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Simple Summary: Chronic lymphocytic leukemia harbors a high degree of genetic variability and
interpatient heterogeneity. Some of the genetic alterations have an impact on the disease’s prognosis
and evolution, but few data exist about the response to new approved targeted therapies in patients
carrying recurrent mutations other than TP53. In this review, we present the knowledge about the
impact of these new genetic alterations in the treatment response together with the possibility to use
new actionable targets.

Abstract: Chronic lymphocytic leukemia (CLL) is characterized by a high degree of genetic variability
and interpatient heterogeneity. In the last decade, novel alterations have been described. Some of
them impact on the prognosis and evolution of patients. The approval of BTK inhibitors, PI3K
inhibitors and Bcl-2 inhibitors has drastically changed the treatment of patients with CLL. The effect
of these new targeted therapies has been widely analyzed in TP53-mutated cases, but few data
exist about the response of patients carrying other recurrent mutations. In this review, we describe
the biological pathways recurrently altered in CLL that might have an impact on the response to
these new therapies together with the possibility to use new actionable targets to optimize treatment
responses.

Keywords: chronic lymphocytic leukemia; toll-like receptor (TLR); MAPK; NOTCH1; SF3B1

1. Introduction

In the last decade, genomic and epigenomic studies have unravel novel alterations
that play an important role in the prognosis and evolution of chronic lymphocytic leukemia
(CLL) [1–6], revealing CLL’s genetic and interpatient heterogeneity. The behavior of the
disease is influenced by microenvironmental signals that regulate the proliferation and
survival of CLL cells [7]. Two major molecular CLL subgroups have been identified
according to the mutational status of the immunoglobulin (Ig) heavy-chain variable region
(IGHV) genes. Those harboring unmutated IGHV genes (U-CLL, ≥98% identity with the
germline) originate from B cells that have not experienced the germinal center and those
with mutated IGHV genes (M-CLL, <98% identity with the germline) originate from post-
germinal center B cells [8–10]. Furthermore, approximately one third of CLL cases present
virtually identical Ig rearrangements, known as stereotypes [11]. Some of these subsets
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have prognostic value [12] and recently a single point mutation in IGLV3-21 (R110-mutated
IGLV3-21) has been associated with an aggressive biological subtype of CLL [13,14].

The mutational landscape of CLL is very heterogeneous, being NOTCH1, SF3B1, TP53
and ATM the genes that are mutated in more than 5% of cases [2,5]. Recurrent mutations
can be grouped in 8 main cellular pathways: DNA damage response (ATM, TP53, POT1);
Notch signaling (NOTCH1, FBXW7); RNA splicing and metabolism (SF3B1, U1, XPO1,
DDX3X, RPS15); B-cell receptor (BCR) and Toll-like receptor (TLR) signaling (MYD88,
PAX5, KLHL6, BCOR, TLR2, IKZF3); MAPK-ERK pathway (BRAF, KRAS, NRAS, EGR2);
NF-κB signaling (BIRC3, NFKB2, NFKBIE, TRAF2, TRAF3); chromatin modification (CHD2,
SETD2, KMT2D, ASXL1) and cell cycle (ATM, TP53, CCND2, CDKN1B, CDKN2A) [7].
Furthermore, the number of driver alterations affects the clinical behavior, being the worst
prognosis in patients with higher number of driver aberrations [2,15]. The heterogene-
ity between patients may be influenced by: (a) the cell of origin: U-CLL present more
driver mutations than M-CLL and some mutations appear mainly in one of the two major
molecular subgroups (e.g., MYD88 and PAX5 in M-CLL and U1, NOTCH1, POT1 in U-
CLL) [2,5]; (b) the age of CLL patients (e.g., young patients carry more frequently MYD88
mutations) [1,16], (c) the presence of subclonal mutations that may be acquired during
disease evolution [5,15,17] and (d) the course of the disease: some mutations impact in the
need of treatment (SF3B1, POT1, ATM) and others (TP53, BIRC3, MAP2K1, NOTCH1) are
more frequent at relapse after chemoimmunotherapy [7,18,19]. At epigenetic level, few
patients carry mutations in chromatin remodeler genes [2,5]. CLL cells are hypomethylated
and most of the differences observed between U-CLL and M-CLL are related to different
cell of origin. The most important changes are restricted to few transcription factor binding
sites and enhancers controling important genes implicated in CLL pathogenesis such as
BCR and NF-κB signaling [20].

