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Background. Type-1 diabetes is a condition caused by the lack of insulin hormone, which leads to an excessive increase in blood
glucose level. )e glucose kinetics process is difficult to control due to its complex and nonlinear nature and with state
variables that are difficult to measure. Methods. )is paper proposes a method for automatically calculating the basal and
bolus insulin doses for patients with type-1 diabetes using reinforcement learning with feedforward controller. )e algorithm
is designed to keep the blood glucose stable and directly compensate for the external events such as food intake. Its per-
formance was assessed using simulation on a blood glucose model. )e usage of the Kalman filter with the controller was
demonstrated to estimate unmeasurable state variables. Results. Comparison simulations between the proposed controller
with the optimal reinforcement learning and the proportional-integral-derivative controller show that the proposed
methodology has the best performance in regulating the fluctuation of the blood glucose. )e proposed controller also
improved the blood glucose responses and prevented hypoglycemia condition. Simulation of the control system in different
uncertain conditions provided insights on how the inaccuracies of carbohydrate counting and meal-time reporting affect the
performance of the control system. Conclusion. )e proposed controller is an effective tool for reducing postmeal blood
glucose rise and for countering the effects of external known events such as meal intake and maintaining blood glucose at a
healthy level under uncertainties.

1. Introduction

Type-1 diabetes is a chronic condition that is characterized
by an excessive increase in blood glucose level because the
pancreas does not produce insulin hormone due to the
autoimmune destruction of pancreatic beta cells. High blood
glucose can lead to both acute and chronic complications
and eventually result in failure of various organs.

Until today, there are many challenges in control of the
blood glucose in type-1 diabetes. One of them is that the
glucose kinetics process is complex, nonlinear, and only
approximately known [1]. )ere are also many external
known and unknown factors that affect the blood glucose
level such as food intakes, physical activities, stress, and
hormone changes. Generally, it is difficult to predict and
quantify those factors and disturbances.

By using control theories, various studies have been
conducted to design a control system for patients with type-1
diabetes. For example, Marchetti et al. [2], derived an im-
proved proportional-integral-derivative controller for blood
glucose control. Soylu et al. [3] proposed a Mamdani type
fuzzy control strategy for exogenous insulin infusion. Model
predictive control has also been widely used in type-1 di-
abetes and artificial pancreas development [4, 5]. Recently,
together with the development of artificial intelligence and
machine learning, reinforcement learning (RL) has emerged
as a data-driven method to control unknown nonlinear
systems [6, 7] and has been used as a long-termmanagement
tool for chronic diseases [8, 9]. )e biggest advantage of RL
compared to other methods is that the algorithm depends
only on interactions with the system and does not require a
well represented model of the environment. )is especially

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2018, Article ID 4091497, 8 pages
https://doi.org/10.1155/2018/4091497

mailto:phuong.ngo@uit.no
http://orcid.org/0000-0002-0057-8801
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/4091497


makes RL well suited for type-1 diabetes since the modelling
process of the insulin-kinetic dynamics is complex and
requires invasive measurements on the patient or must be fit
through a large dataset. Hence, by using RL as the control
algorithm, the modelling process can be bypassed, which
makes the algorithm not susceptible to any modelling error.

In diabetes, controlling of blood glucose require actions
that are made at specific instance throughout the day in
terms of insulin doses or food intakes. )e actions are based
on the current observable states of the patients (e.g., blood
glucose measurement and heart rate). )e effectiveness of
the actions is calculated by how far the measured blood
glucose value is compared to the healthy level. In RL, an
agent makes decision based on the current state of the
environment. )e task of the algorithm is to maximize a
cumulative reward function or to minimize a cumulative
cost function. Based on these similarities in the decision-
making process between a human being and a RL agent, RL
may be key to the development of an artificial pancreas
system.

When dealing with meal disturbances, modelling of
glucose ingestion is the norm as well as the first step in
designing a controller for disturbance rejection [10]. Feed-
forward control was proven to be an effective tool to improve
disturbance rejection performance [11, 12]. In control sys-
tem theory, feed-forward is the term that describes a con-
troller that utilizes the signal obtained when there is a (large)
deviation from the model. Compared to feed-back control,
where action is only taken after the output has moved away
from the setpoint, the feed-forward architecture is more
proactive since it uses the disturbance model to suggest the
time and size of control action. Furthermore, building ameal
disturbance model is simpler and requires less data to fit
than finding the insulin-glucose kinetics. Based on the
model, necessary changes in insulin actions can be calculated
to compensate for the effects of carbohydrate on the blood
glucose level.

