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Accurate image segmentation is the key to quantitative analysis and recognition of pathological 
tissues in medical imaging technology, which can provide important technical support for medical 
diagnosis and treatment. However, the task of lesion segmentation is particularly challenging due 
to the difficulty in identifying edges, the complexity of different tissues, and the variability in their 
shapes. To address these challenges, we propose a dual-channel compression mapping network 
(DCM-Net) with fused attention mechanism for medical image segmentation. Firstly, a dual-channel 
compression mapping module is added to U-Net’s standard convolution blocks to capture inter-channel 
information. Secondly, we replace the traditional skip path with a fusion attention mechanism that 
can better present context information in high-level features. Finally, the combination of squeeze-
and-excitation module and residual connection in the decoder part can improve the adaptive ability 
of the network. Through extensive experiments on various medical image datasets, DCM-Net has 
demonstrated superior performance compared to other models. For instance, on the ISIC database, 
our network achieved an Accuracy of 91.42%, True Positive Rate (TPR) of 88.93%, Dice of 86.09%, 
and Jaccard of 76.02%. Additionally, on the pituitary adenoma dataset from Quzhou People’s 
Hospital, DCM-Net reached an Accuracy of 97.07%, TPR of 93.09%, Dice of 92.29%, and Jaccard of 
87.73%. These results demonstrate the effectiveness of DCM-Net in providing accurate and reliable 
segmentation, and it shows valuable potential in the field of medical imaging technology.

Medical image segmentation is an important subject in modern image analysis, and it is the key to accurately 
identify and separate different tissues, structures or pathological regions in medical images. This capability 
provides clinicians with a solid foundation for precise quantitative analysis and visualization, which are essential 
for accurate diagnosis, effective treatment planning, and continuous patient monitoring1. With the widespread 
application of imaging techniques such as ultrasound, MRI, and CT, the acquisition of medical images has 
become increasingly rapid and high-resolution. While this technological advancement has significantly 
improved diagnostic capabilities, it has also introduced new challenges, including the management of large 
volumes of data and the increased complexity of the information contained within these images2. Traditional 
manual image segmentation methods are the gold standard, but they are time-consuming and limited by 
operator experience and potential biases that make it difficult to meet the precision and efficiency requirements 
of modern medicine. Therefore, current research is intensely focused on developing efficient, automatic, and 
accurate medical image segmentation algorithms to ensure that they can be reliably used in different imaging 
modes and clinical scenarios.

Classical segmentation algorithms, such as fuzzy clustering and level set, have been instrumental in the field 
of medical imaging. However, these technologies have some problems such as long segmentation time, low 
precision and manual setting of some important parameters. In addition, external factors such as sharpness and 
brightness in image acquisition will also affect the segmentation quality. In contrast, deep learning algorithms 
have revolutionized the field of medical imaging by automating feature extraction and achieving numerous 
breakthroughs. Furthermore, the researchers are working on designing more accurate, robust, and adaptive 
segmentation models to better handle external factors such as brightness changes and noise interference. For 
example, fully convolutional network (FCN)3 and U-Net4 have become standard frameworks with their powerful 
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feature extraction capabilities and end-to-end learning methods. These models achieve fine target differentiation 
by learning the mapping from the original image to the segmentation mask, significantly improving the accuracy 
and stability of segmentation. Despite significant progress in the field, medical image segmentation still faces 
many challenges that require ongoing exploration of more efficient and robust algorithms to meet diverse clinical 
needs. Specifically, the complexity of anatomical variations among different patient populations, noise and 
artifacts in imaging modalities, and the need for real-time processing in certain medical scenarios all underscore 
the need for further innovation in algorithm design. Additionally, ensuring the generalizability of segmentation 
models across various imaging modalities and disease types remains a critical goal in translating these advances 
into widespread clinical applications. Therefore, the continuous exploration and development of more efficient 
and robust algorithms are essential to meet the diverse and evolving needs of clinical practice, which is essential 
to improve the accuracy, reliability and applicability of medical image segmentation.

