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Abstract

Background: Both Kaposi’s sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) are members of the human
gamma herpesvirus family: each is associated with various human cancers. The majority of AIDS-associated primary effusion
lymphoma (PEL) are co-infected with both KSHV and EBV. Dually-infected PELs selectively switch from latency to lytic
replication of either KSHV or EBV in response to chemical stimuli. KSHV replication and transcription activator (K-RTA) is
necessary and sufficient for the switch from KSHV latency to lytic replication, while EBV BZLF1 gene product (EBV-Z) is a
critical initiator for induction of EBV lytic replication.

Methodology/Principal Findings: We show K-RTA and EBV-Z are co-localized and physically interact with each other in
dually-infected PELs. K-RTA inhibits the EBV lytic replication by nullifying EBV-Z-mediated EBV lytic gene activation. EBV-Z
inhibits KSHV lytic gene expression by blocking K-RTA-mediated transactivations. The physical interaction between K-RTA
and EBV-Z are required for the mutual inhibition of the two molecules. The leucine heptapeptide repeat (LR) region in K-RTA
and leucine zipper region in EBV-Z are involved in the physical interactions of the two molecules. Finally, initiation of KSHV
lytic gene expression is correlated with the reduction of EBV lytic gene expression in the same PEL cells.

Conclusions/Significance: In this report, how the two viruses interact with each other in dually infected PELs is addressed.
Our data may provide a possible mechanism for maintaining viral latency and for selective lytic replication in dually infected
PELs, i.e., through mutual inhibition of two critical lytic replication initiators. Our data about putative interactions between
EBV and KSHV would be applicable to the majority of AIDS-associated PELs and may be relevant to the pathogenesis of
PELs.
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Introduction

Epstein-Barr virus (EBV) and Kaposi sarcoma (KS)-associated

herpesvirus (KSHV), also called human herpesvirus 8 (HHV-8),

are the two gamma herpesviruses currently identified in humans.

EBV infection has been associated with the development of

Buikitts’ lymphoma (BL), Hodgkin’s disease, nasopharyngeal

carcinoma and others [1–5]. KSHV is believed to be the

etiological agent of KS [6–8], and is implicated in the pathogenesis

of AIDS-associated primary effusion lymphoma (PEL), also called

body cavity-based lymphoma (BCBL), and multicentric Castle-

man’s disease [6,9,10].

Like other herpesviruses, both EBV and KSHV have latency

and lytic replication in their life cycles. The switch from latency to

lytic gene expression in KSHV requires the expression of KSHV

replication and transcription activator (K-RTA, also called RTA

or ORF50). K-RTA is apparently necessary and sufficient for the

switch from KSHV latency to lytic replication [9,10]. K-RTA is a

sequence-specific DNA-binding protein that regulates gene

expression through K-RTA-responsive elements in the transcrip-

tional regulatory regions of different subsequently expressed viral

genes [11–18]. K-RTA also interacts with other factors to

modulate its transcription potential, and some interactions are

ctritical for K-RTA-mediated switch from latency to lytic

replication [19–24].

Beyond functioning in initiating viral lytic replication, K-RTA is

involved in the induction of cellular IL-6 [25]. K-RTA also blocks

p53-mediated apoptosis by competing for binding to CBP [26]. K-

RTA might play a role in latency establishment [27,28]. K-RTA

has been shown to enhance CD21 expression, and facilitate EBV

infection because CD21 is EBV receptor in B cells [29].

EBV lytic replication can be initiated by expression of the EBV

BZLF1 gene product (EBV-Z; also referred as BZLF1, Zta, Z,

ZEBRA, and EB1) [30,31]. EBV-Z is a member of the basic

leucine zipper (bZIP) family of DNA binding proteins and has a
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sequence similar to C/EBP, c-Jun, and c-Fos [32]. EBV-Z binds

specifically to DNA with multiple specific recognition sequences

and activates transcription of both viral and cellular genes [33–

36]. One important viral gene target of EBV-Z is EBV BRLF1

gene product, E-RTA (also called BRLF1, RTA, R). K-RTA and

E-RTA are homologues genes and this family of genes is highly

conserved among gamma herpesviruses. E-RTA is coordinately

expressed as a bicistronic RNA transcript with EBV-Z [37]. E-

RTA and EBV-Z function synergistically at some promoters and

are required for the completion of the EBV lytic replication cycle

[38].

EBV-Z has additional activities other than initiation of EBV

lytic replication. These include the ability to block cell cycle

progression [39,40] and the disruption of the PML-associated

nuclear domain 10 (ND10/PODs) [41,42]. EBV-Z can also

upregulate its own expression, a property called autoregulation

[43,44]. Of note K-RTA also auto-regulates its own expression

[14,45].

PELs are B-cell non-Hodgkin’s lymphomas and most frequent-

ly occur in HIV-positive individuals as lymphomatous effusions in

the serous cavities without a detectable solid tumor mass. In the

setting of AIDS, the clinical course for most of these lymphomas

is extremely aggressive, with a mean survival from diagnosis of 5–

7 months [46]. While PELs are almost universally KSHV-

positive, the majority of PELs have concomitant EBV infection

[6,10,47].