A challenge in the control of the blood glucose is the lack
of real-time measurement techniques. With the develop-
ment of continuous glucose measurement sensors, blood
glucose level can be measured and provided to the controller
in minute intervals. However, blood glucose value alone is
usually not enough to describe the states of the system for
control purpose.)erefore, an observer is needed to estimate
other variables in the state space from the blood glucose
measurement. In this paper, the Kalman filter was chosen for
that purpose since it can provide an optimal estimation of
the state variables when the system is subjected to process
and measurement noises [13, 14].

Vrabie et al. [15] established methodologies to obtain
optimal adaptive control algorithms for dynamical systems
with unknownmathematical models by using reinforcement
learning. Based on that, Ngo et al. [16] proposed a re-
inforcement learning algorithm for updating basal rates in
patients with type-1 diabetes. )is paper completes the
framework for blood glucose control with both basal and
bolus insulin doses. )e framework includes the re-
inforcement learning algorithm, the feed-forward controller
for compensating food intake and the Kalman filter for

estimating unmeasurable state variables during the control
process. )is paper also conducts simulations under un-
certain information to evaluate the robustness of the pro-
posed controller.

2. Methods

2.1. Problem Formulation. )e purpose of our study is to
design an algorithm to control the blood glucose in patients
with type-1 diabetes by the means of changing the insulin
concentration. )e blood glucose metabolism is a dynamic
system in which the blood glucose changing over time as the
results of many factors such as food intake, insulin doses,
physical activities, and stress level. )e learning process of
RL is based on the interaction between a decision-making
agent and its environment, which will lead to an optimal
action policy that results in desirable states [17]. )e RL
framework for type-1 diabetes includes the following
elements:

(i) )e state vector at time instance k consists of the
states of the patient:

xk � g(k)−gd(k) χ(k)􏼂 􏼃
T
, (1)

where g(k) and gd(k) the are measured and desired blood
glucose levels, respectively, and χ(k) is the interstitial insulin
activity (defined in the appendix).

(ii) )e control variable (insulin action) uk, which is part
of the total insulin ik (a combination of the basal and
the bolus insulin (Figure 1)):

ik � ubasal(k) + ubolus(k) � uk + ubasal(0) + ubolus(k), (2)

where ubasal(k) and ubolus(k) are the basal and bolus at time
instance k, respectively.

(iii) )e cost received one time-step later as a conse-
quence of the action. In this paper, the cost was
calculated by the following quadratic function:

rk+1 � xT
kQxk + u

T
k Ruk, (3)

where Q �
1 0
0 0.1􏼢 􏼣 and R � 0.01. Each element in matrix

Q and the value of R indicate the weighting factors of the
cost function. )e element in the first row and the first
column ofQ has the highest value, which corresponds to the
weighting of the difference between the measured blood
glucose and the prescribed healthy value. Since our ultimate
goal is to reduce this difference, the factor of this mea-
surement should have the largest value in the cost function.
)e element in the second row and second column of Q
corresponds to the weighting of the interstitial insulin ac-
tivity. )e value of R indicates the weighting factor of the
action (basal update). Minimizing the cost function,
therefore, becomes the problem of minimizing the difference
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between the measured blood glucose and the desired value,
the interstitial insulin activity, and the change in basal
insulin.

At time instance k + 1, a sequence of observations would
be xk, uk, rk+1, xk+1 and uk+1. Based on this observation, the
agent receives information about the state of the patient and
chooses an insulin action. )e body reacts to this action and
transitions to a new state. )is determines the cost of the
action.

For the control design purpose, the blood glucose model
(Appendix) was divided into three submodels: the meal
(Gmeal), the insulin (Gins), and the glucose kinetics (Gglucose).
)e controller has three main components: the actor, the
critic, and the feedforward algorithm. )e actor is used to
estimate the action-value function, the critic’s task is to
obtain optimal basal insulin, and the feedforward algorithm
is used to propose the bolus insulin profile for disturbance
compensation (food intake). )e purpose of the Kalman
filter is to estimate unmeasurable states of the patient.