Since the introduction of the U-Net, there has been a surge in research proposing its utilization across various 
advanced techniques, including attention mechanisms5,6, dual U-Net structures7,8, and multi-scale feature 
fusion9,10. Among them, Nawaz et al.11 utilized the CornerNet to compute a reliable set of features aimed at 
precisely identifying the locations of melanoma lesions. Once the feature set was obtained, the fuzzy k-means 
algorithm was employed to carry out the segmentation process with a higher degree of precision. Sun et al.12 
integrated Transformer and DA-block into U-Net architecture and proposed a segmentation algorithm named 
DA-TransUNet. This innovative approach combines Transformers’ powerful feature extraction capabilities with 
the efficiency and precision of DA-Block to deliver more accurate and reliable results for clinical applications. 
Zhang et al.13 introduce CT-Net, a cutting-edge model designed to efficiently extract local and global 
representations for comprehensive analysis of medical images through its innovative asymmetric asynchronous 
branch-parallel architecture. Zhao et al.14 developed an innovative approach by combining the principles of text 
attention with the diffusion theory, which enhance the model’s ability to focus on and interpret key regions within 
the target region. Inspired by U-shaped network, Zhang et al.15 introduced parallel expansion pooling module, 
large kernel convolution, and pyramid architecture into the U-Net, which not only accelerates the learning speed 
but also significantly improves its ability to distinguish and process complex patterns within medical images. 
Ansari et al.16 proposed a novel pyramid scene parsing module that operates on the skip connections within 
fixed-width neural networks. This module is specifically designed to extract features at multiple scales while 
capturing rich context associations from different levels of the network.

Inspired by the above methods, this article proposes a two-channel compression mapping network with 
fused attention mechanism for medical image segmentation. A comprehensive series of experiments were 
conducted on two medical image segmentation databases, ISIC-2018 and a pituitary adenoma dataset, to 
evaluate the performance of the proposed DCM-Net. The results of these experiments demonstrated that DCM-
Net consistently outperformed the most advanced existing methods in terms of segmentation accuracy and 
reliability. These findings demonstrate the superiority of DCM-Net in medical image segmentation tasks and its 
potential to improve diagnostic accuracy and clinical decision making processes. Our main contributions are 
given as: 

	(1)	� To enhance the feature extraction capabilities of the network, a dual-channel compressed mapping module 
is incorporated into the convolutional block. This module facilitates a richer and more detailed representa-
tion of the input data, which can improve the overall performance of the segmentation process.

	(2)	� The implementation of fusion attention mechanisms in the connections between the encoder and decod-
er significantly enhances the model’s ability to present contextual information within high-level features. 
These attention mechanisms selectively focus on the most relevant parts of a feature map, which can enable 
a neural network to integrate important context clues throughout the encoding and decoding phases.

	(3)	� In the decoder part of the network, the combination of the SE module and residual connections is employed 
to improve the adaptive capabilities. These components enhance the robustness and flexibility of the algo-
rithm, while suppressing less useful features and solving the gradient disappearance problem.

Methods
Overview of DCM-Net
Our DCM-Net is mainly composed of three primary stages: encoding, decoding, and encoding-decoding 
connection. Each of these stages plays a pivotal role in ensuring the network’s effective operation and high 
performance in image segmentation tasks. To enhance the functionality of these stages, we have designed 
several specialized modules, we have designed some modules, including dual-channel compression mapping 
module, fusion attention mechanism, and squeeze-and-excitation module, as shown in Fig. 1. For the encoder 
part, after adding the dual-channel compressed mapping, the information is compressed by parallel channels 
to obtain more efficient features, and then redundant and miscellaneous items are removed by mapping. For 
the decoder part, we combine the SE module with the residual connection. The SE module enhances the input 
feature mapping by recalibrating the channel feature response, while the residual connection provides a bypass 
around the nonlinear transformation to mitigate problems such as gradient disappearance or gradient explosion. 
Finally, in the connecting part of the encoder and decoder, we introduce a fusion attention mechanism to replace 
the traditional skip connections. This mechanism comprises of attention gates, spatial attention and channel 
attention, which can effectively integrate features from different levels of the network to solve the semantic 
gap between the encoder and the decoder. By meticulously refining each component and ensuring seamless 
integration between stages, DCM-Net is capable of achieving superior segmentation performance.
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Dual-channel compression mapping module
In the U-Net architectures, traditional convolution blocks often fall short in effectively extracting features and 
capturing long-range context information. To address these limitations, we designed a dual-channel compression 
mapping module, as illustrated in Fig. 2. Specifically, the feature map is split into two identical parallel feature 
extraction paths, each path incorporates a global pooling operation followed by two fully connected layers. 
The global pooling operation is critical because it reduces the spatial dimension of the feature graph and helps 
suppress less relevant information. In the subsequent stage within each path, the first fully connected layer 
employs a 1×1 convolution kernel. This layer performs a crucial role by halving the number of channels, thereby 
effectively capturing and highlighting the dependencies between channels. The second fully connected layer has 
the task of restoring the number of channels to the original number, which ensures that the information processed 
through the initial compression is fully reintegrated. The output of these parallel paths is then merged to take full 
advantage of their respective strengths and capabilities. In addition, the resulting combined output undergoes a 
minimization process, specifically designed to highlight the most crucial features across the channels. To further 
refine the model’s ability to learn and adapt, a sigmoid activation function is applied, each followed by batch 
normalization (BN) and ReLU activation17, to make the model better capture complex patterns and improve 
the prediction accuracy. Finally, element-by-element multiplication is performed between the feature maps of 
spatially compression and channel compression. This step ensures that greater activation values are assigned to 
the most important features, thereby increasing the model’s focus on key spatial information and improving the 
overall effectiveness of the feature extraction process. Through this comprehensive and multi-layered approach, 
the dual-channel compression mapping module substantially elevates the model’s capability to perform precise 
and accurate feature extraction, which is crucial for high-quality medical image segmentation.

