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Abstract

Metastatic carcinoma cells exploit the same molecular machinery that allows human placental cytotrophoblasts to develop
an invasive phenotype. As altered expression levels of ADAMTS (A Disintegrin And Metalloproteinase with ThromboSpondin
repeats) subtypes have been associated with cancer progression, we have examined the function and regulation of
members of this gene family in epithelial cell invasion using cultures of highly invasive extravillous cytotrophoblasts and the
poorly invasive JEG-3 cytotrophoblast cell line as model systems. Of the multiple ADAMTS subtypes identified in first
trimester human placenta and these two trophoblastic cell types, only ADAMTS-12 was preferentially expressed by
extravillous cytotrophoblasts. Transforming growth factor-b1 and interleukin-1b, two cytokines that promote and restrain
cytotrophoblast invasion in vitro, were also found to differentially regulate trophoblastic ADAMTS-12 mRNA levels. Loss- or
gain-of-function studies confirmed that ADAMTS-12, independent of its proteolytic activity, plays a specific, non-redundant
role in trophoblast invasion. Furthermore, we demonstrated that ADAMTS-12 regulated cell-extracellular matrix adhesion
and invasion through a mechanism involving the avb3 integrin heterodimer. This study identifies a novel biological role for
ADAMTS-12, and highlights the importance and complexity of its non-proteolytic domain(s) pertaining to its function.
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Introduction

Human placental development and function are dependent

upon mononucleate cytotrophoblasts entering one of two distinct

and mutually exclusive differentiation pathways [1,2]. The villous

pathway culminates in the formation of the syncytial trophoblast, a

multinucleated, terminally differentiated cell that contributes to

the majority of placental transport, immunoregulation and

endocrine functions throughout pregnancy. Alternatively, cytotro-

phoblasts entering the extravillous pathway develop a highly

invasive phenotype, which in turn allows these cells to invade

deeply into the underlying maternal tissues and vasculature,

thereby ensuring a continuous supply of blood to the developing

fetus. Extravillous cytotrophoblast (EVT) invasion, unlike carci-

noma cell metastasis, is a tightly controlled, developmental process

[3,4].

The onset of trophoblastic cell differentiation along the

extravillous pathway is dependent upon the proteolytic degrada-

tion and/or activation of distinct extracellular matrix (ECM)

components, and regulated changes in cell-cell and cell-ECM

interactions [5,6]. Consequently, most studies to date have focused

upon the roles of matrix metalloproteinases/tissue inhibitors of

metalloproteinases (MMPs/TIMPs), cytokines, integrins, and

cadherins in this cellular event. However, there is increasing

evidence to suggest that the regulated expression of members of

the ADAMTS (A Disintegrin And Metalloproteinase with

ThromboSpondin repeats) gene family may represent a significant

molecular mechanism for mediation of the terminal differentiation

of human cytotrophoblasts and the development of an invasive

phenotype.

The ADAMTS are a family of secreted proteins that are

generally characterized by four structural and functional domains;

an amino terminal prodomain, a catalytic domain, a disintegrin-

like domain, and an ECM-binding domain (composed of a central

thrombospondin type 1 (TSP1) motif, a spacer region and a

variable number of TSP-like repeats) at the carboxyl terminal of

the mature protein species [7,8]. Thus, all members of this gene

family have the potential to act as metalloproteinases and to

regulate cell adhesion. Some ADAMTS subtypes have been

further subclassified according to the presence of additional C-

terminal modules or the identification of common substrates.

Furthermore, distinct ADAMTS subtypes have also been shown to

play integral roles in the growth and development of tissues and in

the onset and progression of degradative diseases including cancer

[9–11], arthritis [12], Alzheimer’s disease and a number of

inflammatory and thrombotic conditions [13,14].

Here, we have examined the function and regulation of the

ADAMTS in the differentiation of human cytotrophoblasts along

the extravillous pathway. We first determined that multiple

ADAMTS subtypes are present in first trimester human placenta,
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in cultures of invasive EVTs propagated from these tissues and in

the poorly invasive JEG-3 choriocarcinoma cell line. Of these, only

ADAMTS-12 was found to be present in EVTs at significantly

higher levels than in JEG-3 cells. The ability of transforming growth

factor (TGF)-b1 and interleukin (IL)-1b, two cytokines assigned

counter-regulatory roles in human placentation [3,15], to differen-

tially regulate ADAMTS-12 mRNA levels in cultures of EVTs

supported our hypothesis that this ADAMTS subtype confers an

invasive phenotype on human trophoblastic cells. Loss- or gain-of-

function studies subsequently confirmed that this ADAMTS

subtype, independent of its intrinsic proteolytic activity, plays an

active and dominant role in human trophoblastic cell invasion in

vitro through a mechanism controlling cell-ECM interaction.

Specifically, ADAMTS-12 modulated cell invasion by regulating

the expression and function of the avb3 integrin heterodimer.

Materials and Methods

Tissues
Samples of first trimester placental tissues were obtained from

women undergoing elective termination of pregnancy (gestational

ages ranging from 6–12 weeks). The use of these tissues was

approved by the Committee for Ethical Review of Research on the

use of human subjects, University of British Columbia. All women

provided informed written consent.