The treatment of patients with CLL has evolved in the last years from conventional
chemotherapeutic agents (e.g., fludarabine, fludarabine plus cyclophosphamide (FC),
chlorambucil or bendamustine) combined with anti-CD20 antibodies (rituximab or obinu-
tuzumab), to novel targeted agents. The targeted drugs currently approved by both the
US Food and Drug Administration (FDA) and the European Medicines Agency (EMA)
are the Bruton’s tyrosine kinase (BTK) inhibitors ibrutinib and acalabrutinib, the Bcl-2
inhibitor venetoclax [21] and the phosphatidylinositol 3-kinase (PI3K) inhibitors idelalisib
and duvelisib [22]. These drugs have shown higher clinical responses compared to stan-
dard chemoimmunotherapy and all of them seem to act in a TP53 independent manner.
Due to the prognostic and therapeutic impact of TP53 alterations (17p deletion and TP53
mutation) in CLL, the response of TP53-mutated cases to the new agents has been widely
analyzed (summarized in Table 1) and recently reviewed [23]. On the contrary, few data
exist about the effect of other recurrent mutations in the response to the new approved
targeted therapies (Table 1). In this way, the effect of other mutated genes relevant for
the DNA damage response pathway such as ATM, located at 11q region, a region fre-
quently deleted in CLL cases, has not been widely explored, although it is accepted that
11q alterations are associated with unfavorable prognosis [24]. Another gene located at
the minimal deleted 11q region is BIRC3. BIRC3 encodes c-IAP2, a member of the human
Inhibitors of Apoptosis Proteins (IAPs) family [25] that acts as a negative regulator of
non-canonical NF-κB signaling [26]. BIRC3 deletions coexist with ATM deletions, both
have prognostic value in CLL [27–29], being patients with a biallelic alteration (deletion
and mutation) those with a significantly shorter time to first treatment (TTFT) [30]. BIRC3
alterations are associated with fludarabine-chemoresistance and adverse prognosis [29],
but few information exist about the response to new therapies (Table 1). Mutations in key
genes of the alternative NF-kB pathway, such as BIRC3, confer resistance to BTK inhibitors
in mantle cell lymphoma (MCL) [31,32], that can be overcome with the addition of NIK
inhibitors [33]. Furthermore, IAP antagonists, such as SMAC mimetics, have showed
activity in CLL cells but not specifically in cases with BIRC3 alterations [34].
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In addition, many other mutations have shown a prognostic value, which impacts on
the patient’s outcome, regardless of the treatment received. But only TP53 and NOTCH1
have a predictive impact, as it has been demonstrated in comparative trials that some
treatments have different effect in the presence of these mutations [18,35,36] (Table 1).
All this knowledge together with the characterization of the molecular effects of recur-
rent mutations, foster the development of direct target inhibitors leading to a precision
medicine [19,37]. However, the design of direct and specific inhibitors is challenging.
In particular, it is very difficult to directly target TP53 due to its structure and nuclear
localization [38]. In this context, molecules able to restore the physiological function of
TP53, or strategies to potentiate TP53 function by using compounds that bind to MDM2 in
the p53-binding pocket have been developed [23]. In CLL, patients with subclonal TP53
mutations might benefit from treatment with these compounds [39]. In addition, other
proteins are able to regulate TP53 expression, for example, the XPO1 inhibitor selinexor,
which enhances p53 nuclear retention and induces the transcription of TP53 target genes
in CLL cells [40]. Other strategies include the use of inhibitors of the checkpoint kinase
1 (CHK1), taking into account that TP53-mutated cells lack the G1/S checkpoints and
are more vulnerable to this inhibition [41] or the use of compounds inducing reactive
oxygen species (ROS) irrespective of p53 status [42]. In this review, we will focus on altered
genes/pathways that play a role in the response of new approved therapies in CLL, such
as the TLR, MAPK and Notch signaling pathways as well as RNA splicing that can be
tackled with new agents to improve the efficacy of current therapy for CLL.

Table 1. Effect of the main recurrent mutations on the response to different treatment strategies in CLL.

Mutation Drug/s Trial Response to the Treatment in the Mutated Group Ref.

TP53

FCR vs. FC CLL8 Worse PFS and OS with both treatments [43]

Lenalidomide Worse OR and PFS in TN and R/R [44]

Ibrutinib Shorter PFS, OS [45,46]

Ibrutinib vs. ofatumumab RESONATE Phase III Shorter PFS with ibrutinib [47]

Ofatumumab vs. OfIde Similar PFS with OfIde [48]

IdeR followed by idelalisib Similar PFS [49]

Duvelisib DUO extension Similar PFS [50]

Venetoclax Shorter duration of response [51]

VenOb Shorter PFS [52]

(Bendamustine) + VenOb CLL2-BAG Lower MRD negativity rates [53]

VenR vs. BR MURANO Phase III Higher MRD positivity rates at EOT [54]

Chl vs. OfChl COMPLEMENT 1 Worse PFS and OS with both treatments [24]

ObChl vs. IbrOb iLLUMINATE Similar PFS to overall population with IbrOb [55]

ObChl vs. VenOb CLL14 Lower ORR with ObChl, independent prognostic factor for
PFS with both treatments [56]

ObChl vs. acalabrutinib vs. ObAca ELEVATE-TN PFS benefit with ObAca [57]

Acalabrutinib ACE-CL-001 Similar OR rate regardless del(17p) status [58]

Acalabrutinib vs. IdeR vs. BR ASCEND PFS benefit with acalabrutinib [59]

MYD88 Chl vs. OfChl COMPLEMENT 1 No effect in PFS [24]

MAPKs

Fludarabine vs. FC vs. Chl CLL4 Independent markers of poor OS [60]

PI3K inhibitors Mutations enriched in non-responder subgroup [61]

BRAF VenR vs. BR MURANO Phase III Higher MRD positivity rates at EOCT and at EOT [54]

KRAS
Lenalidomide Worse OR in TN and R/R [44]

Chl vs. ChlR vs. ObChl CLL11 Non response to chemoimmunotherapy [62]

NOTCH1

FCR vs. FC CLL8 No benefit from the addition of rituximab to FC [43]

Chl vs. OfChl COMPLEMENT 1 Reduced ofatumumab efficacy [24]

Ibrutinib vs. ofatumumab RESONATE Phase III Reduced ofatumumab efficacy [63]

Ibrutinib Shorter PFS and OS [64]
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Table 1. Cont.

Mutation Drug/s Trial Response to the Treatment in the Mutated Group Ref.