Fused attention mechanism
Inspired by the ability of the human visual system to selectively focus on significant information, attention 
mechanism18,19 has been introduced into the field of computer vision and has achieved remarkable success. 
In the context of image segmentation, attention mechanism can effectively identify and focus on key areas 
in complex scenes, which improves the accuracy and speed of segmentation process. Despite their success, 
traditional attention mechanisms face significant challenges when applied to the complex and often noisy field 
of medical images. This misallocation of attention can lead to suboptimal segmentation outcomes in which 
important pathological features can be overlooked or misunderstood. To address these challenges, we introduce 
attention gates20,21 mechanism, which dynamically control the importance of different spatial location features in 

Fig. 2.  Structure of dual-channel compression mapping module.

 

Fig. 1.  Architecture of DCM-Net.
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an image by generating a gated signal, as shown in Fig. 3. This mechanism effectively enhances the model’s ability 
to recognize and focus on task-relevant areas, and it ensures that the most relevant areas in the image receive 
proper attention. In the specific task of image segmentation, the addition of attention gate helps to integrate the 
information of different layers of the network more effectively. Especially in the case of skipping connections, it 
enables the network to more efficiently utilize feature information at different scales.

Building upon the foundation of the attention gate structure, we introduce an innovative hybrid attention 
mechanism seamlessly integrates both spatial attention and channel attention, as illustrated in Fig.  4. By 
combining the synergies created by these different forms of attention, a more adaptable and robust feature 
extraction process can be achieved, as well as better handling the different complexities and nuances of medical 
images.

Different from the original attention gate structure, the process of up-sampling is ranked after the 1×1 
convolutional layer in the fused attention mechanism. We use deconvolution up-sampling method, the principle 
of which is to restore the original size of the feature map by filling zero values around the feature map. To prevent 
the convolution layer from extracting useless features, the convolutional layer is scheduled before up-sampling. 
Both inputs are convolved with 1×1 simultaneously to ensure a consistent size by up-sampling. After that, the 
two elements are added as dots and activated using the ReLU function, with the result represented by F H×W ×C . 
In the next step, F H×W ×C  is processed with spatial attention22,23, which mainly weights outputs from different 
regions to enhance specific target regions of interest. Following this, the feature map is subjected to channel 
attention24,25, which directs its focus towards extracting valuable information from a channel perspective. In the 
final stage, each element undergoes exponential calculation to enhance its significance. Subsequently, the size of 
these elements is adjusted through up-sampling to match the input size of the attention gate. This multiplication 
step completes the hybrid process of the entire attention mechanism, which ensures that the network can 
effectively utilize spatial and channel attention features.