Tissue culture
EVT cultures were propagated from first trimester placental

explants essentially as described [16]. The purity of the EVT

cultures was determined by immunostaining for human cytoker-

atin filaments 8 and 18. Only cultures that exhibited 100%

immunostaining for these cytokeratins were included. 56106

EVTs were grown to 80% confluency and treated with TGF-b1

(0.1–10 ng/ml) or IL-1b (1–1000 IU/ml) for 24 h, or TGF-b1

(5 ng/ml) or IL-1b (100 IU/ml) for 0–48 h. EVTs cultured in

vehicle (ethanol) served as controls. Specific cultures were

subjected to a function-perturbing monoclonal antibody against

human TGF-b1 (Sigma Aldrich; 10 mg/ml; clone 9016.2) or IL-1b
(Sigma Aldrich;100 IU/ml; clone 8516.311) for 24 h. JEG-3

trophoblastic cell were purchased from ATCC, Manassas, VA,

USA. On-going cultures were maintained in DMEM containing

25 mM glucose, L-glutamine, antibiotics (100 U/ml penicillin,

100 mg/ml streptomycin) and supplemented with 10% FBS.

Primer Design and preparation of cDNA Probes
Primer sets for ADAMTS-1 through -12 [17] or GAPDH were

synthesized at the NAPS Unit, UBC. The nucleotide sequences of

primers, optimized PCR conditions, and the sizes of the PCR

products are listed in Table S1. To generate cDNA probes for

each ADAMTS or GAPDH, PCR products were generated from

human placental tissue, subcloned into the PCR II vector and

confirmed by nucleotide sequencing. A second set of ADAMTS-

12-specific primers, in which a stretch of nucleotides correspond-

ing to a sequence present within the target ADAMTS-12 PCR

product was incorporated into the 39-end of the forward primer;

These were used for quantitative competitive (QC)-PCR analysis

of ADAMTS-12 mRNA levels in cultures treated with TGF-b1

and IL-1b. This follows a similar approach as reported for

examining urokinase plasminogen activator/plasminogen activa-

tor inhibitor-1 and MMP/TIMP mRNA levels [18].

Semiquantitative PCR and Southern blot analysis
Total RNA was prepared from tissue samples or cells using an

RNeasy Mini Kit (Qiagen, Inc, CA) following the manufacturer

instructions. Aliquots (,1 mg) of the total RNA extracts were then

reverse-transcribed into cDNA using a First Strand cDNA

Synthesis Kit (Amersham Pharmacia Biotech, Oakville, ON,

Canada). Semiquantitative PCR was performed using the primer

sets listed in Table S1. All PCR reactions were performed on 3

separate occasions (n = 3). PCR products were separated by

standard electrophoresis followed by Southern blotting according

to the methods of MacCalman et al [19]. The autoradiograms were

scanned using a laser densitometer (Scion Corporation, Frederick,

MD, USA) and the absorbance values of the distinct ADAMTS

PCR products normalized relative to the corresponding GAPDH

value.

QC-PCR
The QC-PCR strategy employed in these studies is based upon

the competitive co-amplification of a known amount of compet-

itive ADAMTS-12 PCR product added to aliquots of first strand

cDNA prepared from our primary cultures of EVTs. The PCR

conditions were: 1 min at 94uC, 1 min at 58.5uC and 1.5 mins at

72uC for 28 cycles followed by a final extension at 72uC for

15 min. The resultant target and competitive ADAMTS-12 PCR

products were separated using gel electrophoresis. PCR products

identity was confirmed by subcloning and DNA sequencing (data

not shown). To determine the optimal amount of competitive

cDNA to be added to each reaction, PCR was performed using

either a fixed amount of template cDNA combined with

decreasing concentrations of competitive cDNA or conversely, a

fixed concentration of competitive cDNA combined with decreas-

ing amounts of template cDNA. The intensity of ethidium

bromide staining of the PCR products was analysed by UV

densitometry, and volume counts determined using the Scion

Image computer software. The competitive ADAMTS-12 cDNA

was subsequently added to each reaction at a concentration of

4.8861023 pg/ml.

Cell lysis, immunoprecipitation and immunoblot analysis
Cultures of JEG-3 cells or EVTs were washed in PBS and

incubated in cell extraction buffer (Biosource International,

Camarillo, CA) supplemented with 1.0 mM PMSF and Complete

Mini proteinase-inhibitor cocktail (Roche) for 30 minutes. Protein

concentrations were determined using a BCA kit (Pierce

Chemicals, Rockford, IL, USA). Lysates (500 mg) were immuno-

precipitated with an av integrin antibody (Chemicon Internation-

al) overnight at 4uC followed by incubation with protein G plus

protein A agarose beads (Invitrogen) for 1 hr. The precipitated

protein complexes were washed at 4uC in RIPA buffer without

sodium deoxycholate or SDS. For immunoblotting, 30 mg of cell

protein lysate was resolved by SDS-PAGE and transferred to

nitrocellulose membranes. The membranes were probed using

polyclonal antibodies against the carboxyl terminal of human

ADAMTS-12 (Santa Cruz Inc, Santa Cruz, CA, USA) and

ADAMTS-1 (AbCAM), and monoclonal antibodies directed

against av, b1, b3 integrin subunits (Chemicon International),

phospho-397 FAK and FAK (Cell Signaling). The blots were

reprobed with a monoclonal antibody directed against human b-

actin (Sigma Aldrich, St, Louis, MO) to assess protein loading.

