nodes and generation nodes, respectively. Corresponding to the decoding process in Section 2.3,
the message mapping rules on the graph is as follows: A generation node sends a known message
on an adjacent edge if and only if its received rank k is larger than ςg − 1, which means that the
generation can be decoded by GE because there are k innovative packets while there are only ςg ≤ k
unknown packets therein. A packet node sends known messages on its adjacent edges if and only if ςp

is smaller than its node degree, which means that at least one generation that contains the packet has
been decoded.

The decoding is more easily explained and analyzed by the and-or tree evaluation technique [23].
By randomly choosing one edge of the bipartite graph that is uniformly sampled from the ensemble of
graphs that are characterized by λ(x) and ρ(x), and expanding the graph starting from its connected
generation node, we can obtain a subgraph being a tree with high probability [23]. We denote this
subgraph as Ph, which is assumed to be obtained by expanding from a generation node to within
distance 2h. Packet and generation nodes are at depths 0, 2, . . . , 2h− 2 and 1, 3, . . . , 2h− 1, respectively.

Let us consider the decoding of the root node of the Ph. Suppose that the subgraph was obtained
by expanding from a generation node of degree m that has received µ packets. Let uh(m, µ) denote the
probability that it is not decodable. For dR ≤ m ≤ µ, we have uh(m, µ) = 1− pm,µ because generations
can be decoded immediately if the number of their received innovative packets are larger than their
degrees. We refer to this as self-decodable. For m ≥ µ + 1, uh(m, µ) is given in (2), where zh denotes the
probability that an arbitrary packet node contained in the generation is sending an unknown message.

uh(m, µ) =
µ−1

∑
k=0

g(m, k, zh)(1− pk+1,µ)

+
m−1

∑
k=µ

g(m, k, zh), (2)

where

g(m, k, x) .
=

(
m− 1

k

)
xk(1− x)m−1−k. (3)

The first term in (2) is the probability that the number of received packets of the generation node
is larger than or equal to its unknown degree but the received rank is not equal to the unknown degree;
the second term is the probability that the number of received packets is smaller than the unknown
degree of the generation node.

Take all possible µ into account. Let ηm,µ denote the probability that the chosen root node is of
degree m and associated with µ received packets. Note that ηm,µ is related to ρ(x) and the number of
received packets for each generation. Let yh denote the probability that an arbitrarily chosen root node
is not decodable by evaluating to within distance 2h on the bipartite graph, we have:

yh = ∑
m,µ:m≤µ

ηm,µ
(
1− pm,µ

)
+ ∑

m,µ:m≥µ+1
ηm,µ

µ−1

∑
k=0

g(m, k, zh)
(

1− pk+1,µ

)
+ ∑

m,µ:m≥µ+1
ηm,µ

m−1

∑
k=µ

g(m, k, zh)

, f (zh, A), (4)

Sensors 2020, 20, 4334 7 of 15

where the summations are over all possible (m, µ) pairs and A is a placeholder matrix consisting of
probabilities ηm,µ. The exact form of A will be specified in later sections when we design code.

Now we need to determine zh. For h > 0, since the subgraph Ph is a tree, as explained in [23] we
can evaluate zh based on subgraphs of Ph, Ph−1. The probability that a d-degree packet node beneath
the root of Ph sends unknown is as follows:

v(d)h =

{
1 d = 1,
(yh−1)

d−1 d = 2, . . . , L,
(5)

where yh−1 is the probability that the root node in a subgraph Ph−1 is not decodable. The two cases
in (5) correspond to (1) the packet node connecting to only one generation node (i.e., the root node of
Ph), which is definitely not decoded, and (2) all other generation nodes connecting this packet node
are not decodable, respectively. Therefore,

zh = λ1 +
L

∑
d=2

λd(yh−1)
d−1 = λ(yh−1). (6)

Substituting (6) into (4), we have:
yh = f (λ(yh−1), A). (7)

This shows that, given fixed λ(x), ρ(x) and the number of received packets of each generation,
the evolution of yh, or in other words the decodability of each generation can be predicted. For h = 0,
the subgraph P0 only contains the root generation node and its packet nodes. So z0 = 1 and y0 ≤ 1
corresponds to the probability that a randomly chosen generation is not self-decodable. The final
value of yh, denoted as δ , limh→∞ yh, corresponds to the smallest probability that the decoder can
reach after going through all generations, or in other words, the fraction of generations that are not
recoverable at the end of the BP decoding process.

For sources that are not precoded, all generations have to be recovered, so we need δ = 0. This is
infeasible because (7) is positive, which means that a not-precoded source is not guaranteed to be
completely recovered given a fixed number of received packets. Interestingly, from another perspective
this confirms that not-precoded GNC code would be affected by the “curse of coupon collector” [11].