As illustrated in Fig.  5, spatial attention performs global max pooling and global average pooling of the 
channel dimension on F H×W ×C , resulting in two H×W×1 feature maps. Then, the results of global max pooling 
and global average pooling are concatenated according to the channel to obtain the feature map size of H×W×2. 
Subsequently, the 7×7 convolution operation is performed on the concatenated results to obtain the feature map 
size of H×W×1. Finally, the spatial attention weight matrix MS(F ) is obtained by sigmoid activation function, 
and its calculation formula is as follows:

	 MS(F ) = σ
(
F 7×7([AvgP ool(F ); MaxP ool(F )])

)
� (1)

As illustrated in Fig. 6, the initial step of channel attention involves global maximum pooling and global average 
pooling of the input in the spatial dimension. Subsequently, the outcomes of these operations are directed to a 
shared multi-layer perceptron (MLP)26 for learning purposes, yielding two 1×1×C feature maps. Notably, the 
number of neurons in the first layer of MLP is C/r with ReLU activation function while there are C neurons in 
its second layer. Finally, following an addition operation on the output of MLP, it undergoes mapping through a 

Fig. 4.  Structure of fused attention mechanism module.

 

Fig. 3.  Structure of attention gates module.
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sigmoid activation function to obtain the channel attention weight matrix MC(F ), and its calculation formula 
is as follows:

	 MC(F ) = σ(MLP (AvgP ool(F )) + MLP (MaxP ool(F )))� (2)

SE module and residual connection
As shown in Fig. 7, the squeeze-and-excitation module27,28 comprises two key components: the squeeze and the 
excitation stages. The squeeze component is designed to reduce the spatial dimensions of the input feature map, 
effectively capturing essential global spatial information. In contrast, the excitation component is responsible for 
learning and deriving adaptive weights for each channel in the input feature map. Subsequently, these derived 
weights are utilized to perform a multiplication operation with the input feature map, resulting in the generation 
of the final output feature map. Given its capacity to dynamically adjust channel weights and thereby enhance 
model performance, the SE module is integrated into the decoder section of the network. In the decoder, the 
up-sampling results are processed by SE module and residual connection respectively, and then the two output 
results are concatenated. Additionally, a regular connection is employed to combine these outputs with those 
from a mixed attention mechanism. It is worth noting that this residual connection facilitates direct cross-
layer connections and plays a pivotal role in improving feature learning as well as enhancing overall model 
performance.

Loss function
In various medical images, the characteristics, locations, and sizes of lesions can vary significantly. This diversity 
extends to the datasets used, which can differ widely in terms of their composition and complexity. Consequently, 
the segmentation ability of a model can vary across different datasets. In the process of model training, dice loss 
function29,30 is used in this paper, and the formula is as follows:

	
Ldice(y, p) = 1 −

2
∑N

i=1 piyi∑N

i=1 yi +
∑N

i=1 pi

� (3)

where N is the number of all pixels, pi and yi are the predicted and label masks of pixel I.

Fig. 7.  Structure of squeeze-and-excitation module.

 

Fig. 6.  Structure of channel attention module.

 

Fig. 5.  Structure of spatial attention module.
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Experimental results
Dataset
To verify the segmentation ability of the proposed DCM-Net, we conducted a series of experiments on two 
distinct and challenging datasets: International Skin Imaging Collaboration (ISIC-2018) dataset and pituitary 
adenoma dataset. The details of the dataset are as follows:

ISIC-2018 dataset
The ISIC dataset, which was released by the International Skin Imaging Collaboration, serves as a comprehensive 
repository of dermoscopic images intended for research and analysis within the field of dermatology. This 
extensive dataset covers multiple years, with each annual release offering distinct characteristics and applications. 
For our specific study, we concentrated on utilizing the 2018 edition of the ISIC dataset. Within the ISIC-
2018 dataset, there are 3694 original dermoscopic images paired with corresponding binary label images that 
represent a diverse range of skin diseases. These images feature intricate backgrounds and noise elements such 
as hair and blood vessels, presenting significant challenges for accurate lesion segmentation and recognition. 
In our experimental setup, we assigned 2594 images for training purposes, 1000 images for testing, and 100 
images for validation. To ensure resilience against potential influences from minor environmental variables that 
could impact segmentation accuracy assessments, we standardized all image pixel dimensions to 256 × 256 with 
three channels. Figure 8 offers a visual representation displaying selected original dermoscopic images alongside 
their corresponding binary label counterparts from within the ISIC-2018 dataset. The dataset can be obtained 
from:https://challenge.isic-archive.com/data/#2018.