Venetoclax Shorter duration of response [51]

VenR vs. BR MURANO Phase III Higher MRD positivity rates at EOT [54]

ObChl vs. VenOb CLL14 Shorter PFS with ObChl, not statistically significant with
VenOb [56]

SF3B1

FCR vs. FC CLL8 Worse PFS with both treatments [43]

Lenalidomide Worse OS and PFS in R/R [44]

Chl vs. OfChl COMPLEMENT 1 Worse PFS in both arms (also in low VAF patients) [24]

Ibrutinib vs. ofatumumab RESONATE Phase III Trend to shorter PFS not statistically significant [47]

Ibrutinib Mutation enriched in postreatment samples [65]

Ibrutinib vs. acalabrutinib In patients with RT, SF3B1 mutations were more frequent
than BTK mutations [66]

Venetoclax Shorter duration of response [51]

ObChl vs. VenOb CLL14 Independent prognostic factor for PFS with ObChl [56]

BIRC3

Fludarabine vs. FC vs. Chl CLL4 Shorter PFS and OS [60]

FCR Shorter PFS [29]

Chl vs. OfChl COMPLEMENT 1 Similar PFS and OS [24]

Ibrutinib vs. ofatumumab RESONATE Phase III Similar PFS [63]

Ibrutinib Mutation enriched in postreatment samples [65]

VenR vs. BR MURANO Phase III Higher MRD positivity rates at EOCT, shorter PFS with BR [54,67]

ObChl vs. VenOb CLL14 Independent prognostic factor for PFS with ObChl [56]

BR: bendamustine + rituximab, Chl: chlorambucil, ChlR: chlorambucil + rituximab, DOR: duration of response, EOCT: end of combi-
nation therapy, EOT: end of treatment, FC: fludarabine + cyclophosphamide, FCR: fludarabine + cyclophosphamide + rituximab, GClb:
obinutuzumab + chlorambucil, IbrOb: ibrutinib + obinutuzumab, IdeR: idelalisib + rituximab, MRD: minimal residual disease, ObAca:
obinutuzumab + acalabrutinib, ObChl: obinutuzumab + chlorambucil, OfChl: ofatumumab + chlorambucil, OfIde: ofatumumab + idelalisib,
OS: overall survival, OR: overall response, PFS: progression free survival, R/R: relapsed/refractory patients, RT: Richter transformation,
TN: treatment naïve, VAF: variant allele frequency, VenOb: venetoclax + obinutuzumab, VenR: venetoclax + rituximab.

2. TLR Signaling

Toll-like receptors (TLRs) are part of the innate immune system capable to identify
pathogen-associated molecular patterns (PAMPs) and damage-associated molecular pat-
terns (DAMPs) [68]. PAMPs and DAMPs triggers TLRs transduction and initiate innate
and adaptive immune responses to eliminate pathogens and repair the damaged tissues.
TLR signaling is necessary together with BCR recognition and T-cell interaction for B-cell
activation [69,70].

A total of ten TLRs are expressed in human immune and non-immune cells. They
are located in the cell surface (e.g., TLR1, TLR2 and TLR4-6) or in endolysosomes (TLR3
and TLR7-9) [71]. When TLRs recognize some PAMPs or DAMPs, a cell signaling cas-
cade is initiated throughout the recruitment of an adaptor protein. There are two types
of adaptor proteins: myeloid differentiation factor 88 (MyD88) and TIR-domain contain-
ing adaptor molecule (TRIF). MyD88 forms the Myddosome together with interleukin
1 receptor associated kinase 4 (IRAK4) and kinase 1 and 2 (IRAK1/2) [72]. The Myddo-
some produces pro-inflammatory cytokines (e.g., IL-1, IL-6, IL-12 and TNF) and via TNF
receptor-associated factor 6 (TRAF6), activates different molecular pathways.

The most relevant are: (1) the nuclear factor kappa- B cells (NF-κB) [73] and the
Janus kinase/signal transducer and activator of transcription 3 (JAK-STAT3) pathways,
involved in the activation, expansion and survival of cells and cytokine secretion; (2) the
mitogen-activated protein kinase (MAPKs) pathway, which favors the expression of pro-
inflammatory genes and (3) the interferon regulatory factor 5 (IRF5) pathway [74] that
together with NF-κB pathway, promotes also the production of pro-inflammatory cytokines
(Figure 1). Aside from MyD88-dependent signal transduction, TLR3 and TLR4 use the
TRIF adaptor protein. TLR3 binds directly to TRIF, whereas TLR4 needs the adaptor TRAM
(TRIF-related adaptor molecule). TLR3 and 4 bind to TRAF3 and TRAF6 leading to the
activation of type I interferon genes and NF-κB pathway, respectively [75]. Abnormal
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TLR activation impairs the immune homeostasis and contributes to the onset of several
inflammatory and autoimmune diseases and also some tumor malignancies [76,77]. In
CLL, the BCR and TLRs from B cells recognize autoantigens and bacterial components [73].
This activation could explain, at least partially, why CLL patients have severe infections
and autoimmune complications [78].
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Figure 1. Therapeutic strategies targeting TLR, BCR, and MAPK signaling in CLL. Schematic representation of the
main activation events in the B-cell receptor (BCR), mitogen-activated protein kinase (MAPK) and Toll-like receptor
(TLR) signaling pathways. BCR signaling activation iniciates when the antigen binds to the receptor leading to CD79
phosphorylation through LYN and SYK tyrosine kinases forming a signalosome that includes the BLNK, the BTK and the
PI3Kδ. These proteins transduce signals to calcium signaling modulator PLCγ2. PLCγ2 degrades the PIP2 into IP3 and
DAG, releasing calcium from endoplasmic reticulum (ER) and promoting the activation of the PKCβ. Then, PKCβ activates
the NF-κB pathway and ERK signaling. The canonical MAPK pathway is activated after a ligand binds to the RTK. Then,
RAS protein recruits adaptor proteins, such as GRB-2 and SOS and promotes the formation of RAF dimers. This induces the
MEK-ERK cascade concluding with the translocation of STAT3 and CREB transcription factors to the nucleus. In contrast,
the non-canonical MAPK pathway is activated by TRAF6, then MKK is phosphorylated and this leads to the activation
of NF-κB pathway and to p38 and JNK phosphorylation that promote the translocation of CREB and AP1 transcriptions
factors to the nucleus. All these events favor cell survival, cell proliferation and cytokine secretion signals. Finally, TLR
signaling pathway is activated by TLRs located on either the cell membrane or endolysosomal membranes. These receptors
are capable to detect PAMPs which initiate the downstream signaling, mediated by two main adaptor proteins: MyD88
and/or TIR domain containing adapter molecule (TRIF) dependent pathways. MyD88 is recruited to the TIR domain of
TLRs inducing IRAK1/2 and IRAK4, jointly with MyD88, to form the Myddosome. Aside from MyD88-dependent signal
transduction, TLR3 and TLR4 use the TRIF adaptor protein. TLR3 binds directly to TRIF whereas TLR4 needs TRAM. TLR3
and 4 bind to TRAF3 which induce the expression of IRF3, promoting the synthesis of type I interferons (IFNs). All these
complexes activate TRAF6 leading to the activation of NF-κB, IRF5 and MAPK pathways promoting the gene transcription
of cell survival, proliferation, inflammation and proinflammatory cytokine production. Targeted drugs are highlighted in
green. Pill icon: approved drugs and Erlenmeyer icon: preclinical studies or clinical trials.
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2.1. Recurrent Mutations and Alterations in TLR Pathway