For precoded GNC, choice of δ is straightforward because it is related to the precode rate 1/(1+ θ).
If there is a fraction δ intermediate packets that are not recovered by inner decoding, the packets
ought to be recovered by outer decoding. This means that Ns = (1/(1 + θ))N source packets are to be
recovered from any (1− δ)N intermediate packets. Therefore we have δ = θ/(1 + θ). In the following
we focus exclusively on precoded GNC codes.

For the sake of simplicity, we now omit the index h and denote the probability that a generation
node is not decodable at any time as y, y ∈ [δ, 1]. To ensure that the decoding process continues,
we require:

f (λ(y), A) < y, y ∈ [δ, 1], (8)

which means that the probability that a generation node is not decodable should be strictly decreasing
until a fraction of (1− δ) generations are decoded. This inequality will be used in the rest of the paper.

3.3. Derivation of Ψ(x) and λ(x)

According to Section 3.1, we observe that Ψ(x) and λ(x) only depend on aR and dR.
The probability that a packet node connects to k generations using the generation construction of
Section 2.1 is:

Ψk =

(
L− 1
k− 1

)(
aR − dR

N

)k−1 (
1− aR − dR

N

)L−k
.

Sensors 2020, 20, 4334 8 of 15

Therefore by some algebraic manipulations, we have:

Ψ(x) = x
[

1− (aR/dR − 1)(1− x)
L

]L−1

, (9)

and using λ(x) = Ψ′(x)/Ψ′(1), we have:

λ(x) ≈
(

dR
aR

+

(
1− dR

aR

)
x
)

e−(aR/dR−1)(1−x), (10)

where the approximation is due to limm→∞

(
1 + 1

m

)m
= e.

3.4. Computational Complexity

The encoding complexity of the GNC code is O(KDR) operations per encoded packet, where
K is the number of symbols in the packet. For equal-size GNC codes, the decoder solves L =

N/dR generations of equal-size aR by GE, so the decoding complexity is O
(

L
(
a3

R + a2
RK
))

=

O
(
γ
(
a2

RN + aRNK
))

to recover all generations, where γ = aR/dR, and is O
(
γ
(
a2

R + aRK
))

per
decoded packet. The GNC code is therefore linear in N for fixed dR, aR, and K. For unequal-size GNC
with average generation size aR, some generations are larger than aR. However, we show later that by
carefully designing the generation-size distribution, the resultant GNC code may be decoded by only
solving generations of an unknown degree of no more than aR. Therefore, the decoding complexity of
unequal-size GNC is upper bounded by equal-size GNC.

4. Irregular Graph Based GNC Design

4.1. Generation-Size Distribution Design

Based on the analysis of Section 3, we now design Ω(x) or ρ(x), from which generation sizes
are drawn. From (7) and (4) we see that ρi, dR ≤ i ≤ DR are encapsulated in a joint distribution ηm,µ.
For convenience, we denote ρ , [ρdR , ρdR+1, . . . , ρDR]. Unfortunately, ηm,µ is not easy to characterize
because it also involves intermediary scheduling and erasures.

In this work, we resort to a heuristic simplification of ηm,µ to isolate ρ. That is, we only allow for
non-zero ηm,µ at a specific µ to design ρ. We desire that such µ is smaller than aR, so that the decoding
cost can be reduced compared to if a fixed generation size of aR were used. The resulting problem
corresponds to minimizing overhead for the case of when all generations receive the same number of
packets. We note that this assumption may not be realistic given that the number of packets received
per generation can hardly be equal due to random erasures. However, minimizing such µ can be seen
as an approximation of minimizing the expected overhead. By applying the simplifications, we can
rewrite (8) as:

f̂ (λ(y), ρ, µ) < y, y ∈ [δ, 1], (11)

where,

f̂ (λ(y), ρ, µ) =
µ

∑
m=dR

ρm
(
1− pm,µ

)

+
DR

∑
m=µ+1

ρm

µ−1

∑
k=0

g(m, k, λ(y))
(

1− pk+1,µ

)

+
DR

∑
m=µ+1

ρm

m−1

∑
k=µ

g(m, k, λ(y)) (12)

and λ(y) is specified in (10).

Sensors 2020, 20, 4334 9 of 15

Given fixed aR, ρ can be optimized as the solution to the following problem:

minimize
ρ

µ

subject to
DR

∑
m=dR

ρm = 1,

DR

∑
m=dR

ρm

m
=

1
aR

,

f̂ (λ(y), ρ, µ) < y, y ∈ [δ, 1].

(13)

This problem can be solved by evenly discretizing the interval [δ, 1] to generate multiple (e.g., M + 1)
inequalities in place of the single continuous one. For each point y at some multiples of (1− δ)/M,
the inequality needs to be satisfied.