Pituitary adenoma dataset
The pituitary adenoma images used in our study were obtained from Quzhou People’s Hospital. These images 
are typically acquired using head X-ray plain films, while CT scans are employed for larger tumors. The scanning 
process covers the entire head, resulting in a more complex background compared to ISIC-2018 images. 
Considering the data set imbalance31, we used 1400 images for training, 305 for validation, and 400 for testing. 
In order to ensure the consistency of training, the pixel value of each image was adjusted to 256 × 256 and 3 
channels. Figure 9 showcases partial original images alongside their corresponding binary label images from the 
pituitary adenoma dataset.

The pituitary adenoma dataset from Quzhou People’s Hospital is private. All methods were carried out in 
accordance with relevant guidelines and regulations. All experimental protocols were approved by Quzhou 
People’s Hospital. Informed consent was obtained from all subjects and their legal guardian.

Fig. 9.  Some images and their corresponding labels on pituitary adenoma.

 

Fig. 8.  Some images and their corresponding labels on ISIC-2018.
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Evaluation metrics
To further confirm the performance of the DCM-Net, we adopt the evaluation metrics commonly used in 
medical image segmentation, including Accuracy32,33, true positive rate(TPR)34,35, Dice36,37, and Jaccard38,39, 
and they can be given as:

	
Accuracy = T P + T N

T P + T N + F P + F N
� (4)

	
T P R = T P

T P + F N
� (5)

	
Dice = 2T P

2T P + F N + F P
� (6)

	
Jaccard = T P

T P + F N + F P
� (7)

Parameter selection
The experimental environment is built under Python3.7, and Keras is used to build the network framework. All 
models were trained on a Windows 64-bit system using an NVIDIA Quadro RTX 6000 with 8GB of RAM and 
an additional 24 GB of extended RAM. To ensure the efficiency and effectiveness of the training process, several 
key parameters were meticulously configured. In the training process, Adam optimizer is used, the learning rate 
is 0.5e−3, the number of network iteration training is set to 200, and the batch size is 16 during each training. 
The selection of the optimizer and learning rate is shown in Table 1. During convolution, padding is set to the 
‘SAME’ mode, and the initial number of convolution kernels is 16. Additionally, a dropout rate of 0.2 was applied 
to introduce regularization, helping to prevent overfitting by randomly dropping 20% of the neurons during 
training. Figure 10 shows the loss and accuracy curve of DCM-Net during training and verification.

Comparison with other methods
In order to confirm the outstanding capability of the DCM-Net in medical image segmentation, we initially 
trained the DCM-Net with U-Net4, OD-Segmentation40, CL-Net41, EE-Net42, DR-Vnet43, SK-U-Net44, Double-
Net45, Nested-Net46, Connected-Net47, X-Net48 and SA-Net49 on the ISIC 2018 dataset. These comparative 
models’ codes were obtained from open-source papers and had demonstrated good performance on various 
medical image datasets such as lungs, retinas, mandibles, etc. During training, all experiments followed a single 
variable principle, with consistent conditions maintained except for model code to ensure experiment accuracy. 
Table 2 presents the performance of all models on the ISIC 2018 dataset. Based on Table 2, it is evident that, 
apart from DCM-Net, the DR-Vnet model exhibits the highest evaluation metrics. By combining residual 
connections with dense blocks, it achieves precise image segmentation. The other models demonstrate relatively 
poor segmentation capabilities, indicating significant susceptibility to image background and noise interference, 
resulting in degraded model performance. In comparison to all open-source academic models, the proposed 
DCM-Net outperforms them across all four indicators. Particularly noteworthy are the Dice and Jaccard values 
which significantly surpass those of other models at 86.09% and 76.02%, respectively. While the Accuracy and 
TPR values are similar to those of other models, they also rank highest at 91.42% and 88.93%. These metrics show 
improvements over the original U-Net by 0.74%, 2.44%, 3.31%, and 4.77%, respectively. These findings suggest 
that the new modules utilized in DCM-Net, including DCM, FAM, residual connections, and SE, collectively 
enhance the model’s segmentation capabilities.