Gain of function mutations in TLR pathway produce an increase on cell proliferation,
cell survival and cytokine production in absence of cognate ligands, which results in a
better supportive tumor microenvironment [79,80]. Plasma from CLL patients contains
high levels of unmethylated DNA, which can trigger antilogous TLR9 activation, with the
promotion of CLL cell activation and trafficking to lymphoid tissues [81].

In CLL, MYD88 is mutated in 2% to 5% of cases [1,16]. The most frequent mutation
is L265P, the typical mutation described in other lymphoid malignancies [82], but about
15% of the mutated CLL cases harbor other MYD88 somatic mutations (V147L, S243N,
and S219C) [16]. Additionally, sporadic mutations in IRAK1 and in TLRs (TLR2, TLR6)
are found [16]. MYD88 mutations are enriched among M-CLL cases. Patients harboring
MYD88 mutations are predominantly male and young, they do not present concomitant
high risk mutations (e.g., TP53, NOTCH1, SF3B1, ATM or BIRC3) or adverse cytogenetics
(del17p, del11q) [16]. CLL cases with MYD88 mutations are enriched in NF-κB and STAT3
gene expression signatures and have high basal cytokine secretion [83]. Furthermore,
MYD88 mutations induce a de novo chromatin activation enriched in genes from the
NF-κB pathway [20]. MYD88 mutations are predominantly clonal and the clinical impact
of this mutation is controversial [16,80,84,85].

2.2. Targeting TLR Pathway

Two major strategies have been described for TLRs inhibition: blocking the binding
site of TLR ligands to its receptor interfering in the intracellular signaling pathway, which
can be achieved by small molecule inhibitors, monoclonal antibodies, oligonucleotides,
lipid-A analogs, microRNAs, and nano-inhibitors (Figure 1) [86]; or by inhibiting IRAK
proteins from the Myddosome with small molecules. There is an ongoing clinical trial
targeting the TLR pathway, using IRAK4 inhibitor (CA-4948) alone or in combination with
ibrutinib in relapsed/refractory (R/R) hematologic malignancies (NCT03328078) [87].

ND2158 is a small molecular IRAK4 inhibitor, which exhibited robust activity in diffuse
large B-cell lymphoma activated B-cell subtype presenting MYD88 mutations [79]. In CLL
cells, ND2158 decreases cell viability independently of MYD88 mutational status and
inhibits tumor proliferation promoted by the TLR agonists, resulting in blockade of NF-κB
and STAT3 signaling. Furthermore, ND2158 decreases the release of inflammatory factors
from monocytes, reducing their tumor protective activity. The effect of the compound has
been tested in the Eµ-TCL1 adoptive transfer mouse model that mimics human CLL disease
and the tumor microenvironment [88,89]. In this context, ND2158 induces a slowed down
leukemia progression, a decrease in monocytes number, cytokine secretion and cytotoxic
T-cell (CD8+) activity and expansion. The decrease of CD8+ effector T cells is accompanied
of a decreased expression of proliferation and activation markers (CD25, CD28 and CD137)
and increased expression of exhaustion markers (PD-1, TIGIT and LAG3). This exhaustion
phenotype may reduce their antitumor activity [59].

TLR9 antagonists have also been used to inhibit TLR signaling (Figure 1), showing a
completely blockage when these inhibitors are used in combination with ibrutinib [57]. In
this way, ibrutinib inhibits BCR signaling efficaciously but partially the TLR signaling [67]
being TLR9 signaling activation a common escape mechanism after treatment of CLL cells
with ibrutinib and venetoclax [68].

In vitro studies have confirmed that the combination of ibrutinib with IRAK4 in-
hibitors show a superior antitumor activity that each compound alone [83,90]. A clinical
trial combining ibrutinib and IRAK inhibitors is ongoing (NCT03328078).