2.2. Basal Update by Actor and Critic. When the patient is in
a fasting condition, the controller only needs to change the
basal insulin level through the actor and the critic. Based on
the current state xk, the actor proposes an insulin action uk

through the policy π : uk � π(xk). )e updated basal rate is
obtained from uk as follows:

ubasal � uk + ubasal(0). (4)

After each action, the patient transforms into a new state,
and the cost associated with the previous action can be
calculated using equation (3). )e action-value function (Q-
function) of action u is defined as the accumulation of cost
when the controller takes action uk � u at time instance k

and then continues following policy π(xk+1):

Q
π
k(x, u) � Eπ 􏽘

∞

i�0
c

i
rk+i+1 ∣ xk � x, uk � u

⎧⎨

⎩

⎫⎬

⎭, (5)

where c (with 0< c≤ 1) is the discount factor that indicates
the weighting of future cost in the action-value function.

)e action-value function depends on the current state
and the next action. It was shown that the action-value
function satisfies the following recursive equation (Bellman
equation) [15, 17]:

Q
π
k(x, u) � rk + cQ

π
k+1(x, u). (6)

Since the state space and action space are infinite,
function approximation was used in this paper for esti-
mation of the Q-function. In this case, the Q-function was
approximated as a quadratic function of vectors xk and uk:

Q
π
k(x, u) ≈ zT

kPzk, (7)

where the symmetric and positive definite matrix P is called
the kernel matrix and contains the parameters that need to
be estimated. Vector zk is the combined vector of xk and uk:

z � xT
k uT

k􏽨 􏽩
T
. (8)

With Kronecker operation, the approximated Q-func-
tion can be expressed as a linear combination of the basis
function Φ(zk) � zk ⊗ zk:

Q
π
k(x, u) ≈ zT

kPzk � wT zk ⊗ zk( 􏼁 � wTΦ zk( 􏼁, (9)

wherew is the vector that contains elements of P and ⊗ is the
Kronecker product.

By substituting Qπ
k(x, u) in equation (6) by wTΦ(zk) and

using the policy iteration method with the least square al-
gorithm [15], elements of vector w can be estimated. Matrix
P can then be obtained from w using the Kronecker
transformation.

By decomposing the kernel matrix P into smaller ma-
trices Pxx, Pxu, Pux, and Puu, the approximated Q-function
can be written as follows:

Q
π
k(x, u) �

1
2

xk

uk

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

T

P
xk

uk

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �
1
2

xk

uk

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

T Pxx Pxu

Pux Puu

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦
xk

uk

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(10)

)e current policy is improved with actions that min-
imize the Q-function Qπ

k(x, u). )is can be done by first
taking the partial derivative of the Q-function and then
solving zQπ

k(x, u)/zu � 0. )e optimal solution can there-
after be obtained as follows [15]:

uk � −P−1uuPuxxk. (11)

With that, the update of basal insulin is

ubasal � −P−1uuPuxxk + ibe, (12)

where ibe is the equilibrium basal plasma insulin
concentration.

2.3. Bolus Update by Feedforward Algorithm. When the
patient consumes meals, in addition to the basal insulin, the
controller calculates and applies boluses to compensate for
the rise of blood glucose as the results of carbohydrate in the
food. )e feedforward algorithm first predicts how much
blood glucose level will rise and then suggests a bolus profile
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Figure 1: Control system diagram.
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to counter the effects of the meal. )e starting time of the
bolus doses was also calculated by the algorithm based on the
meal intake model.

Since the meal intake model (equations (A.1) and (A.2))
and the insulin model (equation (A.4)) are linear time-
invariant (LTI) models, they can be transformed from
state space equations into transfer functions as follows:

Gmeal(s) �
D2(s)

D(s)
� Cmeal sI−Ameal( 􏼁

−1Bmeal �
AG

sτD + 1( 􏼁
2,

Gins(s) �
D2(s)

D(s)
� Cins sI−Ains( 􏼁

−1Bins �
p3

s + p2
,

(13)

where

Ameal �
−1/τD 0

1/τD −1/τD

􏼢 􏼣,

Bmeal �
AG

0
􏼢 􏼣,

Cmeal � 0 1/τD􏼂 􏼃,

Ains � −p2,

Bins � p3,

Cins � 1.