In addition to the aforementioned comparative data that demonstrates the outstanding segmentation 
capability of DCM-Net, we also visualized the results for a more intuitive comparison of all models’ performance, 

Accuracy TPR Dice Jaccard

Optimizer (learning rate = 0.001)

 Adam 0.9142 0.8893 0.8609 0.7602

 Adamax 0.9128 0.8879 0.8586 0.7582

 RMSprop 0.9090 0.8843 0.8523 0.7526

 Rprop 0.9137 0.8888 0.8601 0.7595

 SGD 0.8965 0.8721 0.8312 0.7340

Learning rate (optimizer = Adam)

 0.0005 0.9091 0.8848 0.8602 0.7596

 0.001 0.9142 0.8893 0.8609 0.7602

 0.005 0.8829 0.8588 0.8092 0.7146

 0.01 0.8752 0.8513 0.7973 0.7040

 0.05 0.8352 0.8124 0.7356 0.6496

 0.1 0.8334 0.8107 0.7325 0.6469

Table 1.  Results of experiments with different optimizer and learning rate on ISIC-2018.
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as shown in Fig. 11. As can be seen from the study results in Fig. 11, it is evident that U-Net’s performance in 
segmenting images with subtle lesions or irregular edges is not optimal. Similarly, Double-Net, Nested-Net, 
Connected-Net, and X-Net (rows 9, 10, 11, and 12 in Fig. 11) have all advanced their connection methods by 
adopting a dual U-Net structure for more intricate analysis of extracted features.However, these models are 
limited in their ability to extract multi-scale features and consequently struggle to accurately process more 
complex image segmentation tasks. In response to these limitations, SK-U-Net and SA-Net (rows 8 and 13 in 
Fig. 11) have introduced new modules selective kernel and spatial attention, respectively. These innovations aim 
to enhance the scope of receptive field and capture additional features. Although they address the issue of feature 
extraction to some extent, they do not lead to significant improvements in segmentation effectiveness. Among 
models other than DCM-Net, DR-Vnet stands out for its incorporation of dense blocks and residual connections 
along with a channel compression module. Our DCM-Net integrates the strengths of the aforementioned 
models while leveraging the DCM module for channel compression to further enhance image feature extraction. 
Furthermore, our approach incorporates the FAM, which not only utilizes spatial attention but also integrates 
attention gate and channel attention mechanisms for improved context integration. Additionally, we combine 
the SE module with residual connections resulting in favorable outcomes. In the final row of Fig. 11, it can be 
observed that following the application of DCM-Net, the edge intricacies in the blurred images are effectively 
showcased. For images displaying minimal skin cancer alterations, DCM-Net also aims to enhance them to the 
greatest extent possible.

Method Accuracy TPR Dice Jaccard

U-Net 0.9068 0.8549 0.8278 0.7125

OD-segmentation 0.9132 0.8574 0.8195 0.7002

CL-Net 0.8979 0.8450 0.8138 0.6925

EE-Net 0.9079 0.8789 0.8455 0.7369

DR-Vnet 0.9107 0.8659 0.8473 0.7421

SK-U-Net 0.9045 0.8564 0.8343 0.7216

Double-Net 0.9077 0.8834 0.8383 0.7268

Nested-Net 0.9096 0.8463 0.8348 0.7236

Connected-Net 0.9049 0.8538 0.8465 0.7409

X-Net 0.8917 0.8584 0.8178 0.6966

SA-Net 0.8992 0.8461 0.8194 0.7010

DCM-Net 0.9142 0.8893 0.8609 0.7602

Table 2.  Results of comparative experiments on ISIC-2018.

 

Fig. 10.  Loss and accuracy curves of DCM-Net.
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We additionally performed a comparative analysis using the pituitary adenoma dataset, employing identical 
evaluation metrics. The corresponding data findings are detailed in Table 3. It can be seen from the data in 
the table that the output of the model has been adjusted accordingly due to changes in the data set. Although 
segmenting pituitary tumor images is more challenging than skin cancer images, there are twice as many pictures 
in the training set for pituitary tumors compared to skin cancer. As a result, all of the models have shown 

Fig. 11.  Visual segmentation results of different methods on ISIC-2018 dataset. First and second rows: original 
images and their corresponding ground truth. The third to last rows are results of U-Net, OD-Segmentation, 
CL-Net, EE-Net, Dr-Vnet, SK-U-Net, Double-Net, Nested-Net, Connected-Net, X-Net, SA-Net and DCM-Net.
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improvements in terms of Acc, TPR, Dice, and Jaccard values. Table 3 indicates that other models like OD-
Segmentation also demonstrate impressive performance on this dataset. However, when considering all four 
metrics, DCM-Net continues to outperform others with Accracy, TPR, Dice and Jaccard values reaching 97.07%, 
93.09%, 93.29%, and 87.73%. The data indicate that DCM-Net can also process images with more complex 
backgrounds and get better results. Meanwhile, it also shows from the side that it has stability in medical image 
segmentation, whether it is skin cancer images or pituitary tumor images, it can achieve the best segmentation 
effect. We also visualized the results on pituitary adenoma dataset, as shown in Fig. 12, from which it can be seen 
the excellent performance of DCM-Net.