3. MAPK Signaling

Mitogen-activated protein kinases (MAPKs) are a group of proteins that participate
in the regulation of proliferation, differentiation, migration and survival of cells. The
canonical activation of this pathway starts when a ligand (e.g., a cytokine, hormone or
growth/differentiation factor) binds to the extracellular portion of a receptor tyrosine kinase
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(RTK), with the consequent phosphorylation and the activation of retrovirus-associated
DNA sequences (RAS) proteins. Then, RAS activates a member of the serine-threonine
kinase RAF family (BRAF), that facilitates the phosphorylation of the mitogen-activated
ERK kinase (MEK) and MEK activates extracellular signal-regulated kinase (ERK), the
most important kinase in the cascade that activates different transcription factors [91].
The MAPK pathway is also activated upon BCR ligation, being the magnitude of MAPK
signaling activation a direct readout of BCR signaling [92]. BCR is also able to regulate
phospholipase C gamma, which causes calcium mobilization; and the PI3K activation [93]
(Figure 1).

3.1. Recurrent Mutations and Alterations in MAPK Pathway

The MAPK pathway is altered in around half of neoplasms with different frequencies
across tumor types [94]. In CLL, mutations in this pathway are detected in 5–8% of cases
depending on disease stage [2,5]. These mutated cases present an increased expression of
MAPK pathway genes and high levels of phosphorylated ERK, a known surrogate marker
of MAPK pathway activation [95]. The most frequent mutated gene is BRAF, detected in
2% of CLL cases [5,95,96]. Most of these mutations cluster around the kinase domain [97],
but they are different to the typical V600E mutation seen in other malignancies [98]. In
addition, other mutations in this pathway have been reported: upstream BRAF (KITLG,
KIT, PTPN11, GNB1, NRAS and KRAS) and downstream BRAF (MAP2K1 alias Mek1 and
MAP2K2 alias Mek2) [95].

Mutations in MAPK pathway are related to adverse biological features such as high
expression of CD38, CD49d and ZAP-70, U-CLL [95] and trisomy 12 [99]. Patients carrying
mutations in this pathway have a 5-year TTFT similar to patients with mutations associ-
ated with worse outcome (TP53, ATM or BIRC3), while patients presenting concomitant
mutations of TP53, ATM or BIRC3 and in genes of the MAPK pathway have the worst
TTFT [95]. Subclonal BRAF mutations also have a prognostic impact on TTFT [15] and
are associated with an adverse overall survival (OS) [100]. In the CLL4 trial, mutations in
BRAF, KRAS and NRAS presented a reduced OS in both FC and rituximab and FC (FCR)
treatments [60]. BRAF mutations are associated with refractoriness to fludarabine [101]
and KRAS mutations with resistance to chlorambucil-based chemotherapy or anti CD20-
chemoimmunotherapy [62].

Regarding the new targeted therapies (Table 1), mutations in the MAPK pathway are
mediators of primary resistance to PI3K inhibitors [61]. Furthermore, activation of ERK1/2
has been associated with ibrutinib resistance [102], raising the possibility that patients
with mutations in this pathway might have reduced sensitivity to ibrutinib. Although
overexpression of BRAF in lymphoma cells shows resistance to venetoclax, more venetoclax
resistant CLL samples are needed to confirm these results [103]. In this way, lower minimal
residual disease rates were seen in patients treated with venetoclax plus rituximab [54].

In addition, recurrent mutations in EGR2 have been described in about 8% of advanced-
stage patients with CLL and are related to a poor outcome [97,104]. After BCR stimulation,
EGR2 is activated via ERK phosphorylation [105]. Consequently, EGR2 mutations partici-
pate in the dysregulation of BCR signaling [97].

3.2. Targeting MAPK Pathway

V600 BRAF inhibitors (vemurafenib and dabrafenib) and MEK inhibitors (trametinib,
selumetinib, cobimetinib and binimetinib) are used in the clinics for patients with mu-
tations in MAPK pathway [106]. In CLL, sorafenib, a multikinase inhibitor, induces cell
death independently of BRAF status, whereas incubation of BRAF mutated CLL cells
with PLX4720, the vemurafenib progenitor [96], vemurafenib or dabrafenib [95] fails to
induce cytotoxicity probably because these BRAF inhibitors are specific for V600 mutation,
and this specific mutation is rare in CLL. In contrast, ulixertinib, an ERK inhibitor [107],
decreases ERK phosphorylation in MAPK-mutated CLL cases [95]. Furthermore, it has
been reported that the MEK1/2 inhibitor binimetinib is effective alone or in combination
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with venetoclax [108] and that CLL cells carrying trisomy 12 are sensitive to MEK and ERK
inhibitors [109].