(14)

Descriptions and values of τD, p2, and p3 are shown in
Tables 1 and 2. )e transfer function from the meal intake
D(s) to the blood glucose level g(s) can be calculated as

F(s) �
g(s)

D(s)
� Gmeal(s) + Gff(s)Gins(s)( 􏼁Gglucose(s).

(15)

In order to compensate for the meal, the gain of the open
loop system F(s) must be made as small as possible. Hence,
the feedforward transfer function was chosen such that
Gmeal(s) + Gff(s)Gins(s)⟶ 0, which leads to

Gff(s) � −Gmeal(s)G
−1
ins(s) �

−AG s + p2( 􏼁

p3 τDs + 1( 􏼁
2. (16)

)e meal compensation bolus in s-domain can be cal-
culated from the feedforward transfer function:

ubolus(s) � Gff(s)D(s) �
−AG s + p2( 􏼁

p3 τDs + 1( 􏼁
2 D(s). (17)

Hence, the feedforward action becomes the output of the
following dynamic system, which can be solved easily using
any ordinary differential equation solver:

p3τ
2
D €ubolus(t) + 2p3τD _ubolus(t) + p3ubolus(t)

� −AG
_D(t) + p2D(t)􏼐 􏼑.

(18)

2.4. Kalman Filter for Type-1 Diabetes System. Since the
interstitial insulin activity, the amounts of glucose in

compartments 1 and 2 cannot be measured directly during
implementation, Kalman filter was used to provide an es-
timation of the state variables from the blood glucose level.
)e discretized version of the type-1 diabetes system can be
written in the following form:

xK(k + 1) � AKxK(k) + BKuK(k) + HKw(k),

yK(k) � CKxK(k) + v(k),
(19)

where xK(k) � D1 D2 g(k)−gd(k) χ(k)􏼂 􏼃
T, uK(k) �

D(k) i(k)􏼂 􏼃
T, and matrices AK, BK, CK are linearized

coefficient matrices of the model:

AK �

−1/τD 0 0 0

1/τD −1/τD 0 0

0 1/τD −p1 −gd 0

0 0 0 −p2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

BK �

AG 0

0 0

0 0

0 p3V

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

CK � 0 0 1 0􏼂 􏼃,

(20)

matrix HK is the noise input matrix: HK � 0 0 0 p3V􏼂 􏼃
T,

the output value yK(k) � g(k)−gd(k) is the measured
blood glucose deviation from the desired level, w(k) is the
insulin input noise, and v(k) is the blood glucose mea-
surement noise with zero-mean Gaussian distribution. )e
variances of w(k) and v(k) are assumed to be as follows:

E w
2
(k)􏼐 􏼑 � Rw,

E v
2
(k)􏼐 􏼑 � Rv.

(21)

Table 1: Parameters and constants of the insulin-glucose kinetics
model.

Name Description Value
p1 Glucose effectiveness 0.2min−1

p2 Insulin sensitivity 0.028min−1

p3 Insulin rate of clearance 10−4min−1

AG Carbohydrate bioavailability 0.8min−1

τD Glucose absorption constant 10min
V Plasma volume 2730 g

ibe
Equilibrium basal plasma insulin

concentration
7.326 μIU/

ml

Table 2: Variables of the insulin-glucose kinetics model.

Name Description Unit
D Amount of CHO intake mmol/min
D1 Amount of glucose in compartment 1 mmol
D2 Amount of glucose in compartment 2 mmol
g(t) Plasma glucose concentration mmol/l
χ(t) Interstitial insulin activity min−1

i(t) Plasma insulin concentration μIU/ml
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Based on the discretized model, a Kalman filter was
implemented through the following equation:

􏽢x(k + 1 ∣ k) � Ak · 􏽢x(k ∣ k− 1) + Bk · uK(k)

+ L[y(k)−C · 􏽢x(k ∣ k− 1)],
(22)

where 􏽢x(k + 1 ∣ k) denotes the estimation of x(k + 1) based
on measurements available at time k. )e gain L is the
steady-state Kalman filter gain, which can be calculated by

L � MCT CMCT
+ Rv􏼐 􏼑

−1
, (23)

where M is the solution of the corresponding algebraic
Riccati equation [13, 14, 18]:

M � AMAT
+ BRwB−AMCT CMCT

+ R􏼐 􏼑
−1
CMAT

.