siRNA transfection
siRNA (Xeragon Inc, Germantown, MD; 13.5 mg/100 mm2

culture dish) targeting the human ADAMTS-12 mRNA transcript

(59-AAGCCCGTCCCTCCACCTACA-39) was transfected into

EVTs using TransMessenger transfection reagent (Qiagen)

according to manufacturer’s protocol. EVTs transfected with a

non-silencing, scrambled siRNA (59- ATTTCTCCGAACGTGT-

ADAMTS-12 and Trophoblast Invasion

PLoS ONE | www.plosone.org 2 April 2011 | Volume 6 | Issue 4 | e18473



CACGT-39) or cultured in the presence of transfection reagent

alone, served as negative controls. The concentration of siRNAs

used was selected based on previous studies of primary EVT

cultures [20]. Following optimization of the TransMessenger:-

siRNA concentration ratio, all experiments were performed for at

least 24 h.

Expression Vectors
Mammalian expression vectors (pcDNA3.1; Invitrogen, Carls-

bad, CA) containing either a full length human ADAMTS-12

cDNA (pcDNA3-ADAM-TS12-HA) or a full-length human

ADAMTS-12 cDNA in which the catalytic domain had been

inactivated by site directed mutagenesis (pcDNA3-ADAM-TS12-

MUT) were generously provided by Dr. S. Cal (Universidad de

Oviedo, Spain) herein abbreviated as A12FL and A12Mut,

respectively. These constructs have been described [21].

A12Mut cDNA construct has two point mutations in the

metalloproteinase domain, where the thymine (465) and adenine

(466) have been substituted for adenine and cytosine resulting in

the translated protein consisting of a glucine amino acid instead of

histidine thus rendering the protein catalytically inactive. A full-

length human ADAMTS-1 cDNA (Genbank Accession

No. NM006988) was purchased from Origene (Rockville, MD,

USA) and cloned into pcDNA3.1. A clone (A1) containing the

ADAMTS-1 cDNA in the forward orientation was subsequently

identified by DNA sequencing. A pcDNA3.1 expression vector

containing the b-galactosidase gene (pcDNA3-LacZ; Invitrogen)

was used to determine transfection efficiency and served as a

control for these studies.

Generation of stably transfected JEG-3 cell lines
Stable transfections were performed to establish clonal JEG-3

cell lines constitutively expressing A12FL, A12Mut, A1 or LacZ.

Each expression vector (1.0 mg/ml) was transfected using Exgen

500 transfection reagent (Fermentas, Burlington, ON, Canada)

according to the manufacturer’s protocol. Selection began 48 h

post transfection using 400 mg/ml G418 in DMEM, and

subcolonies were isolated by limiting dilution and expanded into

cell lines maintained in the selection medium. At least three

independent clones were selected per construct and protein

expression confirmed by Western blotting (data not shown).

Transwell invasion assays
Cell invasion assays were performed using Transwells fitted with

Millipore Corp. membranes coated with a thin layer of growth

factor-reduced Matrigel (6.5-mm filters, 8-mm pore size) as

described [22]. Briefly, 26104 cells/200 ml of DMEM supple-

mented with 1% FBS were plated in the upper chambers and

cultured for 24 h (EVTs) or 48 h (JEG-3 cells). Cells from the

upper surface of the Matrigel layer were removed by gentle

swabbing, while transmigrated cells attached to the membrane

were fixed in 4% paraformaldehyde and stained with eosin. The

filters were rinsed with water, excised from the Transwells, and

mounted upside-down onto glass slides. Invasion indices were

determined by counting the number of stained cells in 10

randomly selected, non-overlapping fields at 4006 magnification

using a light microscope. Cell invasion was tested in triplicate

wells, on three independent occasions. A subset of these

experiments were performed in the presence of a synthetic RGD

(Arg-Gly-Asp) or control peptide (1 mM; BIOMOL International,

Plymouth Meeting, PA) following procedures of Buckley et al [23],

a bicyclic RGD peptide (H-Glu[cyclo(Arg-Gly-Asp-D-Phe-Lys)]2;

Peptides International) shown to possess high affinity towards avb3

integrin (IC50 = 0.9 nM) with low affinity for avb5 and aIIBb3

integrins (IC50 = 10 nM) and a cyclo (Arg-Ala-Asp-D-Phe-cys;

Peptides International) peptide used as a negative control. In

addition to the RGD peptides, a monoclonal function perturbing

av integrin antibody (Chemicon International; mouse anti-integrin

av antibody; clone AV1) was used in Transwell invasion

experiments [24]. Prior to seeding cells into invasion chambers,

5.46105 cells in media suspension were pre-incubated in the

presence of the indicated peptide/antibody for 30 min.