Denote the solution of µ as µ̂. Since µ ∈ {dR, dR + 1, . . . , aR}, we can obtain µ̂ by testing the
problem feasibility with different µ, starting from the minimum possible value (i.e., dR) up until the
first feasible value of µ. It is observed that given λ(y) and µ, f̂ (λ(y), ρ, µ) is a linear combination
of ρdR , . . . , ρDR for each y in [δ, 1], so (13) is a linear programming problem and can be solved using
standard techniques.

4.2. Refinements to Generation-Size Distribution

For µ̂, the obtained ρ is supposed to be sufficient to ensure that the decoding is successful on
average. However, some refinements still need to be made to ensure that the distribution works well
in practice. The first refinement, similar to the design of ripple size in raptor codes [6], is to generalize
constraints (11) by including a parameter cµ̂ > 0, which represents the increment of decodabilities
of other generations when a generation is decoded. Again, we can greedily search for the largest
cµ̂ from the initial value cµ̂ = 0 such that (13) is feasible with known µ̂, i.e., enforce the probability
increase as quickly as possible. Note that now the last inequality constraint is f̂ (λ(y), ρ, µ) < y− cµ̂,
and is still linear in ρ. Therefore, the optimal cµ̂, which is denoted as ĉµ̂, is also the solution to a linear
programming problem.

After obtaining ĉµ̂, an objective function can also be chosen to find a better ρ. A function that
works well is the sum of f̂ (λ(y), ρ, µ) on values of y discretized to generate the constraints. On one
hand, from a performance point of view, minimizing ∑y f̂ (λ(y), ρ, µ) corresponds to maximizing
the gap area between f̂ and y− ĉµ̂, the latter is the upper-bound probability that a generation is not
decodable at each stage of decoding. The larger the area is, the larger the portion of newly decodable
generations we would have. On the other hand, the minimization is a least l1-norm problem on ρ,
which produces a ρ with a large number of zero components [38]. This is a good property because it
would simplify generation construction in that only several generation sizes are possible even when
the degree spread (i.e., DR − dR) is large. The generation-size distribution Ω(x) is then expressed in
terms of ρ using the fact that Ωi = aRρi/i, i = dR, . . . , DR.

5. Performance Evaluation

5.1. Outline of Design

We first outline the code design procedure. Suppose that we want to transmit N packets in L
generations given dR, DR, and q and we require that the decoding recovers at least (1− δ) fraction of
generations directly. Given the parameters, for different choices of aR, we use the λ(x) specified in (10)
and solve the refined (13) to obtain µ̂, ĉµ̂ and the corresponding Ω(x), from which we can sample
generation sizes. For example, for dR = 32, DR = 64, aR = 38, δ = 0.02, and q = 28, we have µ̂ = 33
by solving (13), and ĉµ̂ = 0.005 for the first refinement. The Ω(x) after refinements is given by the
following polynomial:

Sensors 2020, 20, 4334 10 of 15

Ω(x) = 0.0058x33 + 0.0991x34 + 0.1495x35

+0.6341x39 + 0.1109x40 + 0.0007x64.

In Figure 2, we plot the expected fraction of newly decodable generations (x− f̃ (λ(x), ρ, µ̂)) at
various stages of the decoding process. This curve’s shape is typical for generation-size distributions
considered here. The slowest period of the decoding process would occur at the beginning when
few generations have been decoded. After that, the expected newly decodable fraction increases.
This is an important feature in practice because it enables avalanche finishing when precoding is
used. We will show this shortly. We note that values of N and L are not needed in the distribution
design (as the analysis was on random ensembles), so Ω(x) is universal for the set of parameters
C = {dR, DR, aR, δ, q}.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

already decoded fraction

e
x
p
e
c
te

d
 n

e
w

ly
 d

e
c
o
d
a
b
le

 f
ra

c
ti
o
n

Figure 2. Expected newly decodable fraction of generations at various stages, C = (32, 64, 38, 0.02, 28).

5.2. One-Hop Simulations

We now evaluate our code design in a single-hop setting by simulation and compare it with the
disjoint chunking code (DCC) [11] and the random annex code (RAC) [14]. Our design is referred to as
irregular GNC (iGNC) below. In single-hop networks, we do not need to consider buffer state because
the source node has all its packets available. Packets are sent from each generation in a round-robin
fashion to ensure that generations are scheduled evenly. Packets are erased with probability ε = 0.2
over the link. The performance metrics of interest are the overhead and the associated computational
cost. The latter is measured by bookkeeping the average number of finite field operations performed
to decode each symbol of a source packet. The field size q = 28 throughout the following simulations.