In order to understand viral contributions to the pathogenesis of

PEL, it is important to address how EBV and KSHV interact with

each other and affect biological properties of the cell and the

viruses. There are apparent interactions between the two viruses in

PELs. EBV enhances the tumorigenecity of the dually-infected

PELs in SCID mice [48]. Unique sets of cellular genes are

expressed in dually-infected, but not single KSHV-infected PELs

[49]. KSHV LANA potentially activates EBV latent membrane

protein 1 (LMP-1) [50] , but reduces the expression of EBV

EBNA-1 and represses EBV EBNA-2 activation [51]. K-RTA

may potentiate EBV latency via induction of EBV LMP-1 and

uses LMP-1 to curb KSHV lytic replication [52].

Of particular interest in dually infected PELs is the selective

induction of KSHV or EBV lytic replication [12,53]. BC-1 is a

dually infected PEL line. EBV lytic gene expression is activated by

12-O-tetradecanoylphorbol-13-acetate (TPA or phorbol ester).

KSHV lytic gene expression is induced by sodium butyrate

(butyrate or n-butyrate). However, when both TPA and butyrate

are added, KSHV, rather than EBV, is induced into lytic

replication [12,53]. The selective induction of lytic replications

of the two herpesviruses points to the importance of viral factors in

the decision-making processes of PELs.

In this report, we have examined the potential molecular

mechanism behind this selective lytic replication process. We have

found that there is a mutual inhibition between EBV-Z and K-

RTA. Because of their critical roles of the two molecules in

promoting their respective viral lytic replications, our data offer a

possible mechanism for dually-infected cells to keep their

respective viral latencies and for selective switch from latency to

lytic replications.

Results

K-RTA negatively regulates the lytic gene expression of
EBV

Because of the co-presence KSHV and EBV in a same PEL cell

and the selective induction of lytic replication, we suspect that one

or more proteins in KSHV might regulate EBV lytic replication

process. K-RTA is a good candidate because it is immediate early

protein and able to activate an EBV gene [52]. We thus examined

if K-RTA affect the induction of lytic replication of EBV. K-RTA

was transfected into Akata cells, an EBV+/KSHV- BL line, and

the lytic replication of EBV was induced after the treatment with

anti-human-IgG (See Materials and Methods for details). EBV

BMRF1 is a lytic gene and its product is often called the diffuse

component of the EBV-early antigen (EA-D). The essential

function of EA-D in EBV lytic replication has been well

established and using it as indicator of lytic replication has been

widely accepted and appreciated in the field [54–60]. Thus, the

expression of EA-D protein was determined and used as indicator

of EBV lytic replication. As shown in the Fig. 1A, the expression of

EA-D was inhibited upon the expression of K-RTA. Of note

multiple bands of EA-D are often observed during EBV lytic

replication.

In addition, we tested if the same phenomenon can be observed

in another cell line, AGS-Bx1g (EBV+, KSHV2). These cells were

infected by either recombinant adenovirus expressing K-RTA

(AdKRTA) or green fluorescent protein (AdGFP). One day after

the infection, the lytic replication of EBV was examined by the

treatment with TPA. As shown in Fig. 1B, induction of EA-D

protein expression and furthermore the EBV lytic replication was

inhibited by the expression of K-RTA. These data suggested that

K-RTA was a negative regulator of EBV lytic gene expression.

Figure 1. K-RTA inhibits EBV lytic gene expression. A. K-RTA
inhibits the EBV lytic gene expression in Akata cells. Akata (EBV+/KSHV-)
cells were transfected with K-RTA or vector plasmid (5 mg DNA). EBV
lytic replication was induced by anti-human-IgGs a day later (0, 1, 5,
10 mg/ml). Cell lysates were separated on SDS-PAGE, transferred, and
used for western blot analysis. The identity of proteins is as shown. B. K-
RTA inhibits the EBV lytic gene expression in AGS-BX11g cells. AGS-
BX11g (EBV+/KSHV2) cells were infected with recombinant adenovirus
expressing K-RTA or GFP (10 pfu/cell). EBV lytic replication was induced
by TPA a day later. Lysates were used for western blot analysis. The
same membrane was stripped and reprobed with other antibodies. One
representative from three experiments is shown. The identity of
proteins is as shown.
doi:10.1371/journal.pone.0001569.g001

KSHV and EBV Interactions
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K-RTA negatively regulates EBV-Z initiated lytic gene
expression of EBV

It is well established that EBV-Z initiates the lytic replication of

EBV. We further examined that if K-RTA is able to inhibit the

EBV-Z-mediated induction of EBV lytic gene expression.

A serial of cell lines, 293-EBV, BRLF1-KO, and BZLF1-KO,

was used for the experiments. 293-EBV harbors wild type EBV

genome. BRLF1-KO and BZLF1-KO contain the EBV genome

missing BRLF1 (E-RTA) or BZLF1 (EBV-Z) gene respectively

[38]. BRLF1-KO was used primarily because expression of EA-D

was not very sensitive to EBV-Z expression (data not shown). As

shown in the Fig. 2, EBV-Z is able to induce the lytic replication of

EBV as indicated by the induction of EA-D protein. However in

the presence of K-RTA, the expression of EA-D is inhibited

(Fig. 2A). The inhibition is dose-dependent phenomena (Fig. 2B).