4. Notch Signaling

Notch pathway is a well evolutionary conserved signaling cascade involved in cell-
fate decisions during development and the maintenance of self-renewal. Notch ligands
expressed on the surface of a signal-sending cell interact with Notch receptors, which
are expressed on the surface of a signal-receiving cell. There are four mammalian Notch
receptors (Notch1–4) and two groups of ligands, Jagged (Jagged 1 and Jagged 2) and Delta-
like (DLL1, DLL3, and DLL4) [110]. Ligand-receptor binding induces sequential cleavages
by metalloproteases and γ-secretase, leading to the nuclear translocation of the intracellular
Notch domain (NICD), where displaces co-repressors, recruits co-activators and finally
activates the expression of several genes related to cell differentiation, proliferation and
survival (Figure 2). Among the genes under direct Notch transcriptional control, note the
transcriptional repressors HES1 and HEY1, and the oncogene MYC, which contributes to
the Notch-mediated transformation process of some tumors [111,112]. Physiologically, it
is well-known that Notch signaling regulates T-cell commitment of common lymphoid
progenitors at the expenses of B-cell differentiation. However, Notch also plays a role in
B-cell development, both in the early B-cell development as well as in the differentiation
toward marginal zone B cells [113].
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Figure 2. Targeting Notch1 pathway in CLL. Notch1 signaling is activated by one of the Notch ligands (DLL1,3,4 or
Jagged-1,2) that binds to the Notch1 receptor on a contacting cell, with subsequent induction of a series of proteolytic events
mediated by ADAM-metalloproteases and γ-secretases. These events promote the release of active Notch intracellular
domain (NICD). NICD translocates to the nucleus where activates the transcription of target genes together with several
transcriptional regulators. Notch1 signaling is shut down by phosphorylation of NICD and subsequent poly-ubiquitination
(Ub) by F-box containing protein (FBXW7) that acts as a signal for proteasomal degradation. In CLL, recurrent mutations in
NOTCH1 PEST domain and 3′UTR stabilize the protein and delay its turnover. Although rare, loss of function mutations
in FBXW7 has been also described. In CLL, Notch1 signaling modulates CCL19-driven migration and immune escape by
PD-1/PD-L1 axis as well as T-cell exhaustion. Notch1 also induces CD20 downregulation through an epigenetic mechanism.
Targeted drugs are highlighted in green. Pill icon: approved drugs and Erlenmeyer icon: preclinical studies or clinical trials.
GSIs: γ-secretase inhibitors, mAb: monoclonal antibody.
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4.1. NOTCH Mutations in CLL

NOTCH1 activating mutations are one of the most recurrent alterations in CLL, ac-
counting for 10–15% of patients at diagnosis [1,114]. NOTCH1-mutated patients present
an adverse prognosis, high risk of transformation and poor outcome [1,115,116]. Thus,
NOTCH1 mutations prevalence increases to 20% in chemorefractory patients and up to
30% in CLL with Richter transformation (RT) [115–117].

Most of the mutations affect the PEST domain and result in a more stable truncated
protein, with a delayed turnover that favors Notch1 signaling activation [1]. An additional
hotspot in the non-coding 3′UTR of NOTCH1 has been identified in ~3% of CLL patients,
which induces the loss of the PEST domain by aberrant splicing [2]. Although rare, loss
of function mutations in FBXW7, a ubiquitin ligase implicated in Notch1 turnover, are
also found (Figure 2) [3,4,118]. Furthermore, activation of Notch1 has been described
independently of the presence of NOTCH mutations [119].

Autocrine and paracrine mechanisms of Notch activation have been described in
CLL [120]. However, NOTCH1 mutations need the crosstalk between tumor CLL cells
and surrounding cells expressing Notch ligands to trigger and sustain Notch signaling.
In particular, lymph nodes would represent a specific niche for Notch activation in CLL
because stromal and histiocytic cells express Notch ligands, such as DLL4 [121]. This link
between Notch1 signaling and microenvironment may trigger a more aggressive behavior
characterized by an increase on cell proliferation, chemotaxis and angiogenesis. In this
context, Notch1 signaling regulates CLL cells migration through CCL19 and the overex-
pression of a genetic MYC-signature [122,123]. Accordingly, DLL stimulation triggers the
expression of protumor target genes in NOTCH1-mutated CLL cells, together with an
increase in cell proliferation, migration and angiogenesis [121].

Furthermore, Notch1 signaling promotes an immune escape mechanism in mutated
CLL cells through the transcriptional regulation of HLA class-II genes and PD-L1. In
particular, Notch1 up-regulates PD-L1 and impairs T-cell activation (Figure 2) [124]. A
recent work showed that constitutive activation of Akt is common in NOTCH1-mutated
CLL cells, suggesting a possible biomarker for RT [125]. Akt initiates CLL transformation
via induction of Notch1 signaling between CLL cells and microenvironmental DLL1-
expressing T cells.

NOTCH1 mutations have been related to reduced benefits from anti-CD20-based
chemoimmunotherapy strategies, both with rituximab [43] and with ofatumumab [24,43].
Although the effects of NOTCH1 mutation in the pathogenesis of CLL seem mostly related
to the transcriptional regulation of protumor target genes, the indirect alteration of the
epigenetic environment has also been described. Thus, the resistance of NOTCH1-mutated
CLL patients to the anti-CD20 rituximab could be likely due to the downregulation of
surface CD20 expression by a HDAC-mediated epigenetic mechanism (Figure 2) [126].

Regarding the clinical impact of NOTCH1 mutations in the response to the new
targeted agents, the treatment with ibrutinib as a single agent has showed that NOTCH1
mutation is strongly associated with lower redistribution lymphocytosis and impaired
nodal shrinkage, leading to partial responses, subsequent relapses, shorter progression free
survival (PFS) and OS [64]. Importantly, patients who develop RT under ibrutinib treatment
have frequent adverse genomic alterations such as TP53 and NOTCH1 mutations [63]. In the
case of venetoclax, NOTCH1 mutation is correlated with shorter duration of response, but
not probability of response [51]. Although a trend for adverse PFS and lower undetectable
minimal residual disease is found in NOTCH1-mutated CLL cases [24,54], further validation
is necessarily required in other cohorts before drawing conclusions about the effect of
NOTCH1 mutation in venetoclax-based regimens (Table 1).