We first consider GNC without precoding to show that the designed iGNC can achieve a better
overhead-complexity tradeoff. Assume that Ns = 65,536 source packets to be transmitted, each
contains K = 1024 symbols from F28 , i.e., 64 megabytes (MiB) in total. We set the minimum generation
size as dR = 32 and group packets into L = 2048 generations. The simulation results are summarized
in Table 1, where the bold values correspond to the minimum achieved overhead of the corresponding
schemes. The average overhead and the number of operations per symbol needed in successfully
decoding DCC, RAC, and iGNC with different aR are listed. The implemented decoder finishes
decoding in less than 6 s on a Raspberry Pi 4B, achieving a decoding speed of about 10 MiB/s.
(The implementation is not optimized. We note that this speed can be significantly improved by
turning on single instruction multiple data (SIMD) of CPU (i.e., NEON for ARM) for finite field
operations according to the measurement reports in [39]. However, we do not further explore this
as the implementation optimization is not the focus of this paper.) On the contrary, this scale of Ns

would be prohibitive in terms of either decoding time or memory requirement for decoders other than

Sensors 2020, 20, 4334 11 of 15

BP, e.g., [20]. When aR = 32, RAC and iGNC reduce to DCC, in which no overlap is used. It is clear
that DCC have the lowest computational cost but the largest overhead among all the configurations.
For both RAC and iGNC, we see that there does exist a “sweet zone” when increasing aR. The lowest
achievable overhead and corresponding computation cost for each configuration is highlighted in
boldface. It is clear from Table 1 that iGNC has much lower overhead and computational cost at the
same time for all choices of aR.

Table 1. Comparison of codes at various aR, Ns = 65536, δ = 0.02 and S = 1693. RAC: Random Annex
Code; iGNC: irregular Generation-based Network Code.

RAC RAC (Precoding) iGNC iGNC (Precoding)

aR Overhead Operations Overhead Operations Overhead Operations Overhead Operations

32 1.3226 32.41 1.1739 33.09 1.3226 32.41 1.1739 33.09
36 1.2566 36.42 1.0718 37.19 1.2349 36.41 1.0806 37.19
38 1.1977 39.45 1.0522 40.36 1.1888 39.19 1.0497 40.13
40 1.1578 43.28 1.1000 44.43 1.1439 42.31 1.0775 43.27
42 1.1341 47.60 1.1492 48.73 1.1339 45.05 1.0988 46.23
44 1.1722 52.07 1.2044 53.50 1.1037 47.90 1.1154 49.06
46 1.2255 56.83 1.2577 58.39 1.1043 50.51 1.1306 51.93
48 1.2804 62.03 1.3137 63.63 1.1147 53.15 1.1428 54.74
50 1.3332 67.26 1.3689 69.06 1.1253 55.98 1.1561 57.73

Results with precoding are also given in Table 1. When using a precode, we first encode Ns source
packets into (1 + θ)Ns intermediate packets using a fixed-rate erasure-correction code. The generation
construction process is then applied to intermediate packets. In our decoding process, there are (1− δ)

fraction of generations recovered directly. On average, this leaves a total of δLaR(dR/aR) intermediate
packets that are not recovered, i.e., a δ fraction of intermediate packets. Here the multiplier dR/aR is
due to the overlap between generations. As a result, our precode should be chosen such that it recovers
all source packets from intermediate packets with erasure rate δ, i.e., θ = δ/(1− δ) ≈ δ. We apply the
same systematic LDPC precode as in the standard raptor codes ([40], Section 5.4.2.3). For Ns = 65,536
and δ = 0.02, S = 1693 parity check packets are added such that the last 2% of packets can be recovered.
It is noted that we need d67229/32e − 2048 = 53 more generations to ensure that each intermediate
packet is contained in at least one generation.

It is seen that precoding is also helpful in DCC (aR = 32), and incurs almost no extra computational
cost while reducing transmission overhead significantly. However, this improvement is not even
competitive when compared to RAC and iGNC without precoding. By applying precoding to iGNC,
we see that both overhead and computational cost can be further reduced. Specifically, for aR = 38,
we can achieve overhead below 5%. The precoding is also beneficial to RAC, but its overhead and
computation requirements are less favorable compared to that of iGNC for any choice of aR.

Two points need to be highlighted here. First, we note that the benefit of precoding is only feasible
when aR is smaller than the value at which the best overhead and computational cost is achieved in
the non-precoding setting, i.e., 42 for RAC and 44 for iGNC in this example, respectively. It is because
generation overlap can be viewed as a special type of zero-computation precoding in which we simply
duplicate some packets. However, there exists an optimal amount of redundancy in combating coupon
collector’s phenomenon. When the amount of redundancy from solely using overlapping has achieved
its best overhead performance, adding more redundancy by applying precoding helps nothing but
needs more generations to cover the check packets, which deteriorates the performance. Second, it is
noted that the performance gap between RAC and iGNC with precodings is very small at the best
aR. The reason is essentially the same. Combining overlapping with LDPC precoding, a cascaded
precoding design is actually obtained that is able to reduce much of the overhead caused by the coupon
collector’s phenomenon. We emphasize that, as seen in Table 1, RAC is only comparable to iGNC
when the best aR is known, which unfortunately is non-trivial to estimate. For any chosen value of aR,

Sensors 2020, 20, 4334 12 of 15

however, iGNC tends to have lower overhead and computational cost all the time, which is a decisive
advantage of it.