Interestingly, EBV-Z and E-RTA can synergistically induce EBV

lytic replication [61–64]. By reducing the expression of EBV-Z

with less plasmid in transfection, we could observe the reported

synergy and K-RTA was a potent inhibitor of the synergistic

activation (Fig. 2C). Essentially the same results can be obtained

from 293-EBV and BZLF1-KO cell lines (data not shown). The

use of more than one cell lines is to ensure the results are not cell-

line dependent. These data suggested that K-RTA inhibited EBV-

Z-mediated lytic gene expression.

K-RTA and EBV-Z physically interact in dually-infected PEL
Next we examined the potential mechanism for K-RTA-

mediated inhibition of EBV lytic replication. Because: 1) EBV-Z

and E-RTA interact functionally and physically [61–64]; 2) K-

RTA and KSHV K8, an EBV-Z homologue, also interact

functionally and physically [22,65,66]; and 3) EBV-Z and KSHV

K8 interact with same cellular genes, such as p53, CBP and C/

EBPa [67–74], we hypothesize EBV-Z and K-RTA interact with

each other physically.

BC1 (EBV+, KSHV+) cells were treated with TPA first to

initiate EBV lytic replication and then treated with butyrate for

KSHV lytic replication. The cells were fixed and stained with both

K-RTA and EBV-Z antibodies. The localization of K-RTA and

EBV-Z was examined under confocal microscope. As shown in the

Fig. 3A, many cells contain both K-RTA and EBV-Z in the same

nuclei (arrows and asters). Some K-RTA and EBV-Z may be co-

localized in the same nuclei (see arrows; yellow color in the Panel

d); suggesting they might be interacting with each other physically.

The high powered versions of the cells are also present at the

bottom. However in some of the cells, both EBV-Z and K-RTA

are expressed in the same cells but the co-localization is not

apparent, possibly due to the fact that one protein is expressed at

much higher levels than the other (see asters). Some cells express

either K-RTA or EBV-Z (see solid squares). Thus EBV-Z and K-

RTA can be co-expressed and co-localized within dually infected

cells.

Next, the co-immunoprecipitation assays were used for

detection of potential physical interactions between K-RTA and

EBV-Z in the induced BC-1 cells. Cell lysates were used for

immunoprecipitation with either K-RTA or EBV-Z antibody. The

immunoprecipitates were then used for western blot analysis with

other specific antibodies. As shown in Fig. 3B, EBV-Z antibody

could bring down K-RTA protein. In addition, the K-RTA

antibody could bring down EBV-Z protein (Fig. 3C). However,

neither normal rabbit serum (NRS) nor normal mouse serum

(NMS) could precipitate EBV-Z or K-RTA protein (Fig. 3B, 3C).

The induced cells express both K-RTA and EBV-Z proteins

(Fig. 3D). These data suggest that EBV-Z and K-RTA interact

with each other in induced BC1 cells in vivo.

Interaction with EBV-Z is required for K-RTA-mediated
inhibition of EBV lytic replication

We suspect that K-RTA may physically interact with EBV-Z

through its leucine heptapeptide repeat region (LR) of K-RTA

[75]. This region is included within the domain of K-RTA

required for interaction with the several cellular proteins such as

K-RBP, RBP-Jk, and C/EBPa [19,23,76,77]. A mutant with the

Figure 2. K-RTA inhibits EBV-Z-mediated EBV lytic gene expression. A. K-RTA inhibits EBV-Z-mediated EBV lytic gene expression. EBV-Z
expression plasmid (0, 0.1, and 0.2 mg) plus K-RTA (0.2 mg) were transfected into BRLF1KO (EBV+/KSHV2) cells in 6-well plate as shown on the top.
Lysates were used for western blot analysis 24 hours later. The same membrane was stripped and reprobed with other antibodies. The identity of
proteins is as shown. B. Dose-dependent inhibition of EBV-Z-mediated lytic gene expression by K-RTA. Fix amount of EBV-Z expression plasmid
(0.1 mg) plus various amounts of K-RTA (0, 0.05, 0.1, 0.2, 0.4 mg) were transfected into BRLF1-KO (EBV+/KSHV2) cells in 6-well plate as shown on the
top. Lysates were used for western blot analysis. Same cell lysates were used. C. K-RTA inhibits the synergistic activation of EA-D. EBV-Z expression
plasmid (0.025 mg), E-RTA (0.1 mg), and K-RTA (0.2 mg) were transfected with different combinations into BRLF1-KO cells as shown on the top. The
same cell lysates were used for western blot analysis. The identity of proteins is as shown.
doi:10.1371/journal.pone.0001569.g002
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deletion of the region, K-RTA-DLR, was generated (Fig. 4A). The

mutant protein is localized predominantly in the nucleus as wild

type K-RTA (data not shown). The plasmids expressing EBV-Z,

K-RTA and its mutant were transfected into 293T cells, and the

interaction between EBV-Z and the mutant K-RTA was

examined. While wt K-RTA interacted with EBV-Z properly,

the K-RTA-DLR failed to interact with EBV-Z (Fig. 4B, and 4C).

The expression of these proteins in 293T cells were similar

(Fig. 4D). Thus, the LR region of K-RTA was involved in the

physical interaction with EBV-Z.