4.2. Targeting Notch in CLL

Several strategies have been proposed for blocking Notch in hematological malig-
nancies: targeting extracellular NOTCH1, the γ-secretase complex, Notch trafficking or
Notch degradation [127]. Among them, γ-secretase inhibitors (GSIs) (Figure 2) are the
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most extensively evaluated drugs in different malignancies. It is known that in T-cell
acute lymphoblastic leukemia (T-ALL), where more than 50% of patients have activating
NOTCH1 mutations, GSIs efficiently inhibit Notch1 oncogenic protein [128]. In CLL, they
have been tested in vitro as a single agent or combined with chemotherapy [120,129]. GSI
treatment abrogates drug-induced apoptosis resistance reported in NOTCH1-mutated CLL
cells [120,129]. In addition, GSI PF-03084014 combined with fludarabine downregulates
angiogenesis and CXCL12-mediated migration and invasion in NOTCH1-mutated CLL
cells [129].

Despite promising preclinical results, the non-selectivity and the undesired gastroin-
testinal toxicity of GSIs promoted the development of direct strategies to block Notch1 [130],
such as antibodies against the specific Notch receptors (Figure 2) [131–133]. Brontictuzumab
(OMP-52M51) is a monoclonal antibody against human Notch1 with promising antitumor
efficacy in T-ALL xenograft models [134]. In CLL and MCL cells with NOTCH1 mutations,
OMP-52M51 efficiently inhibits Notch stimulation and cell proliferation induced by DLL
ligands [121,135]. Although a phase I study showed efficacy of brontictuzumab in solid
tumors [136], the clinical development of this antibody has been stopped. Novel strategies
such as antibodies targeting Notch ligands have also been investigated (Figure 2) [133].
In particular, dual targeting of DLL4 and VEGF induces antitumor responses in solid
malignancies [137] and could be of potential interest in NOTCH-mutated B lymphoid ma-
lignancies. At preclinical level, other approaches have shown antitumor efficacy through
Notch inhibition, such as the use of Notch decoys for either DLL-mediated or Jagged-
mediated signaling as well as the use of natural products with ability to modulate Notch
signaling (Figure 2) [133,138]. In CLL, another strategy that has been recently proposed for
the therapeutic use of Notch targeted agents is its combination with ibrutinib. At biological
level, Notch1 and BCR pathways are functionally linked, being NOTCH1-mutated CLL
cells more responsive to BCR signaling [139]. This strategy could be particularly relevant
in patients with RT, a subgroup with limited therapeutic options [117].

5. RNA Splicing

The spliceosome removes non-coding fragments (introns) from messenger RNA pre-
cursors (pre-mRNA) through two catalytic steps necessary for the expression of most
eukaryotic genes (Figure 3A). Alternative splicing is key for the regulated generation of
different mRNA transcripts and protein variants from a single gene. The spliceosome is a
dynamic and complex molecular machinery that consists of more than 150 polypeptides
and five small nuclear ribonucleoproteins (snRNP: U1, U2, U4, U5 and U6) each of which
is composed of one small nuclear RNA (snRNA) and some associated proteins [140].

U1 snRNP takes part in the first step of spliceosome assembly, recognizing the 5′ splice
site through base pairing interactions involving the 5′ end of U1 snRNA and sequences at
the 5′ end of the intron. Then, U2 snRNP binds to the branch site -an intronic adenosine
involved in the first chemical step of the splicing reaction- through base pairing interactions
between U2 snRNA and nucleotides flanking the branch site adenosine. This helix, charac-
terized by the bulge out of the branch site adenosine, is recognized by SF3B1 protein, a key
component of U2 snRNP, involving a conformational change that ultimately facilitates the
approaching of the branch site adenosine to the 5′ splice site and the first catalytic step of
the splicing reaction [141,142] (Figure 3A).
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Figure 3. The impact of spliceosome mutations in the spliceosome assembly. (A) Spliceosome assembly of U1 and U2
snRNPs. The spliceosome removes the internal sequences (introns) of the pre-mRNA and splices together the remaining
fragments (exons) after the recognition of conserved sequences found at the 5′ and 3′ end of the intron and the branch site
(an adenosine residue). U1 snRNP recognizes the 5′splice site by base pairing interactions. Then, SF1, U2AF2 and U2AF1
recognize the branch site, the polypyrimidine tract and the AG dinucleotide of the 3′ splice site, respectively. Afterwards,
SF3B1 helps in the recognition of the branch site by U2 snRNA. Finally, the subsequent recruitment of other snRNPs will
drive to the splicing of the intron. (B) SF3B1 mutations. SF3B1 mutations disrupt interactions with SUGP1 spliceosomal
protein and contribute to an upstream alternative 3′ splice site usage through the use of an alternative branch site. (C) U1
snRNA mutation. The A > C change in the third position favors the C-G base pairing between the third position of the U1
snRNA and the 5′splice site leading to the formation of aberrant 5′ splice sites. Targeted drugs are highlighted in green.
Erlenmeyer icon: preclinical studies or clinical trials. R: purine, Y: pyrimidine.

5.1. Recurrent Splicing Factor Mutations

Mutations in the spliceosome components have a role in cancer [143]. In CLL, muta-
tions in SF3B1 and U1 have been described [3,144]. SF3B1 mutation disrupts interactions
with SUGP1 spliceosomal protein, which is involved in the branch site recognition complex,
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contributing to the activation of an upstream alternative 3′ splice site through the use of an
alternative branch site [145–148] (Figure 3B).