In Figure 3, we plot the decoding curves showing the number of collected packets versus
the number of decoded packets for one decoding instance of precoded and not-precoded iGNC,
respectively. Both numbers are normalized against the number of source packets. Parameters are
chosen according to Table 1 such that iGNC achieves the lowest overhead. We see that the decoding
curve of C1 = (32, 64, 38, 0.02, 28) matches with the expected newly decodable fraction of generations
during the decoding as shown in Figure 2. The code has spent most of its time collecting packets for
recovering the first 20% of the source, and almost all packets are immediately recovered after that.
In the case where no precoding is used, the decoding gets stuck when it is close to finishing and incurs
a long tail in recovering the last few packets.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15

n
o

rm
a

liz
e

d
 #

 o
f

d
e

c
o

d
e

d
 p

a
c
k
e

ts

normalized # of received packets (1+ε)

C1 (w/. precoding)
C2 (no precoding)

Figure 3. Example of decoding curve, C1 = (32, 64, 38, 0.02, 28), C2 = (32, 64, 44, 0.02, 28).

5.3. Network Simulations

We now evaluate the iGNC in two simple networks, namely the two-hop line network and the
well-known butterfly network. Each hop of the two-hop link has equal erasure probability pe = 0.2,
and each link of the butterfly network has equally pe = 0.1. The max-flow capacities of the two
networks are known to be Ca = 0.8 and Cb = 1.8, respectively. Generations are scheduled in a
round-robin fashion at the source node and MaLPI is used at intermediate nodes when recoding.
Ns = 65,536 source packets are transmitted. The same code parameters as in Section 5.2 are used.
We examine the throughput rate, defined as the ratio of Ns to the number of network uses, where each
network use corresponds to that each link of the network transmits one packet. We compare the rates
and computational costs of iGNC when RS and MaLPI are used, respectively. The results are shown in
Table 2, where the highest achieved rates are marked as bold.

Table 2. Performance of iGNC in networks Ns = 65536, δ = 0.02. RS: Random Scheduling; MaLPI:
Maximum Local Potential Innovativeness.

Two-Hop Line Network (Ca = 0.8) Butterfly Network (Cb = 1.8)

RS MaLPI RS MaLPI

aR Rate Operations Rate Operations Rate Operations Rate Operations

32 0.5406 34.83 0.6307 33.81 1.0579 37.10 1.3452 34.35
36 0.5990 39.24 0.6908 38.09 1.1507 41.63 1.4724 38.69
38 0.6272 41.57 0.7221 40.79 1.2077 44.03 1.5460 41.36
40 0.6525 44.74 0.7055 44.11 1.2382 47.35 1.5295 44.73
42 0.6433 48.13 0.6892 47.50 1.2149 50.90 1.4897 48.31

Sensors 2020, 20, 4334 13 of 15

When aR = 32, the code reduces to DCC. It is clear from Table 2 that MaLPI achieves a higher rate.
It is noted that the resulting throughput rate at best only achieves about 90% and 85% of the max-flow
capacities of the two-hop and the butterfly network, respectively. The rate loss mostly comes from only
making use of a local buffer state of each node in scheduling. As mentioned, a packet that is innovative
from a sending-node’s point of view is not necessarily innovative for its downstream nodes, especially
in networks where downstream nodes have multiple paths receiving packets. The proposed MaLPI
scheme, however, is unaware of the issue because no coordination between nodes is available.

6. Conclusions

This paper has proposed using GNC codes with BP decoding for content distribution over lossy
and dynamic networks. It was showed that GNC codes can be modeled as an irregular bipartite graph
and its BP decoding performance can be analyzed through an extended and-or tree analysis. Using the
analysis as the design tool, we managed to design degree distributions from which generation sizes
are drawn through solving an optimization problem. Based on extensive performance evaluations,
it was demonstrated that using non-constant generation sizes may achieve both a low decoding cost
and transmission overhead compared to existing schemes where equal-size generations are used.
We believe that the scheme has good potential in emerging wireless applications where end users of
content distribution have limited computational/memory capacities.

For future works, it is of a great interest to evaluate the scheme in emulated/real-world network
environment where links may have congestion and/or different propagation delays. Another
interesting direction is to further suppress the overhead of BP decoding by incorporating more
sophisticated operations such as inactivation decoding.