Whether the physical interaction is involved in the repression of

EBV-Z-mediated EBV lytic gene expression was examined in

BZLF1-KO (EBV+, KSHV2) cell line. While wt K-RTA was able

to repress EBV lytic replication as expected, the K-RTA-DLR

mutant failed to inhibit the expression of EBV-Z-mediated EA-D

expression (Fig. 4E). Same results can also obtained from 293-EBV

(EBV+, KSHV2) cell line (data not shown). Thus, the interaction

between K-RTA and EBV-Z was required for K-RTA-mediated

inhibition of EBV lytic gene expression.

EBV-Z inhibits the lytic gene expression of KSHV
Next, we examined if EBV-Z affected the induction of lytic gene

expression of KSHV. EBV-Z was transfected into BC3 cells, a

KSHV+/EBV2 PEL line, and the lytic gene expression of KSHV

was examined. Tranfected cells were enriched and split into two

wells: one of which was treated by TPA (see Materials and

Figure 3. K-RTA and EBV-Z interact with each other in dually infected cells. A. Co-localization of K-RTA and EBV-Z in dually infected cells.
BC1 (KSHV+/EBV+) cells were treated with TPA (10 ng/ml) first for one day and then butyrate (0.5 mM) for another day. Cells were fixed and stained
with K-RTA (rabbit) and EBV-Z (mouse) antibodies. Cy5- and Cy2-labeled secondary antibodies were used to distinguish the signals from K-RTA and
EBV-Z, respectively. DAPI was used to stain the nuclei. The colors were artificially mounted to facilitate viewing. Red, K-RTA; green, EBV-Z; blue, nuclei;
(a)K-RTA signal only; (b) EBV-Z signal only; (c) nuclei only; (d) K-RTA, EBV-Z, and nucleus signals are mixed. The pictures of higher power are shown on
the bottom. In Panels B and C, cell extracts from treated BC1 cells were immunoprecipitated (IP) with either anti-EBV-Z or normal mouse serum (Panel
B). Cell lysates were also immunoprecipitated with anti-K-RTA or normal rabbit serum (Panel C). The immunoprecipitates were analyzed by Western
blot using the indicated antibodies. The whole cell lysates of induced BC1 cells were used as positive controls in Panels B and C. In Panel D, whole cell
lysates was used for western blot analyses. The identity of the respective proteins is denoted. n.s., non-specific. Molecular weight (MW) makers are
shown on the left in kilo-Dalton (kDa).
doi:10.1371/journal.pone.0001569.g003
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Methods for detail). As shown in the Fig. 5A, the expression of K-

RTA and KSHV K8, an early KSHV lytic gene, were inhibited

upon the expression of EBV-Z. Due to well-established functions

of K-RTA and K8, the results also suggested that EBV-Z inhibited

lytic replication of KSHV.

Interaction is required for EBV-Z-mediated inhibition of
K-RTA transactivation

We suspect that EBV-Z uses its leucine zipper domain for the

interaction with K-RTA (Fig. 5B). The deletion mutant of leucine

zipper (LZ) domain was made (EBV-Z-LD). In addition, another

point mutation within the domain (EBV-Z-L214D) was also made

because the specific mutation was known to block the dimerization

and functions of EBV-Z [78]. Both mutants are localized in the

nucleus as wild type EBV-Z (data not shown).

The plasmids expressing EBV-Z or its mutants along with K-

RTA were transfected into 293T cells. The interaction between

EBV mutants and K-RTA was examined. Both mutants, EBV-Z-

LD and EBV-Z-L214D failed to interact with K-RTA as shown in

Fig 5C, 5D. The expression of these proteins in 293T cells was

proper (Fig. 5E). Thus, the leucine zipper domain of EBV-Z, and

Leucine 214 in particular, was involved in the interaction with K-

RTA.

Next, we examined if these EBV-Z mutants could affect the

functions of K-RTA. KSHV Pan and K14 promoter reporter

constructs are potently regulated by K-RTA, and the transactiva-

tion was inhibited by the co-expression of EBV-Z. However, the

expression of EBV-Z mutants failed to repress the transactivation

functions of K-RTA (Figs. 5F, 5G). The expression of K-RTA,

EBV-Z, and EBV-Z mutants was confirmed (Fig. 5H). These data

suggested that the interaction between the EBV-Z and K-RTA

was required for the inhibition of K-RTA mediated transactiva-

tion.

Initiation of KSHV lytic gene expression correlated with
the reduction of EBV lytic gene expression

BC-1 (EBV+, KSHV+) is known to induce EBV lytic replication

upon the treatment of TPA. We have tested if we could change the

outcomes of the lytic gene expression by alternation of TPA

dosages.