Cell aggregation assays
Cell aggregation assays were performed using the cell hanging-

drop method [25]. Briefly, trypsinized single cell suspensions

(1.56105 cells/ml) treated with EDTA and passaged through

20 mm nylon sieves were prepared in DMEM media containing

10% FBS. From these suspensions, three 20 ml droplets were

pippetted onto the underside of 6 cm culture dish lids, which were

carefully inverted and placed onto its bottom well containing 2 ml

DMEM media and cultured for 2 or 8 h. After incubation, culture

dish lids were again inverted and glass coverslips were mounted

onto the cell-drop suspensions. The extent of cellular aggregation

was quantified by counting cell aggregates under a light

microscope fitted with a digital camera (2006 magnification);

aggregates were allocated into 3 groups: ,5 cells/aggregate, 5–15

cells/aggregate, and .15 cells/aggregate. Each experiment was

repeated a minimum of three times.

Native ECM-binding assay
Stably transfected JEG-3 cells were plated in 24-wells in

triplicate at high density and allowed to grow to near confluency

for 24 h. Cell media was replaced with fresh DMEM media and

cultured for an additional 48 h to allow for matrix deposition. Cell

monolayers were removed by incubation with 20 mM NH4OH

(265 min) according to Gospodarowicz et al [26] followed by

washing in 16 PBS. JEG-3 cells growing in parallel were

trypsinized, passaged through a 40 mm nylon sieve, plated onto

the ECM deposited by the transfected JEG-3 cell lines and

cultured for 30 min. Cells were washed vigorously in 16PBS, fixed

in 4% paraformaldehyde and stained with eosin. ECM binding

ability was determined by counting the number of cells that had

adhered to the deposited ECM under a microscope.

ECM Cell Adhesion Assay
A fluorimetric ECM cell adhesion array kit (Chemicon

International) allowed us to screen for and quantitate the binding

affinity of cells to 7 different human ECM proteins. Collagen I,

collagen II, collagen IV, fibronectin, laminin, tenascin, and

vitronectin were pre-coated onto 96-well microtiter plates

arranged in 1268-well strips. In each 8-well strip, one BSA-

coated well served as a negative control. Following the

manufacturers instructions, we seeded 16105 cells suspended in

DMEM (100 ml) onto the coated ECM-substrates and analysed for

the cells ability to bind to the respective ECM proteins using a

fluorescence plate reader (485/530 nm). The plating of tropho-

blastic cells onto 8-well ECM protein coated strips was performed

on three independent occasions (n = 3).

Alpha and Beta Integrin Binding Assay
A fluorimetric a/b Integrin-Mediated Cell Adhesion Array

Combo Kit (Chemicon International) was used to assess the

integrin repertoire expressed on the cell surface. The kit is

comprised of two 96-well plates: an a-integrin binding 96-well

plate and a b-integrin 96-well plate. Each kit uses mouse

monoclonal antibodies generated against human a (a1, a2, a3,

ADAMTS-12 and Trophoblast Invasion
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a4, a5, av, avb3), and b (b1, b2, b3, b4, b6, avb5, a5b1)

integrins/subunits, that are immobilized onto goat-anti-mouse

antibody coated microtiter plates. Goat anti-mouse antibody

coated wells served as negative assay controls. Following the

manufacturers protocol, 16105 cells suspended in DMEM (100 ml)

were plated into the 96-wells and incubated for 2 h. Unbound cells

were washed away, and adherent cells were lysed and integrin

binding function/expression was detected using a fluorescent

DNA-binding dye provided with the integrin binding kit using a

fluorescence plate reader (485/530 nm). Integrin binding assays

were performed on three independent occasions (n = 3).

Statistical Analysis
Statistical differences between the absorbance values were

assessed by the analysis of variance (ANOVA) using GraphPad

Prism 4 computer software (San Diego, CA, USA), and significant

differences between the means were determined using Dunnett’s

test [16]. Cellular invasion indices were analyzed by one-way

ANOVA followed by the Tukey multiple comparison test [22].

The differences were accepted as significant at P,0.05.

Results

Characterization of the ADAMTS subtypes present in
human placental tissue

ADAMTS-1, -2, -4, -5 (also known as ADAMTS-11), -6, -7, -9,

and -12 mRNA levels were detected in first trimester human

placenta (Figure 1A). In contrast, ADAMTS-3, -8 and -10 mRNA

were not detected in these placental tissues but were readily

detectable in our positive controls (data not shown). This

repertoire of ADAMTS subtypes was maintained in both highly

invasive EVTs and poorly invasive JEG-3 cells, with the exception

of ADAMTS-5, which was not detected in either trophoblastic cell

type examined in these studies (Figure 1A). However, ADAMTS-

12 mRNA levels in EVTs were significantly higher than those

detected in JEG-3 cells. In contrast, ADAMTS-1, -2, -7, and -9

mRNA levels were significantly lower in EVTs, whereas there was

no significant difference between the levels of the ADAMTS-4 and

-6 mRNA transcripts present in these two trophoblastic cell types.

High ADAMTS-12 expression is observed in invasive
human trophoblastic cells

As previous work has failed to detect ADAMTS-12 in normal

human tissues and cells [21], we performed Western blot analysis

to confirm that this ADAMTS subtype was expressed in first

trimester human placenta in vivo and in trophoblastic cells in vitro.