Author Contributions: Conceptualization, W.Y.; methodology, W.Y.; software, Y.L.; validation, Y.L.;
writing—original draft preparation, W.Y.; writing—review and editing, Y.L.; funding acquisition, W.Y. and
Y.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Science and Technology Fund of Nantong under Grant no. JC2018106,
and by the Natural Science Foundation of the Jiangsu Higher Education Institutions under Grant no. 19KJB430028.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kumbhar, A.; Koohifar, F.; Güvenç, İ.; Mueller, B. A Survey on Legacy and Emerging Technologies for
Public Safety Communications. IEEE Commun. Surv. Tutor. 2017, 19, 97–124. [CrossRef]

2. Metcalf, D.; Milliard, S.T.J.; Gomez, M.; Schwartz, M. Wearables and the Internet of Things for Health:
Wearable, Interconnected Devices Promise More Efficient and Comprehensive Health Care. IEEE Pulse 2016,
7, 35–39. [CrossRef] [PubMed]

3. Yang, J.; Zhou, J.; Tao, G.; Alrashoud, M.; Mutib, K.N.A.; Al-Hammadi, M. Wearable 3.0: From Smart
Clothing to Wearable Affective Robot. IEEE Netw. 2019, 33, 8–14. [CrossRef]

4. Ho, T.; Medard, M.; Koetter, R.; Karger, D.R.; Effros, M.; Shi, J.; Leong, B. A Random Linear Network Coding
Approach to Multicast. IEEE Trans. Inf. Theory 2006, 52, 4413–4430. [CrossRef]

5. Langley, A.; Riddoch, A.; Wilk, A.; Vicente, A.; Krasic, C.; Zhang, D.; Yang, F.; Kouranov, F.; Swett, I.;
Iyengar, J.R.; et al. The QUIC Transport Protocol: Design and Internet-Scale Deployment. In Proceedings of
the Conference of the ACM Special Interest Group on Data Communication (SIGCOMM), Los Angeles, CA,
USA, 21–25 August 2017; pp. 183–196. [CrossRef]

6. Shokrollahi, A. Raptor codes. IEEE Trans. Inf. Theory 2006, 52, 2551–2567. [CrossRef]
7. Feizi, S.; Lucani, D.E.; Sørensen, C.W.; Makhdoumi, A.; Médard, M. Tunable sparse network coding for

multicast networks. In Proceedings of the 2014 International Symposium on Network Coding (NetCod),
Aalborg, Denmark, 27–28 June 2014; pp. 1–6. [CrossRef]

8. Sorensen, C.W.; Badr, A.S.; Cabrera, J.A.; Lucani, D.E.; Heide, J.; Fitzek, F.H.P. A Practical View on Tunable
Sparse Network Coding. In Proceedings of the European Wireless, Budapest, Hungary, 20–22 May 2015;
pp. 1–6.

http://dx.doi.org/10.1109/COMST.2016.2612223
http://dx.doi.org/10.1109/MPUL.2016.2592260
http://www.ncbi.nlm.nih.gov/pubmed/28113167
http://dx.doi.org/10.1109/MNET.001.1900059
http://dx.doi.org/10.1109/TIT.2006.881746
http://dx.doi.org/10.1145/3098822.3098842
http://dx.doi.org/10.1109/TIT.2006.874390
http://dx.doi.org/10.1109/NETCOD.2014.6892129

Sensors 2020, 20, 4334 14 of 15

9. Lucani, D.E.; Pedersen, M.V.; Ruano, D.; Sørensen, C.W.; Fitzek, F.H.P.; Heide, J.; Geil, O.; Nguyen, V.;
Reisslein, M. Fulcrum: Flexible Network Coding for Heterogeneous Devices. IEEE Access 2018,
6, 77890–77910. [CrossRef]

10. Nguyen, V.; Tasdemir, E.; Nguyen, G.T.; Lucani, D.E.; Fitzek, F.H.P.; Reisslein, M. DSEP Fulcrum: Dynamic
Sparsity and Expansion Packets for Fulcrum Network Coding. IEEE Access 2020, 8, 78293–78314. [CrossRef]

11. Maymounkov, P.; Harvey, N.J.A.; Lun, D.S. Methods for Efficient Network Coding. In Proceedings of the
Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA, 27–29 September
2006; pp. 482–491.