Computational efficiency
In Table 4, we present a detailed analysis of the relevant parameters and computational efficiency of various 
segmentation methods applied on the ISIC-18 dataset. Models such as U-Net, DR-Vnet, X-Net, SA-Net, and 
Connected-Net demonstrate notable advantages due to their reduced parameter requirements. However, this 
simplicity often comes at the cost of lower accuracy in lesion detection. Conversely, models like OD-Segmentation 
and CL-Net incorporate residual modules that enhance feature representation, albeit with increased training 
time and parameter demands. Similarly, EE-Net employs repeated multi-scale fusion to achieve superior 
performance, which requires significant computational resources. Despite the long training time required, 
our model stands out by achieving higher detection accuracy. These findings underscore the importance of 
balancing computational efficiency with the ultimate objective of accurate and reliable segmentation when 
selecting a model. The slow training speed of our model is mainly due to the dual-channel structure and a variety 
of complex attention experiments. In future experiments, we will consider using system-on-chip50 and other 
indicators to make it superior to other models in terms of efficiency.

Ablation experiment
In this section, we perform ablation studies on the DCM-Net in ISIC-2018 dataset. We integrated DCM, FAM, 
SE, and residual connections within the U-Net architecture, initially conducting individual experiments to assess 
their separate contributions to the model. Subsequently, we combine the three in pairs to examine the resultant 
effects. Once all experiments were conducted, we evaluated using Accracy, TPR, Dice, and Jaccard evaluation 
metrics. Evaluation results are presented in Table 5, with visualizations depicted in Fig. 13.

Effect of DCM
The first is to add the DCM module to the encoder part in U-Net. From Table 5, it is not difficult to see that after 
using the DCM module, Accuracy increases by 0.17%, TPR increases by 0.25%, Dice increases by 0.90%, and 
Jaccard increases by 1.37%. From the visualization results in Fig. 13, it can be obtained that after the addition 
of DCM module, the model segmentation is more detailed and the accuracy of segmentation is improved. 
The main reason for this is that by adding DCM to the encoder, the ability of the model to process low-level 
features is improved, the useless information among them is discarded and the effective information is retained. 
Furthermore, we changed the element multiplication part of the DCM to the element addition, and the result is 
shown in Table 6. It can be seen from the results that the performance of element multiplication is better than 
that of element addition.

Effect of FAM
In the subsequent experiments, FAM is used at the encoder and decoder junction, as shown in Fig. 4, compared 
with the original U-Net, the segmentation performance of the model has been greatly improved. This is mainly 
due to the comprehensive use of multiple attention mechanisms in the hybrid attention mechanism, so that the 
model’s attention is focused on effective information. In addition, in row 5 of Fig. 13, we can see that this module 
is more proficient in the segmentation of small and medium scale skin cancerization compared with the large-
scale skin cancerization. In summary, it shows that the adopted hybrid attention mechanism combined with the 
original U-Net has a certain effect.

Method Accuracy TPR Dice Jaccard

U-Net 0.9688 0.9277 0.8947 0.8109

OD-segmentation 0.9706 0.9301 0.9320 0.8768

CL-Net 0.9697 0.9205 0.9275 0.8691

EE-Net 0.9695 0.9274 0.9287 0.8701

DR-Vnet 0.9616 0.8940 0.8827 0.7929

SK-U-Net 0.9694 0.9189 0.9237 0.8625

Double-Net 0.9698 0.9229 0.8992 0.8237

Nested-Net 0.9699 0.9250 0.9269 0.8675

Connected-Net 0.9696 0.9192 0.9294 0.8715

X-Net 0.9680 0.9109 0.9167 0.8513

SA-Net 0.9685 0.9096 0.9128 0.8454

DCM-Net 0.9707 0.9309 0.9329 0.8773

Table 3.  Results of comparative experiments on pituitary adenoma.
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Effect of SE and residual connection
The last module to perform the experiment is the SE and residual connection. We introduce it into the U-Net 
framework in the decoder part. The SE in this module can make up for the deficiency of the original framework 
for information extraction. Furthermore, through the residual connection, more original information and 