Major ADAMTS-12 protein species (83, 50 and 35 kDa),

corresponding to a C-terminal fragments generated by post-

translational cleavage of the ADAMTS-12 zymogen [21] were

detected in the total protein lysates prepared from these placental

tissues or cultures of EVTs or JEG-3 cells (Figure 1B). Further-

more, and in agreement with our PCR data, ADAMTS-12 protein

expression levels were found to be significantly higher in EVTs as

compared to JEG-3 cells.

Cytokines regulate ADAMTS-12 mRNA levels in EVTs
TGF-b1 and IL-1b are spatiotemporally expressed at the

maternal-fetal interface and have been shown to be potent

regulators of human trophoblastic cell invasion in vitro [3,15]. In

view of these observations, we examined the ability of these two

cytokines to regulate ADAMTS-12 mRNA levels in primary

cultures of EVTs in a time- and dose-dependent manner.

ADAMTS-12 mRNA was detected in all of the EVT cultures

(Figures 2A and 2B). The addition of vehicle (ethanol) to the

culture medium of EVTs, which served as a negative control, had

no significant effect on ADAMTS-12 mRNA levels in these cells at

any of the time points examined (data not shown).

A significant decrease in ADAMTS-12 mRNA levels was

detected in EVTs cultured in the presence of TGF-b1 (1 ng/ml)

for 24 h with the levels of this mRNA transcript continuing to

decrease until the termination of these studies at 48 h (Figure 2A).

The addition of increasing concentrations of TGF-b1 to the

culture medium of these cells demonstrated that ADAMTS-12

mRNA levels in EVTs were regulated in a dose-dependent

manner (Figure 2A). A function-perturbing monoclonal antibody

directed against TGF-b1 abolished the TGF-b1-mediated de-

crease in ADAMTS-12 mRNA levels in these primary cell cultures

(Figure 2A). In contrast, IL-1b (100 IU) caused a continuous and

significant increase in ADAMTS-12 mRNA levels in EVTs over

time in culture (Figure 2B). Maximum levels of this mRNA

transcript were subsequently detected in EVTs cultured in the

presence of the highest concentration (1000 IU) of this cytokine

examined in these studies (Figure 2B). A function-perturbing

monoclonal antibody directed against IL-1b was also found to

attenuate the increase in ADAMTS-12 mRNA levels observed in

EVTs cultured in the presence of this cytokine (Figure 2B).

Our initial findings demonstrated that similar to many other

normal and malignant epithelial cells examined to date [21],

ADAMTS-12 expression levels are higher in human trophoblastic

cells with an invasive phenotype. The ability of cytokines to

differentially regulate ADAMTS-12 mRNA levels in primary

cultures of EVTs provided further evidence that ADAMTS-12

contributes to the highly regulated invasion of human trophoblas-

tic cells. In view of these observations, we hypothesized that

altered expression levels of ADAMTS-12 would, in turn, modulate

the invasive capacity of these cells.

Silencing ADAMTS-12 expression reduces the invasive
capacity of EVTs

In order to decrease ADAMTS-12 expression in primary

cultures of EVTs, we obtained 4 distinct siRNA sequences

complementary to the human ADAMTS-12 mRNA transcript.

Transient transfection with these siRNAs demonstrated that only

one siRNA (herein referred to as A12i) significantly decreased

ADAMTS-12 mRNA and protein expression levels in these cell

cultures after 24 h (Figure 3A). In contrast, there was no significant

difference between ADAMTS-12 mRNA and protein levels in the

two control cultures; EVTs transfected with a non-silencing (NS),

scrambled siRNA or cultured in the presence of transfection

reagent alone (EVT; Figure 3A). To verify the knockdown

specificity of A12i and to determine whether there were

compensatory changes in the levels of other ADAMTS subtypes,

PCR was performed using template cDNA generated from EVTs

transfected with either the A12i or control siRNA and the primers

specific for each ADAMTS subtype previously identified in these

cells. Additionally, A12i did not affect the levels of ADAMTS-1, -

2, -4, -6, and -7 mRNA transcripts (Figure 3B). These data

confirm specificity of the siRNA used to knock-down endogenous

ADAMTS-12 mRNA levels in EVT cultures, and also demon-

strate that a reduction in ADAMTS-12 expression is not

accompanied by compensatory changes in the expression of other

ADAMTS subtypes.

We next tested whether a reduction in ADAMTS-12 expression

levels in EVTs would result in a concomitant decrease in their

invasive capacity. Matrigel-coated Transwell invasion chamber

assays revealed that the number of cells that penetrated the

Matrigel barrier and adhered to the underside of the Millipore

ADAMTS-12 and Trophoblast Invasion
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filters were found to be significantly and consistently fewer in

cultures of EVTs transfected with A12i compared to controls

(Figure 3C).