12. Silva, D.; Zeng, W.; Kschischang, F.R. Sparse network coding with overlapping classes. In Proceedings of
the Workshop Network Coding, Theory, and Applications (NetCod), Lausanne, Switzerland, 15–16 June
2009; pp. 74–79. [CrossRef]

13. Heidarzadeh, A.; Banihashemi, A.H. How much can knowledge of delay model help chunked coding over
networks with perfect feedback? In Proceedings of the IEEE International Symposium on Information
Theory (ISIT), Honolulu, HI, USA, 29 June–4 July 2014; pp. 456–460. [CrossRef]

14. Li, Y.; Soljanin, E.; Spasojevic, P. Effects of the Generation Size and Overlap on Throughput and Complexity
in Randomized Linear Network Coding. IEEE Trans. Inf. Theory 2011, 57, 1111–1123. [CrossRef]

15. Tang, B.; Yang, S.; Yin, Y.; Ye, B.; Lu, S. Expander graph based overlapped chunked codes. In Proceedings of
the IEEE International Symposium on Information Theory (ISIT), Cambridge, MA, USA, 1–6 July 2012; pp.
2451–2455. [CrossRef]

16. Li, Y.; Chan, W.Y.; Blostein, S.D. Network coding with unequal size overlapping generations. In Proceedings
of the 2012 International Symposium on Network Coding (NetCod), Cambridge, MA, USA, 29–30 June
2012; pp. 161–166.

17. Yang, S.; Yeung, R. Batched Sparse Codes. IEEE Trans. Inf. Theory 2014, 60, 5322–5346. [CrossRef]
18. Fiandrotti, A.; Bioglio, V.; Grangetto, M.; Gaeta, R.; Magli, E. Band Codes for Energy-Efficient Network

Coding With Application to P2P Mobile Streaming. IEEE Trans. Multimed. 2014, 16, 521–532. [CrossRef]
19. Li, Y.; Zhu, J.; Bao, Z. Sparse Random Linear Network Coding With Precoded Band Codes.

IEEE Commun. Lett. 2017, 21, 480–483. [CrossRef]
20. Li, Y.; Chan, W.Y.; Blostein, S.D. On Design and Efficient Decoding of Sparse Random Linear Network Codes.

IEEE Access 2017, 5, 17031–17044. [CrossRef]
21. Duff, I.S.; Erisman, A.M.; Reid, J.K. Direct Methods for Sparse Matrices, 2nd ed.; Oxford University Press:

New York, NY, USA, 2017.
22. Garrido, P.; Sørensen, C.W.; Lucani, D.E.; Agüero, R. Performance and complexity of tunable sparse

network coding with gradual growing tuning functions over wireless networks. In Proceedings of the IEEE
International Symposium Personal, Indoor, and Mobile Radio Commun. (PIMRC), Valencia, Spain, 4–7
September 2016; pp. 1–6. [CrossRef]

23. Luby, M.; Mitzenmacher, M.; Shokrollahi, A. Analysis of Random Processes via And-Or Tree Evaluation.
In Proceedings of the 9th Annu. ACM-SIAM Symp. Discrete Algorithms, San Francisco, CA, USA, 25–27
January 1998; pp. 364–373.

24. Li, Y.; Wang, J.; Zhang, S.; Bao, Z.; Wang, J. Efficient Coastal Communications with Sparse Network Coding.
IEEE Netw. 2018, 32, 122–128. [CrossRef]

25. Luby, M.; Gasiba, T.; Stockhammer, T.; Watson, M. Reliable Multimedia Download Delivery in Cellular
Broadcast Networks. IEEE Trans. Broadcast. 2007, 53, 235–246. [CrossRef]

26. 3GPP. Multimedia Broadcast/Multicast Services (MBMS); Protocols and Codecs (Release 12); Technical
Specification (TS) 26.346; 3rd Generation Partnership Project (3GPP). Available online: http://www.3gpp.
org/ftp/Specs/archive/26_series/26.346/ (accessed on 1 July 2020).

27. Leyva-Mayorga, I.; Torre, R.; Pandi, S.; T Nguyen, G.; Pla, V.; Martinez-Bauset, J.; Fitzek, F. A Network-coded
Cooperation Protocol for Efficient Massive Content Distribution. In Proceedings of the 2018 IEEE Global
Communications Conference, Abu Dhabi, UAE, 9–13 December 2018; pp. 1–7.