BC1 cells were treated with different concentration of TPA, and

the lytic gene expression of both EBV and KSHV were analyzed

simultaneously. At low level of TPA treatments, EBV lytic gene

expression was induced as indicated by the expression of EA-D as

well as EBV-Z. However, at higher levels of TPA treatment, EBV

lytic gene expression was turned down. Coincidently, the KSHV

lytic gene expression was initiated as indicated by the expression of

K-RTA and K-8. Thus, TPA could induce either EBV or KSHV

lytic gene expression in BC cells depending on the dosages. More

importantly, the KSHV lytic gene expression apparently correlat-

ed with dampened EBV lytic gene expression. EBV-Z was induced

in a dose dependent manner. At TPA 20 ng/ml, EBV-Z was

expressed at the highest levels, but the EA-D expression was

dropped (Fig 6A; bottom panel). Based on the data in Figures 1

and 2, the expression of K-RTA might block the function of EBV-

Z, which reduced the EA-D levels. Furthermore, the excess K-

Figure 4. Interaction between K-RTA and EBV-Z is required for K-RTA-mediated inhibition. A. Schematic diagram of K-RTA domains and
mutants. The DNA binding domain, leucine heptapeptide repeat region (LR), activation domain, and nuclear localization signal (NLS) are shown. The
drawing is not on scale. In Panels B, C, and D, 293T cells were transfected with of the designated expression plasmids as shown on the top of the
Figure. Cell extracts from these transfected cells were immunoprecipitated with either anti-EBV-Z (Panel B) or anti-K-RTA (Panel C). The
immunoprecipitates were analyzed by Western blot (WB) using the indicated antibodies. In Panel D, whole cell lysate was used for western blot
analyses. The identity of the respective proteins is denoted. E. Interaction between K-RTA and EBV-Z is required for K-RTA-mediated inhibition. 80 ng
of K-RTA or K-RTA-DLR expression plasmids were transfected with various amounts of EBV-Z expression plasmid into BZLF1-KO (EBV+/KSHV2) cells as
shown on the top. Lysates were used for western blot analysis 24 hours later. The same membrane was stripped and reprobed with other antibodies.
The identity of proteins is as shown.
doi:10.1371/journal.pone.0001569.g004
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RTA might activate KSHV lytic replication as determined by

KSHV K8 expression. It is of note that although different batches

of TPA had different dose response curves, the general trend was

the same even with TPAs from different companies (data not

shown).

Finally, we examined kinetics of the K-RTA RNA expression

under different induction conditions. BC1 cells were treated with

different kinds of chemical inducers. As shown in Fig. 6B, butyrate

or butyrate plus TPA could induce significant K-RTA RNA after

1-2 hours of treatments; however, TPA was able to induce the

similar levels of expression only after 6 hours of the treatment.

Thus comparing to butyrate or TPA plus butyrate, treatment with

TPA induces delayed expression of K-RTA RNA in BC1 cells.

Discussion

The mechanisms of latency and lytic replications of gamma

herpesviruses are extensively studied. The induction processes of

lytic replications are apparently heterogeneous and depend on the

cell, virus, and inducing agent. The co-existance of both EBV and

KSHV in majority of PELs is providing a unique opportunity to

study the interaction between the two viruses and the potential

role in the pathogenesis. The two viruses are apparently able to

interact with each other as well as the host [49–52], and the

presence of both viruses is more potent to promote tumor

formation in rodent model [48].

In this report, we have provided evidence that the critical lytic

replication initiators of KSHV and EBV interact at molecular

levels. First, K-RTA and EBV-Z are co-localized, and the two

proteins physically interact with each other in the same PEL cells

in vivo (Fig. 3). Second, K-RTA inhibits the chemically-induced

EBV lytic gene expression (Fig. 1), and the inhibition may be

related to the fact that K-RTA inhibits EBV-Z mediated lytic

replication process (Fig. 2). EBV-Z and R-RTA physically interact

and synergistically activate EBV lytic gene expression. This

synergistic activation of EBV lytic gene expression is also inhibited

by K-RTA (Fig. 2C), which clear shows the functional difference

between K-RTA and E-RTA. Third, EBV-Z has the similar effect

Figure 5. EBV-Z inhibits KSHV lytic gene expression. A. EBV-Z inhibits KSHV lytic gene expression. BC3 (KSHV+/EBV2) cells were transfected
with CD4 expressing plasmid along with EBV-Z or vector plasmids. The transfected cells were isolated and equally split into two wells: one well of the
cells was treated with TPA for 24 hours. Cell lysates were used for western blot analysis. B. Schematic of EBV-Z functional domains and mutants. The
activation domain, basic region (DNA binding domain), leucine zipper region (LZ), and a region of unknown structure at the C terminus (CT) are
shown. The drawing is not on scale. In Panels C, D, and E, 293T (EBV2/KSHV2) cells were transfected with various expression plasmids as shown on
the top. FLAG-EBV-Z, and its mutants were used. Cell extracts from these transfected cells were immunoprecipitated with either anti-FLAG (for EBV-Z)
(Panel C) or anti-K-RTA (Panel D). The immunoprecipitates were analyzed by Western blot using the indicated antibodies. In Panel E, whole cell lysate
was used for western blot analyses. The identity of the respective proteins is denoted. In Panels F, G, and H, 293T (EBV2/KSHV2) cells were used.
Panel F, KSHV Pan-promoter reporter construct (Pan-luc) and CMV-b-gal expression plasmid were cotransfected with 400 ng of EBV-Z or its mutant
expression plasmids, together with 0, 20, 50 ng of K-RTA expression plasmids respectively as shown on the top. In Panel G, KSHV K14-promoter
reporter construct (K14A-luc) and CMV-b-gal expression plasmid were cotransfected with 100 ng of EBV-Z or its mutant expression plasmids,
together with 0, 10, 20 ng of K-RTA expression plasmids respectively as shown on the top. Luciferase activity was normalized by b -galactosidase
activity. The relative folds of activation of promoter constructs are shown with standard deviations. One representative of three independent
experiments is shown. Panel H, cell lysates from Panel F were used for western blot analysis. The same membrane was stripped and reprobed with
other antibodies. The identity of proteins is as shown.
doi:10.1371/journal.pone.0001569.g005
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on KSHV: EBV-Z inhibits the chemically-induced KSHV lytic