Exogenous ADAMTS-12 induces invasion in JEG-3 cells
To determine whether exogenous ADAMTS-12 expression

could confer an invasive phenotype on trophoblastic cells, JEG-3

cells were stably transfected with the expression vector A12FL; the

catalytic activity of the expressed ADAMTS-12 protein species has

been verified in previous studies derived from the same expression

construct used in this study [21,27]. Similar to our preceding

observations, a major ADAMTS-12 protein species (83 kDa) was

readily detectable in these JEG-3 cells but not in those transfected

with the control LacZ expression vector (Figure 4A). In addition to

Figure 1. Characterization of the ADAMTS subtypes present in human placenta and trophoblastic cells. (A) Representative
autoradiograms of Southern blots containing PCR products synthesized from total RNA from first trimester placenta, JEG-3 cells or EVTs using primers
specific for the indicated ADAMTS or GAPDH. The presented results are densitometry readings showing mean 6 SEM (n$4; * = P#0.05). (B) A
representative Western blot containing total protein prepared from first trimester placenta, EVTs or JEG-3 cells, was probed with a polyclonal
antibody against ADAMTS-12. The blots were re-probed with monoclonal against human b-actin. The molecular weight markers (kDa) are shown to
the left.
doi:10.1371/journal.pone.0018473.g001

ADAMTS-12 and Trophoblast Invasion
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the major protein species detected, exogenous expression of

ADAMTS-12 also revealed a minor protein species of approxi-

mately 110 kDa and 50 kDa. Utilizing our transwell invasion

system, we next determined that the invasive capacity of JEG-3 cells

exogenously expressing ADAMTS-12 was significantly and consis-

tently higher than the control cultures (Figure 4A).

Proteinase-dead ADAMTS-12 increases invasion of JEG-3
cells

As a first step in characterizing the molecular mechanisms

underlying ADAMTS-12-mediated cellular invasion, JEG-3 cells

were stably transfected with the mammalian expression vector

containing the proteinase-dead form of ADAMTS-12 (A12Mut)

[21]. Similar to our preceding findings, a major ADAMTS-12

protein species (83 kDa) was readily detectable in these JEG-3 cells

following transfection with this vector (Figure 4A). Furthermore,

Matrigel invasion analysis demonstrated that there was no

significant difference in the invasive capacity of these cells and

those expressing A12FL(3.560.9 (A12Mut) vs. 5.4361.3 (A12FL);

p#0.18), with both cell lines being consistently and significantly

more invasive than the control cultures of JEG-3 cells (Figure 4A).

ADAMTS-1 cannot mimic the effects of ADAMTS-12
induced invasion on JEG-3 cells

To determine whether an increase in the expression levels of

another ADAMTS subtype, other than ADAMTS-12, could

Figure 2. Regulatory effects of TGF-b1 and IL-1b on ADAMTS-12 mRNA expression levels in EVTs. (A) QC-PCR analysis of ADAMTS-12
mRNA levels in EVTs cultured in the presence of (i) TGF-b1 for 0–48 h, (ii) 0–10 ng/ml of TGF-b1 for 24 h, (iii) in the presence of vehicle, TGF-b1 with or
without an antibody against TGF-b1 for 24 h. (B) Similar analyses following (i) 0–48 IL-1b, (ii) 0–1000 IU/ml of IL-1b for 24 h, (iii) in the presence of
vehicle, IL-1b with or without an antibody directed against IL-1b for 24 h. Representative photomicrographs of the resultant ethidium bromide-
stained gels are presented (t and c denote the target and competitive PCR transcripts respectively). The data are presented mean 6 SEM (n = 3;
a = P#0.05 vs. untreated control; b = P#0.05 vs. cytokine alone).
doi:10.1371/journal.pone.0018473.g002
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increase the invasive capacity of human trophoblastic cells in vitro,

JEG-3 cells were stably transfected with the mammalian

expression vector, pcDNA3-ADAM-TS-1 (A1). Western blot

analysis revealed the presence of two distinct ADAMTS-1 protein

species in these JEG-3 cell cultures and, albeit at lower levels, in

those transfected with the control LacZ vector. These 2 isoforms of

ADAMTS-1 correspond to the zymogen and mature active form

[28]. However, higher ADAMTS-1 expression levels in JEG-3

cells did not result in a concomitant increase in their invasive

capacity (p#0.31; Figure 4B).

Exogenous ADAMTS-12 expression does not affect
cellular aggregation

Cell motility is regulated in part by the differential expression

and function of cell adhesion molecules expressed on the cell

surface [29]. To investigate whether exogenous ADAMTS-12 in

JEG-3 cells could affect cell-cell binding affinity, A12FL, A12Mut,

and LacZ stably transfected JEG-3 cells were subjected to a cell

hanging-drop assay. Figure S1 quantitatively shows that neither

full-length nor proteinase-dead ADAMTS-12 alters the aggrega-

tive capacity of JEG-3 trophoblastic cells assayed at 2 and 8 h

timepoints, suggesting that cell-cell interactions are not modulated

by exogenous ADAMTS-12 expression.

ADAMTS-12 affects cell-ECM affinity in JEG-3 cells
To further elucidate the potential molecular mechanism by

which ADAMTS-12 elicits an invasive phenotype in poorly-

invasive trophoblastic cells, we analyzed whether cell-ECM

binding affinities differed between JEG-3 cells exogenously

expressing full-length ADAMTS-12, proteinase-dead ADAMTS-

12 or LacZ. To do this, we cultured A12FL, A12Mut, and LacZ

transfected JEG-3 cells in a combinatorial fashion on extracellular

matrices deposited by these same JEG-3 transfectants. JEG-3 cells

exogenously expressing ADAMTS-12 significantly adhered more

readily to their own native ECM (Figure 5A). Likewise, JEG-3 cells

exogenously expressing proteinase-dead ADAMTS-12 or LacZ

bound with high affinity to their own ECMs. JEG-3 cells

expressing ADAMTS-12 adhered to ECM deposited by protein-

ase-dead ADAMTS-12 expressing cells and vice versa with high

affinity, whereas control LacZ-expressing cells bound with less

affinity to ECM deposited by A12FL or A12Mut expressing cells.