28. Keshtkarjahromi, Y.; Seferoglu, H.; Ansari, R.; Khokhar, A. Device-to-Device Networking Meets Cellular via
Network Coding. IEEE/ACM Trans. Netw. 2018, 26, 370–383. [CrossRef]

29. Li, Y.; Zhou, J.; Wang, J.; Bao, Z.; Quek, T.Q.S.; Wang, J. On Data Dissemination Enhanced by Network
Coded Device-to-Device Communications. IEEE Trans. Wirel. Commun. 2020, 19, 3963–3976. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2018.2884408
http://dx.doi.org/10.1109/ACCESS.2020.2989619
http://dx.doi.org/10.1109/NETCOD.2009.5191397
http://dx.doi.org/10.1109/ISIT.2014.6874874
http://dx.doi.org/10.1109/TIT.2010.2095111
http://dx.doi.org/10.1109/ISIT.2012.6283956
http://dx.doi.org/10.1109/TIT.2014.2334315
http://dx.doi.org/10.1109/TMM.2013.2285518
http://dx.doi.org/10.1109/LCOMM.2016.2632731
http://dx.doi.org/10.1109/ACCESS.2017.2741972
http://dx.doi.org/10.1109/PIMRC.2016.7794915
http://dx.doi.org/10.1109/MNET.2018.1700378
http://dx.doi.org/10.1109/TBC.2007.891703
http://www.3gpp.org/ftp/Specs/archive/26_series/26.346/
http://www.3gpp.org/ftp/Specs/archive/26_series/26.346/
http://dx.doi.org/10.1109/TNET.2017.2787961
http://dx.doi.org/10.1109/TWC.2020.2979145

Sensors 2020, 20, 4334 15 of 15

30. Tang, B.; Yang, S.; Ye, B.; Guo, S.; Lu, S. Near-Optimal One-Sided Scheduling for Coded Segmented Network
Coding. IEEE Trans. Comput. 2016, 65, 929–939. [CrossRef]

31. Tang, B.; Yang, S. An LDPC Approach for Chunked Network Codes. IEEE/ACM Trans. Netw. 2018,
26, 605–617. [CrossRef]

32. Yang, J.; Shi, Z.; Xiong, J.; Wang, C. An Improved BP Decoding of BATS Codes with Iterated Incremental
Gaussian Elimination. IEEE Commun. Lett. 2019. [CrossRef]

33. Li, Y.; Zhang, S.; Wang, J.; Ji, X.; Wu, H.; Bao, Z. A Low-Complexity Coded Transmission Scheme over
Finite-Buffer Relay Links. IEEE Trans. Commun. 2018, 66, 2873–2887. [CrossRef]

34. Zverev, M.; Garrido, P.; Agüero, R.; Bilbao, J. Systematic Network Coding with Overlap for IoT Scenarios.
In Proceedings of the 2019 International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob), Barcelona, Spain, 21–23 October 2019; pp. 1–6. [CrossRef]

35. Li, Y.; Blostein, S.D.; Chan, W.Y. Large File Distribution Using Efficient Generation-based Network Coding.
In Proceedings of the IEEE Globecom Workshops, Atlanta, GA, USA, 9–13 December 2013; pp. 427–432.

36. Bioglio, V.; Grangetto, M.; Gaeta, R.; Sereno, M. On the fly Gaussian elimination for LT codes. IEEE Commun. Lett.
2009, 13, 953–955. [CrossRef]

37. Trullols-Cruces, O.; Barcelo-Ordinas, J.M.; Fiore, M. Exact Decoding Probability Under Random Linear
Network Coding. IEEE Commun. Lett. 2011, 15, 67–69. [CrossRef]

38. Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: New York, NY, USA, 2004.
39. Paramanathan, A.; Pedersen, M.V.; Lucani, D.E.; Fitzek, F.; Katz, M. Lean and mean: Network coding for

commercial devices. IEEE Wirel. Commun. Mag. 2013, 20, 54–61. [CrossRef]
40. Luby, M.; Shokrollahi, A.; Watson, M.; Stockhammer, T. Raptor forward Error Correction Scheme for Object

Delivery; RFC5053; RFC Editor, 2007, Available online: https://tools.ietf.org/rfc/rfc5053.txt (accessed on 1
July 2020).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TC.2015.2435792
http://dx.doi.org/10.1109/TNET.2017.2787726
http://dx.doi.org/10.1109/LCOMM.2019.2953699
http://dx.doi.org/10.1109/TCOMM.2018.2809627
http://dx.doi.org/10.1109/WiMOB.2019.8923213
http://dx.doi.org/10.1109/LCOMM.2009.12.091824
http://dx.doi.org/10.1109/LCOMM.2010.110310.101480
http://dx.doi.org/10.1109/MWC.2013.6664474
https://tools.ietf.org/rfc/rfc5053.txt
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Motivation
	Related Works
	Organization

	System Model
	Precoding and Generation Constructions
	Encoding and Recoding
	Belief Propagation GNC Decoding

	Irregular Graph Based GNC and BP Decoding Analysis
	Graph Representation of GNC Code
	Belief Propagation Decoding Analysis
	Derivation of (x) and (x)
	Computational Complexity

	Irregular Graph Based GNC Design
	Generation-Size Distribution Design
	Refinements to Generation-Size Distribution

	Performance Evaluation
	Outline of Design
	One-Hop Simulations
	Network Simulations

	Conclusions
	References