gene expression processes (Fig. 5A), and the inhibition is likely due

to that EBV-Z inhibits K-RTA-mediated transactivation (Fig. 5B–

5H). Fourth, the physical interaction between K-RTA and EBV-Z

is apparently required for the mutual inhibition of the two

molecules (Figs. 4 and 5). The leucine heptapeptide repeat region

in K-RTA and leucine zipper region in EBV-Z molecules are

involved in the physical interactions between the two molecules

(Figs. 4 and 5). Fifth, we have shown that initiation of KSHV lytic

gene expression correlated with the reduction of EBV lytic gene

expression (Fig. 6). All these data suggest that K-RTA and EBV-Z

are physically interact and mutually inhibits each others’ functions.

However, we cannot exclude the possibility that K-RTA and

EBV-Z proteins are interacting indirectly through other proteins,

and we are investigating the subject currently. Finally, dually

infected cells can express both K-RTA and EBV-Z in the same

cells under the special induction conditions (Fig. 3A). Of note

under routine induction conditions such as shown in Figure 6,

immunostaining of EBV-Z and K-RTA showed that the majority

of cells were either K-RTA or EBV-Z positive, and only a small

fraction were positive for both (data not shown). All these data

collectively indicate that the physical interaction between the two

proteins is relevant to the control of lytic gene expression in dually

infected cells.

The mechanism of the mutual inhibition is not completely clear

yet. However because both K-RTA and EBV-Z require multi-

merization for their proper functions [75,79], we suspect that the

physical interactions between the two may affect their respective

multimerization process and thus inhibit each others’ function.

There is an interesting phenomenon referred as selective switch

from latency to lytic replication in dually infected cells [12,53].

The mechanisms behind the selective induction of lytic replication

is unknown, but the phenomenon clearly suggests that viral

factor(s) is involved in this selective induction [53]. Based on the

facts that K-RTA and EBV-Z are the critical lytic replication

initiators for KSHV and EBV latencies respectively, and our data

that K-RTA and EBV-Z mutually inhibit each other’s transactiva-

tions, we hypothesize that various chemical treatments and/or

physiological stimuli may trigger differential expression of K-RTA

or EBV-Z. The induced K-RTA and EBV-Z would neutralize

each others’ function through physical interactions. The predom-

inantly-expressed gene product would block the function of

another less-expressed one in dually infected cells. This process

would result in only one critical lytic replication initiator remains

functional in dually-infected PELs. The predominantly expressed

molecule, either K-RTA or EBV-Z, would lead to the selective

lytic replication of one virus in dually-infected PELs. The selective

induction of lytic replication may facilitate the survival of the

winning virus by maximally utilizing cellular resources.

However, KSHV is apparently has an advantage over EBV on

the selective lytic replication processes. First, that the initiation of

KSHV lytic gene expression correlated with the reduction of EBV

lytic gene expression (Fig. 6) suggests that the presence of KSHV

lytic genes is overriding the EBV lytic gene expressions at least in

BC1 cells (Fig. 6A). Second, TPA has been shown to induce lytic

replication of EBV in BC1 cells. We have found that TPA induces

delayed expression of K-RTA, comparing to butyrate or TPA plus

butyrate (Fig. 6B). The delayed induction of K-RTA may provide

an opportunity for lytic replication of EBV in BC1 cells. In

addition, the faster induction of K-RTA by TPA plus butyrate

(Fig. 6B) provides an explanation that TPA and butyrate together

induce KSHV, rather than EBV, lytic replication in BC1 cells.

Third and finally, the induction of expression of the EBV-Z and E-

RTA needs de novo protein synthesis while the induction of K-

RTA of KSHV is not [80]. Therefore with all available data,

KSHV is apparently having an advantage over EBV for the

induction of lytic replication in dually infected PELs.

It is of note that the mutual inhibition of K-RTA and EBV-Z

may be used by both viruses to maintain and/or establish dual

latency in PELs. The dually infected cells are apparently more

Figure 6. Initiation of KSHV lytic gene expression correlated
with the reduction of EBV lytic gene expression. A. TPA induces
either EBV or KSHV lytic replication. BC1 (EBV+/KSHV+) cells were
treated with TPA at indicated dosages shown on the top. Cell lysates
were used for western blot analyses a day later. The same membrane
was stripped and reprobed with other antibodies. The identity of
proteins is as shown. The relative levels of EA-D expression (EA-D/
Tubulin) and EBV-Z (EBV-Z/Tubulin) were obtained by measuring
intensity of EA-D, EBV-Z, and Tubulin using ImageJ 1.37v software
(NIH), and are shown on the bottom panels. One representative from
three independent experiments is shown. B. Kinetics of K-RTA
expression in BC1 cells. BC1 cells were treated with TPA (20 ng/ml),
or butyrate (3 mM), or both. Total RNA were isolated at indicated time
post treatment. The expression of K-RTA and GAPDH RNA was
monitored by RPA with K-RTA and GADPH probes simultaneously.
Specific protections of K-RTA and GAPDH RNAs are indicated. The
relative levels of K-RTA RNA expression (K-RTA/GAPDH) were obtained
by measuring intensity of K-RTA and GAPDH using ImageJ 1.37v
software (NIH), and are shown on the bottom. One representative from
three independent experiments is shown.
doi:10.1371/journal.pone.0001569.g006
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latent [53]. The mutual inhibition of the two lytic initiators may