The ability of the full-length and proteinase-dead ADAMTS-12

expressing JEG-3 cells to bind to ECM deposited by the control

LacZ expressing cells were also significantly ablated. A possible

explanation for the observed differences in cell-ECM binding

could lie in the ability of these cells to differentially synthesize and

deposit specific ECM proteins. To investigate this possibility, we

analyzed by semi-quantitative PCR analysis the mRNA levels of

vitronectin, laminin, tenascin and fibronectin, ECM proteins

known to be expressed in the human endometrium [30–32] and

therefore would be encountered by invading EVTs (Figure S2).

While we did not observe changes in expression levels of these

mRNA transcripts in A12FL and LacZ JEG-3 cells, we did note

strong differences in vitronectin, laminin and tenascin mRNA

levels between primary cultures of EVTs and JEG-3 cells.

Specifically, laminin was expressed in greater levels in JEG-3 cells

than in EVTs, while vitronectin and tenascin were detected

exclusively in EVTs. Taken together, these data suggest that

ADAMTS-12 facilitates cell-matrix interactions by regulating cell-

ECM adhesion through a mechanism(s) independent of its

endogenous proteolytic activity.

RGD peptide disrupts ADAMTS-12 mediated cell-ECM
binding and invasion

In an attempt to elucidate the mechanism by which ADAMTS-

12 regulates cell-ECM binding, we performed native ECM-

binding assays as described above for JEG-3 cells stably transfected

with ADAMTS-12 or LacZ in the presence of a synthetic RGD

Figure 3. Reduced ADAMTS-12 expression levels decrease EVT
invasion. (A) EVTs were transfected with siRNA specific for ADAMTS-12
(A12i), a scrambled control siRNA (NS) or cultured in the presence of
transfection reagent alone (EVT) for 48 h. Cultures were harvested for
total RNA or protein. The results are presented (mean 6 SEM; n$4) in
the bar graphs (* = P#0.05). Representative Western blots prepared
using total protein extracts and probed with antibodies directed against
either ADAMTS-12 or b-actin are shown. The results are presented
(mean 6 SEM; n$4) in the bar graphs (* = P#0.05). (B) Photomicro-
graphs of ethidium bromide stained agarose gels containing PCR
products generated using primers specific for ADAMTS-1, -2, -4, -5, -6, -7
-12 or GAPDH. (C) EVTs were subjected to Matrigel invasion anlaysis as
described in Methods. EVTs cultured in the presence of transfection
reagent alone (EVT) were given an arbitrary invasion index = 1.0. Each
cell line was plated in triplicate wells with the experiment repeated on
at least 3 independent occasions (n = 3). The results are presented as
mean 6 S.E.M. in the bar graph (* = P#0.05, compared to EVT control).
doi:10.1371/journal.pone.0018473.g003
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inhibiting peptide, control peptide, or culture media alone. RGD

peptide treatment significantly abrogated cell-ECM binding in all

ADAMTS-12 and LacZ transfected cell populations, whereas

ECM binding affinities of cells cultured in untreated media or with

the control peptide were not affected (Figure 5B). Interestingly, the

extent of RGD peptide-mediated cell-ECM binding inhibition was

significantly more pronounced in ADAMTS-12 expressing cells

than in LacZ expressing cells cultured on their own native ECM

(p#0.01 versus p#0.05). Similar to our previous findings,

exogenous ADAMTS-12 altered cell-binding affinities to native

ECM deposited by JEG-3 cells transfected with A12FL or LacZ,

though in this experiment it was shown that ADAMTS-12-

mediated cell-ECM adhesion is in part regulated through an

RGD-dependent mechanism. This finding sheds new light on the

putative mechanism by which ADAMTS-12 modulates cell-ECM

interaction, namely through an RGD sequence molecular event

most likely involving members of the integrin cell adhesion

molecule family.

Cell invasion is regulated in part by cell-ECM interactions

mediated primarily through integrin receptors expressed on the

cell surface [33]. Our findings demonstrating that ADAMTS-12

could modulate JEG-3 cell-ECM adhesion in an RGD dependent

manner suggested that ADAMTS-12-mediated cell invasion could

also be regulated through a similar RGD/integrin-dependent

mechanism. To test this hypothesis, we cultured A12FL, A12Mut,

and LacZ expressing JEG-3 cells in Matrigel-coated Transwell

invasion chambers in the presence of the RGD inhibiting peptide.

Cells were also cultured in the presence of a control peptide that

served as a technical control, or were cultured in complete DMEM

media. There were no significant differences in the invasive indices

of LacZ transfected JEG-3 cells when cultured in the presence of

either the RGD or control peptides (Figure 5C). However, the

invasive indices of JEG-3 cells stably transfected with A12FL or

A12Mut cultured in the presence of the RGD peptide were

significantly less than the invasive indices of the same cells cultured

in presence of the control peptide or media alone (Figure 5C).