Approximately 50% of the aberrant RNA transcripts undergo nonsense mediated
decay, resulting in downregulation of canonical transcripts [145,149]. In addition, full-
length transcript analyses have shown downregulation of retained introns (i.e., enhanced
splicing) in SF3B1 mutated patients [150].

SF3B1 is mutated in 8–21% of CLL patients [2,5]. Most of the mutations are missense
and they are localized in the highly conserved C-terminal domain of SF3B1, composed of
multiple HEAT repeats, being K700E the most frequently mutated site (50% of reported
cases) [151]. SF3B1 mutations are associated with advanced stages, male sex, high leukocyte
counts, elevated B2 microglobulin levels, high CD38 expression, U-CLL subgroup, inter-
mediate CLL epigenetic subgroup, stereotyped BCR subset 2 and R110-mutated IGLV3-21
subgroup, as well as with 11q deletion and fludarabine resistance [11,13,152–155].

SF3B1-mutated CLL patients present CD20 downregulation and, similarly to NOTCH1-
mutated cells, they also present high levels of active intracytoplasmic Notch1 accompanied
by a NOTCH1-related gene set enrichment and overexpression of a DVL2 isoform, involved
in the Wnt pathway and Notch1 signaling repression [156,157]. Additionally, other gene set
enrichments including “Cytokine-cytokine receptor interaction” and “Phosphatidylinositol
signaling system” have been associated with SF3B1 mutations [158]. SF3B1-mutated
patients have a shorter PFS [159] and OS [3,153]. If the subclonal architecture of the
tumor is considered, SF3B1 mutations with a variant allele frequency (VAF) > 12% predict
for shorter TTFT [15,17]. But even patients with a low VAF show a shorter PFS after
chlorambucil or chlorambucil and ofatumumab treatment [24] (Table 1). One-third of CLL
patients resistant to BTK inhibitors therapy develop RT with a dismal outcome [160] and in
this group, SF3B1 mutations are more frequent than BTK mutations [24], the most common
ones described in ibrutinib resistant patients [161].

Recently, an A > C mutation in the third position of U1 snRNA has been described,
which changes the preferential A–U base-pairing between U1 snRNA and the 5′ splice
site to C–G base-pairing and thus, creates novel splice junctions, some of them in known
cancer drivers (Figure 3C). U1 mutation is present in 3.8% of CLL patients, is associated to
U-CLL subtype and confers an adverse prognosis with a shorter TTFT [144]. Notably, none
of the samples with U1 mutation shows SF3B1 mutations [144]. Although they appear at
very low frequency, mutations in additional components of U2 snRNP (U2AF2, SRSF1,
SRSF7, RBMX, and ZRSR2) and other splicing factors have been described in CLL, as well
as mutations in genes involved in RNA transport and metabolism [162].

5.2. Targeting the Spliceosome in CLL

Small-molecule splicing modulators bind to SF3B1, preventing the recognition of
the branch site [163,164] (Figure 3A). These bacterial fermentation products and synthetic
derivatives show antitumor properties. FR901464 derivatives, such as spliceostatin A
and sudemycin, cause more cytotoxicity in primary CLL samples than in healthy B lym-
phocytes inducing apoptosis by the switch of MCL1 splicing toward its proapoptotic
isoform [165,166]. In an adoptive transfer mouse CLL model, sudemycin D6 decreases
the number of CLL primary cells in the peripheral blood and in the spleen [165]. Im-
portantly, the combination of sudemycin D1 with ibrutinib shows an enhanced in vitro
cytotoxicity [165] and so do the combinations of spliceostatin A and ABT-199 (venetoclax)
or spliceostatin A and ABT-263 [166].

Pladienolide B and its derivative FD-895 also induce more apoptosis in CLL cells than
in healthy lymphocytes by inducing a pattern of intron retention [167]. E7107, derived from
pladienolide B, reprograms apoptosis, decreases Mcl-1 dependence and increases Bcl-2
dependence in CLL. This compound sensitizes primary CLL cells to venetoclax treatment
and reverts venetoclax resistance in CLL-like cells from Eµ-TCL1–based adoptive transfer
murine model [168]. E7107 entered two phase I clinical trials in advanced solid tumors
achieving stable disease (NCT00499499) and partial response (NCT00459823) as the best
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tumor response. These studies have been discontinued because two patients presented
vision loss and another one bilateral optical neuritis [169,170]. H3B-8800, an orally available
pladienolide B derivative, has preferential cytotoxic effect on spliceosome-mutant epithelial
and myeloid malignancies [171] and also on CLL cells (manuscript in preparation). A
phase I clinical trial (NCT02841540) evaluates H3B-8800 in patients with myelodysplastic
syndromes, acute myeloid leukemia or chronic myelomonocytic leukemia. Preliminary
results show dose-dependent target engagement and predictable pharmacokinetic profile
and safety even with prolonged dosing. Though no complete or partial responses have
been achieved, decreased red blood cell or platelet transfusion requirements have been
observed in 14% of enrolled patients [172].

6. Conclusions

CLL is a heterogeneous disease both at molecular and clinical level. Current genomic
studies have identified novel mutated genes affecting important biological pathways, in-
cluding TLR, MAPK and Notch signaling as well as RNA splicing. Some of these alterations
contribute to the development and progression of CLL through specific mechanisms of
action that include their relationship with the tumor microenvironment. In recent years,
data on the prognostic value of these mutations have been gradually emerging. Given the
low frequency of these mutations, only through the efforts of the entire scientific commu-
nity we will unravel the real prognostic and predictive impact of these mutations. The
development of more specific targeted therapies and novel combination treatments will
help to design personalized effective treatments and strategies to improve the outcome of
patients with CLL.
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