block some spontaneous lytic replications. In addition, the during

primary infection processes to establish the dual latency, both

KSHV and EBV lytic gene expressions are likely to be initiated

[52]. The mutual inhibition of K-RTA and EBV-Z might play a

role for the establishment of dual latency in the same cells in

primary infection.

Our previous data suggest that EBV inhibits the lytic replication

of both KSHV and EBV through another mechanism involved

with EBV latent membrane protein 1 [52]. The general

consequences of EBV-Z or LMP-1-mediated inhibition of KSHV

lytic replication are different: LMP-1 inhibits both EBV and

KSHV lytic replications, while EBV-Z only inhibits KSHV lytic

replication, but initiates EBV lytic replication. The comparative

studies of EBV-Z and LMP-1 for their inhibitory effects on KSHV

lytic replication have not been carried out extensively. However,

the new mechanism identified in this report may reinforce the

point that two viruses would prefer to maintain respective latency

in a dually infected cells. One explanation would be that the lytic

replication of the viruses may lead to the eventual death of the host

cells. Therefore, both viruses may use their interactions to block

potential lytic replication inductions.

In summary, we have addressed how the two viruses interact

with each other in dually infected PELs. Our data may provided a

possible mechanism for maintaining viral latency and for selective

lytic replication in dually infected PELs, i.e., through mutual

inhibition of two critical lytic replication initiators. Of note, the

majority of the current studies on lytic replications of KSHV and

EBV are using KSHV or EBV single-infected cells as model

systems. Therefore, there is a concern about the applicability of

these studies in dually-infected PELs. Our data about putative

interactions between EBV and KSHV would be applicable to the

majority of AIDS-associated PELs and may be relevant to the

pathogenesis of PELs.

Materials and Methods

Plasmids and antibodies
K-RTA, EBV-Z and E-RTA expression plasmids, K14A-luc

and Pan-luc were described previously [18,52]. Flag-EBV-Z

expression plasmid was a gift from Dr. Paul Lieberman. The

mutant plasmids were made with the proper primers and the use

of Quick Change II Site-Directed Mutagenesis Kit (Stratagene).

The oligonucleotides, 59-CCACCGGCAAGGTCACTGGAAG

CCAGTTTGTCATTAGCAAACCC-39 and its complementary

strand were used for deletion of the leucine heptapeptide repeat

(LR) (a.a.# 246-292) in K-RTA (K-RTA-DLR). Primers, 59-

GCCGGGCCAAGTTTAAGCAACTGTGCCCAAGCCTGGA

TGTTGACTCC-39 and its complement strand were used to

delete the leucine zipper region (a.a.# 197-221) of EBV-Z (EBV-

Z-DL). Primes, 59-CAAATCATCTGAAAATGACAGGGATC

GCCTCCTGTTGAAGCAGATG-39 and its complement were

used to change leucine at a.a. #214 of EBV-Z to aspartic acid

(EBV-Z-L214D). CMV-b-galactosidase expression plasmid was

from Clontech. Peptide antibody against K-RTA was described

[52]. K8 antibody was from Dr. Jae Jung. EBV-Z monoclonal

antibody (BZ1; sc-53904) and GAPDH (sc-47724) were purchased

from Santa Cruz Biotechnology. Monoclonal EA-D (EBV-018-

48180) was from Capricorn. E-RTA (11-008) antibody was from

Argene. FLAG (F3165) and Tubulin (T6557) antibodies were

purchased from Sigma. Cy-2-conjugated donkey anti-mouse IgG

(715-225-150) and Cy5-conjugated donkey anti-rabbit IgG (711-

175-152) antibodies were purchased from Jackson ImmunoRe-

search Laboratory.

Cell Culture and Recombinant Adenovirus Infection
Akata (EBV+,KSHV2) is an BL line. BC1 (EBV+,KSHV+) and

BC3 (EBV2, KSHV+) are PEL lines [81,82]. These cells were

maintained in RPMI1640 plus 10% FBS. 293T (EBV2,KSHV2)

is human fibroblast line. 293EBV (EBV+, KSHV2) is a 293

fibroblast derived cell line with wild type EBV genome[38].