(24)

By assuming the noise variances to be Rw � Rv � 0.01,
the Kalman filter gain was calculated from equation (23) as

L � 0 0 8.32 · 10−4 −6.40 · 10−7􏼂 􏼃. (25)

2.5. Simulation Setup. First, a pretraining of the algorithm
was conducted on the type-1 diabetes model in the scenario
where the patient is in a fasting condition (without food
intake). )e purpose of the pretraining simulation is to
obtain an initial estimation of the action-value function for
the algorithm. )e learning process was conducted by re-
peating the experiment multiple times (episodes). Each
episode starts with an initial blood glucose of 90mg/dL and
ends after 30 minutes. )e objective of the algorithm is to
search and explore actions that can drive the blood glucose
to its target level of 80mg/dL.

By using the initial estimation of the action-value
function, the controller was then tested in the daily sce-
nario with food intake. Comparisons were made between the
proposed reinforcement learning with the feedforward
(RLFF) controller, the optimal RL (ORL) controller [15], and
the proportional-integral-derivative (PID) controller. )e
ORL was designed with the same parameters and pretrained
in the same scenario as with the RLFF. )e PID controller
gains were chosen, which produces a similar blood glucose
settling time as the RLFF:

uk � Kp g(k)−gd(k)( 􏼁 + Ki 􏽘
k

g(k)−gd(k)( 􏼁

+ Kd(g(k)−g(k− 1)),

(26)

where

Kp � 1,

Ki � 0.001,

Kd � 0.01.

(27)

In order to understand the effects of different food types
on the controlled system, two sets of simulations were
conducted for food that has slow and fast glucose absorption
rates while containing a similar amount of carbs. Absorption

rates in the simulations are characterized by parameter τD

from the model, where τD � 50 corresponds to food with a
slow absorption rate and τD � 10 corresponds to food with a
fast absorption rate.)e amount of carbohydrate (CHO) per
meal can be found in Figure 2.

Next, the performance of the proposed controller was
evaluated under uncertainties of meal information. Two
cases of uncertainties were considered: uncertain CHO es-
timation case and uncertain meal-recording time. In the
uncertain CHO estimation, the estimated CHO information
that provided to the controller was assumed to be a normal
distribution with a standard deviation of 46% from the
correct carbohydrate value shown in Figure 2. )e standard
deviation value was used based on the average adult esti-
mates and the computerized evaluations by the dietitian
[19]. For the uncertain meal-recording time, the estimated
meal starting time is assumed to be a normal distribution
with a standard deviation of two minutes from the real
starting time. )is standard deviation value was randomly
selected because systematic research on the accuracy of
meal-time recording for patients with type-1 diabetes could
not be found. For each case, multiple simulations were
conducted in the same closed-loop system with its corre-
sponding random variables. From the obtained results, the
mean and standard deviation for blood glucose responses at
each time point will be calculated and analyzed.

3. Results

After pretraining in the no-meal scenario, the Q-function
was estimated as follows:

Q
π
k(x, u) � xT

k uT
k􏽨 􏽩

4.454 · 102 −8.870 · 104 −0.084

−8.870 · 104 3.538 · 107 33.630

−0.084 33.630 0.010

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·
xk

uk

􏼢 􏼣.

(28)

)e initial basal policy was obtained from the initial Q-
function and equation (12):

ubasal(k) � 8.86(g(k)− 80)− 3534.11χ(k) + 7.326. (29)

)e initial estimation of the Q-function and the initial
basal policy were used for subsequent testing simulations of
the control algorithm.

During the simulation with correct meal information,
blood glucose responses of the RLFF, the ORL, and the PID
are shown in Figures 3 and 4. )e insulin concentration
during the process can also be found in Figures 5 and 6.With
slow-absorption food, the fluctuation range of blood glucose
was approximately ±30mg/dL for all three controllers from
the desired value (Figure 3). However, with fast absorption
glucose meals, the fluctuation range of the postmeal blood
glucose level was within ±40mg/dL with the RLFF compared
to ±60mg/dL with the ORL and is significantly smaller than
the fluctuation range ±80mg/dL of the PID (Figure 4).
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Figures 7 and 8 show the blood glucose variation under
uncertain meal time and CHO counting. )e upper and
lower bounds in shaded areas show the mean blood glucose
value plus and minus the standard deviation for each in-
stance. Under uncertain meal information, the upper
bound was kept to be smaller than 40mg/dL from the
desired blood glucose value for fast glucose absorption food
and 15mg/dL for slow glucose absorption food. )e lower
bound is smaller than 15mg/dL from the desired value for

fast glucose absorption food and 5mg/dL for slow glucose
absorption food.