Fig. 12.  Visual segmentation results of different methods on pituitary adenoma dataset. First and second 
rows: original images and their corresponding ground truth. The third to last rows are results of U-Net, OD-
Segmentation, CL-Net, EE-Net, Dr-Vnet, SK-U-Net, Double-Net, Nested-Net, Connected-Net, X-Net, SA-Net 
and DCM-Net.
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gradients are retained, and the problem of gradient explosion is also solved. From the sixth row of Fig. 13 and 
Table 5, the above conclusions are further confirmed; all the indicators have increased after the addition of this 
module, indicating that it has a certain role in improving the segmentation ability of the model.

Conclusion
In the field of medical image segmentation, identifying image edges has always been an important factor limiting 
the segmentation effect. To solve this problem, we proposed an innovative dual-channel compressive mapping 
network aimed at effectively overcoming the challenges of medical image segmentation. The network consists 
of three key parts: DCM, FAM, and SE. Firstly, DCM can efficiently compress information in both channels and 
enhance information processing capabilities. Then, FAM enables the model to focus on effective information, 
helping to improve segmentation accuracy. Finally, with the help of SE and residual connection, the decoder 
obtains successfully compressed and activated high-level semantic features. After a series of experiments and 
evaluations on the medical image datasets, our DCM-Net achieved significant improvements in segmentation 
accuracy and computational efficiency. The experimental results show that the method has good application 
prospects in the field of medical image segmentation. Meanwhile, we are keenly aware of the limitations 
current models face in computational efficiency, which seriously impact their usefulness in real-world clinical 
applications. In future work, we aim to optimize computational efficiency through techniques such as model 
compression and lightweight architecture design.

Method Accuracy TPR Dice Jaccard

U-Net 0.9068 0.8549 0.8278 0.7125

U-Net+DCM 0.9085 0.8574 0.8368 0.7262

U-Net+FAM 0.9105 0.8580 0.8534 0.7503

U-Net+(SE+Res) 0.9081 0.8503 0.8430 0.7376

U-Net+DCM+FAM 0.9111 0.8758 0.8542 0.7510

U-Net+DCM+(SE+Res) 0.9100 0.8841 0.8518 0.7461

U-Net+FAM+(SE+Res) 0.9127 0.8786 0.8587 0.7584

DCM-Net 0.9142 0.8893 0.8619 0.7602

Table 5.  Ablation experiments on ISIC-2018.

 

Method Parameter (M) Time (ms)

U-Net 2.06 269

OD-segmentation 19.82 365

CL-Net 7.72 292

EE-Net 29.98 339

DR-Vnet 20.25 592

SK-U-Net 1.85 195

Double-Net 22.28 696

Nested-Net 22.19 359

Connected-Net 3.17 382

X-Net 0.70 382

SA-Net 0.51 198

DCM-Net 2.72 334

Table 4.  Parameters and computational efficiency of different methods on the ISIC-18 dataset.
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Data availability
The ISIC-2018 datasets generated and/or analysed during the current study are available in the ISIC reposi-
tory, https://challenge.isic-archive.com/data/#2018. The pituitary adenoma datasets generated and/or analyzed 

Method Accuracy TPR Dice Jaccard

Element multiplication 0.9085 0.8574 0.8368 0.7262

Element addition 0.8993 0.8838 0.8305 0.7165

Table 6.  Multiplication and addition experiments on ISIC-2018.

 

Fig. 13.  Visual segmentation results of different methods on ISIC-2018 dataset. First and second rows: original 
images and their corresponding ground truth. The third to last rows are results of U-Net, U-Net+DCM, 
U-Net+FAM, U-Net+(SE+Res), U-Net+DCM+FAM, U-Net+DCM+(SE+Res), U-Net+FAM+(SE+Res) and 
DCM-Net.
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during the current study are not publicly available due to the laboratory policy but are available from the corre-
sponding author on reasonable request.
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