BRLF1KO and BZLF1KO were also 293 fibroblast derived cell

lines with BRLF1 or BZLF1 deletion in their respective EBV

genomes [38]. These three lines were maintained in DMEM plus

10% FBS plus 0.5 mg/ml hygromycin. AGS-BX11g is an epithelial

cell line with EBV genome and was maintained in DMEM plus

10% FBS plus 0.5 mg/ml G418 [83]. The recombinant adenovirus

for green fluorescence protein (GFP) (AdGFP) and K-RTA

(AdRTA) were a gift from Dr. Byrd Quinlivan [84]. The

recombinant adenoviruses were titered in 293 cells. AGS-BX11g

cells were infected by recombinant viruses at a multiplicity of

infection (MOI) of 10 (calculated from PFU). One day later, cells

were then treated with TPA for induction of EBV lytic replication.

Induction of lytic replication
12-O-tetradecanoylphorbol-13-acetate (TPA; from Sigma or

Aldrich) was used to treat BC3 (5–10 ng/ml), BC1 (1–40 ng/ml),

and AGS-BX11g (0.5–2 ng/ml) for induction of lytic replication.

Sodium butyrate was also used for induction of lytic replications.

Goat anti-human immunoglobulin G (IgG) (Sigma; Cat# I-9384)

was used to activate EBV lytic replication in Akata cells. For

immunostaining and co-immunoprecipitation experiments in Fig. 3,

BC1 cells were treated with 10 ng/ml TPA overnight, and then

treated with butyrate (0.5 mM). The cells were collected a day later

for immunostaining and immunoprecipitation experiments.

Transient Transfection, Isolation of Transfected cells, and
Reporter Assays

Effectene (Qiagen) was used for the transfection of 293EBV,

BRLF1-KO, BZLF1KO and 293T cells. Transfection of Akata

cells were achieved by using Amaxa Nucleofector Device. Briefly,

5 mg of plasmids were transfected into 26106 cells in 100 ml

solution V using program G016. Six hours later, the transfected

cells were treated with anti-human-IgG. Transfection efficiency

was about 70%. Electroporation (320V; 925 mF) was used for

transfection of BC3 cells and the selection of transfected cells was

essentially the same as described previously [85–87]. CD4 and

other expression plasmids were transfected into BC3 cells. One

day after the transfection, the cells were used for isolation of CD4-

positive cells with the use of Dynabeads CD4 (Dynal Inc). The

enriched cells were detached from the Dynabeads CD4 by

incubation for 45–60 minutes at room temperature with 10 ml of

DETACHaBEAD (Dynal). The detached beads were removed by

using a magnet separation device. The released cells were washed

2–3 times with 500 ml RPMI 1640 plus 10% FBS, and

resuspended in RPMI 1640 plus 10% FBS at 56105 cells/ml.

Cells were split into two wells and recovered for 2–6 hours: TPA

(5 ng/ml) were added into one well. The treated cells were

collected one day later. The luciferase assays were performed using

the assay kit from Promega according to manufacturer’s

recommendation.

Western Blot Analysis, RNA extraction, and RNase
Protection Assays (RPA)

Standard western blot analysis was performed as described [88].

Total RNA was isolated from cells using the RNeasy Total RNA

Isolation Kit (Qiagen). RPA was performed with total RNA using

the RNase Protection Assay Kit II (Ambion) as described [87]. The
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GAPDH probe was from US Biochemicals, Inc. The probe for K-

RTA was made by PCR of the K-RTA region (BC1 coordinates:

72601-72900) followed by cloning into pcDNA3 vector.

Co-immunoprecipitation (Co-IP)
BC-1 cells were treated with 10 ng TPA per ml for 24 h, and with

0.5 mM sodium butyrate for another 24 h. 293T cells grown in 10-

cm plates were transfected with the designated plasmids, and cells

were ready for experiments 24 hours later. These cells were washed

with PBS and lysed at 4uC for 30 min in EBC buffer (50 mM Tris-

HCl, pH7.5, 120 mM NaCl, 0.5% NP-40) supplemented with

protease inhibitor cocktail tablet (Roche) with gentle rotation. The

cell lysates were centrifuged at 16,1006g for 15 min, and the

supernatants were recovered. For coimmunoprecipitation, lysates

were pre-cleared with normal rabbit or mouse IgG with 20 ml

Protein G Sepharose. Specific antibodies and Protein G Sepharose

(GE Healthcare) at 4uC for 1hour or overnight. The beads were

washed three times with EBC buffer, boiled in SDS loading buffer,

and subsequent Western blot were essentially the same as described.

Immunochemical analysis
The TPA and butyrate treated BC1 cells were centrifuged and

washed with phosphate-buffered saline solution (PBS), and fixed

with 4% paraformaldehyde for 15 minutes. The cells were

permeabilized with 100% cold methanol for 5 minutes. After

washing with PBS, the cells were blocked with PBST including 1%

BSA for 30 minutes. The cells were incubated with antibodies

against EBV-Z (1:50 dilution) and K-RTA (1:50 dilution) for one

hour. Following three washing with PBST, the cells were

incubated for one hour with Cy-2 conjugated secondary antibodies

against mouse IgG (1:60) and Cy5 -conjugated secondary

antibodies against rabbit IgG (1:60). Finally, DAPI was used for

nuclei staining and the cells were mounted (Gel Mount Aqueous

Mounting Medium, Sigma) in the poly-prep slides (Sigma) for

analysis with confocal microscopy (Olympus FV500) in the

Microscopy Core facility at the University of Nebraska-Lincoln.
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