4. Discussion

)e controller has shown its capability to reduce the rise of
postmeal blood glucose in our simulations. It can be seen in
Figures 3 and 4 that three controllers were able to stabilize
the blood glucose. However, when using the RLFF, the added
bolus makes the insulin responses much faster when there is
a change in blood glucose level, which reduces the peak of
the postmeal glucose rise by approximately 30 percent
compared to the ORL and 50 percent compared to the PID
in the fast-absorption case. It can also be seen that the
undershoot blood glucose (the distance between the lowest
blood glucose and the desired blood glucose value) of the
PID controller is much larger than that of the RLFF and the
ORL. )e RLFF has the smallest glucose undershoot among
the three controllers. Low blood glucose value (hypogly-
cemia) can be very dangerous for patients with type-1 di-
abetes. )erefore, simulation results show the advantage of
using RLFF in improving safety for patients. In general, with
the feedforward algorithm, the proposed algorithm is an
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Figure 3: Comparison of the blood glucose responses in the
nominal condition for slow glucose absorption food.
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effective tool for countering the effects of external events
such as meal intake.

Among uncertainties, carb counting created more effect
on the variation of the blood glucose than meal-time re-
cording, especially with slow absorbing food. )e un-
certainty in recording meal time may also lead to larger
undershot of blood glucose below the desired level as can be
seen in Figure 7. Following the same trend as previous
simulations, the fluctuation range of the blood glucose with
slow absorbing food is smaller than the fluctuation range
with fast glucose absorbing food. In general, the control
algorithm kept the blood glucose at the healthy level al-
though uncertainties affect the variation of the responses.
However, an accurate carbohydrate counting and accurate
meal-time recording method are still important for the
purpose of blood glucose control in order to completely
avoid the chance of getting hypoglycemia.

5. Conclusion

)e paper proposes a blood glucose controller based on
reinforcement learning and feedforward algorithm for type-

1 diabetes.)e controller regulates the patient’s glucose level
using both basal and bolus insulin. Simulation results of the
proposed controller, the optimal reinforcement learning,
and the PID controller on a type-1 diabetes model show that
the proposed algorithm is the most effective algorithm. )e
basal updates can stabilize the blood glucose, and the bolus
can reduce the glucose undershoot and prevent hypogly-
cemia. Comparison of the blood glucose variation under
different uncertainties provides understandings of how the
accuracy of carbohydrate estimation and meal-recording
time can affect the closed-loop responses. )e results
show that the control algorithm was able to keep the blood
glucose at a healthy level although uncertainties create
variations in the blood glucose responses.

Appendix

Blood Glucose Model

In this paper, the insulin-glucose process was used as the
subject in our simulations. )e model is described by the
following equations [20–23]:

dD1(t)

dt
� AGD(t)−

D1(t)

τD

, (A.1)

dD2(t)

dt
�

D1(t)

τD

−
D2(t)

τD

, (A.2)

dg(t)

dt
� −p1g(t)− χ(t)g(t) +

D2(t)

τD

, (A.3)

dχ(t)

dt
� −p2χ(t) + p3V i(t)− ube( 􏼁, (A.4)

where variable descriptions and parameter values are given
in Tables 1 and 2. In this model, the inputs are the amount of
CHO intakeD and the insulin concentration i(t).)e output
of the model is the blood glucose concentration g(t). It is
assumed that the blood glucose is controlled by using an
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Figure 7: Blood glucose responses under uncertainties for fast glucose absorption food.
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Figure 8: Blood glucose responses under uncertainties for slow
glucose absorption food.
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insulin pump, and there is no delay between the adminis-
tered insulin and the plasma insulin concentration.

Abbreviations

RL: Reinforcement learning
RLFF: Reinforcement learning with feedforward algorithm
ORL: Optimal reinforcement learning
PID: Proportional-integral-derivative
LTI: Linear time-invariant
CHO: Carbohydrate.
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