ADAMTS-12 promotes an invasive EVT-like cell-ECM
binding phenotype

Different integrin heterodimer combinations allow for cells to

acquire distinct ECM substrate preferences, and studies have

shown in both cancer and trophoblast models that specific

integrins regulate cell invasion [34]. Using fluorimetric 96-well

microplate arrays pre-coated with specific ECM proteins (collagen

I, collagen II, collagen IV, fibronectin, laminin, tenascin, and

vitronectin) and monoclonal antibodies to integrin subtypes (a1,

Figure 4. Exogenous ADAMTS-12 expression specifically increases the invasive capacity of JEG-3 cells, independent of its intrinsic
proteolytic activity. (A) A representative Western blot depicting ADAMTS-12 protein levels in JEG-3 cells stably transfected with LacZ, A12FL or
A12Mut. (B) A Western blot depicting ADAMTS-1 protein levels in JEG-3 cells stably transfected with A1 or LacZ. Expression levels of each ADAMTS
were standardized to b-actin. Invasion assays were also performed using these cell lines and are represented as histograms (A and B). The results are
presented as mean 6 S.E.M; n$10 in the bar graphs (* = P#0.05, where * denotes a significantly different value compared to LacZ).
doi:10.1371/journal.pone.0018473.g004
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Figure 5. ADAMTS-12 regulates cell-extracellular matrix binding and invasion through an RGD-dependent mechanism. (A) Panels of
photomicrographs of JEG-3 cells stably transfected with A12FL, A12Mut or LacZ. Cells were seeded onto 24-well plates pre-coated with ECM
deposited by the same JEG-3 cell lines in a combinatorial fashion, and cultured for 30 min. Adjacent histograms show the number of cells that had
bound to the pre-deposited native ECM, as described in Methods. (B) JEG-3 cells stably transfected with A12FL or LacZ were subjected to the native
cell-ECM binding experiment described above, however cells were treated with either an RGD inhibiting peptide (RGD; 1 mM), a control peptide
(RGDC; 1 mM) or untreated DMEM media (-). (C) A histogram representing the invasive indices of JEG-3 cells stably transfected with LacZ, A12FL or
A12Mut. Cells were cultured in Matrigel-coated Transwell invasion chambers in complete DMEM media containing the RGD-inhibiting peptide (RGD;
1 mM), control peptide (RGDC; 1 mM) or complete DMEM media without treatment (-). Untreated cell lines were given an arbitrary invasion index of
1, and the invasive capacity of cells cultured in the presence of the control or RGD peptide were determined by generating an invasion index
corresponding to their control cell line. All assays were performed in triplicate and performed on three independent occasions (n = 3; * = P#0.05,
compared to controls).
doi:10.1371/journal.pone.0018473.g005
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a2, a3, a4, a5, av, avb3, b1, b2, b3, b4, b6, avb5, a5b1) we

sought to determine differences in cell-binding affinities to these

defined substrates elicited by ADAMTS-12. Wildtype EVTs

isolated from first trimester chorionic villous explants served as a

biological control for ECM binding affinities associated with an

invasive phenotype. EVTs were shown to bind significantly to all

the ECM proteins analyzed (Figure 6A), however, the binding

affinities to collagen II, fibronectin and vitronectin were strongest.

LacZ expressing JEG-3 cells bound to collagen I, collagen II,

fibronectin, laminin and tensacin, but bound with low affinities to

collagen IV and vitronectin (Figure 6A). Similar to EVTs, A12FL

and A12Mut expressing JEG-3 cells bound significantly to all the

ECM proteins. Notably, their binding affinity to collagen II,

collagen IV and vitronectin were significantly greater than LacZ

expressing cells (Figure 6A). Integrin cell adhesion was also shown

to be different between ADAMTS-12 (A12FL and A12Mut) and

LacZ expressing JEG-3 cells. Whereas EVTs bound with great

affinity to all a integrin subunits (Figure 6B), LacZ-expressing

JEG-3 cells failed to bind to a1, a4, and av antibodies (Figure 6B).

Upon exogenous expression of A12FL or A12Mut, a modest

increase in binding to a3 was observed while binding to the av

antibody was greatly increased as was binding to avb3 (Figure 6B).

Additionally, decreases in binding to the b2 antibody and to avb5

and a5b1 antibodies were observed. Taken together, these data

demonstrate that ADAMTS-12, regardless of a functional catalytic

domain, regulates specific cell-ECM binding differences resem-

bling those of an invasive phenotype.

av integrin expression is controlled by ADAMTS-12
Since studies have shown that the av integrin subunit, and in

particular, the avb3 integrin heterodimer plays an important role in

EVT invasion [34,35] and in light of our findings showing a

significant increase in avb3 mediated cell adhesion (Figure 6), we

investigated whether ADAMTS-12 regulates the expression of these

integrin subunits. In EVTs where endogenous ADAMTS-12 was

knocked down using siRNA, av integrin mRNA and protein levels

showed a correlative decrease in expression compared to controls

(Figure 7A). b1 and b3 integrin subunit levels were unaffected by a

reduction in ADAMTS-12 expression (Figure 7A). Gain of

ADAMTS-12 function in JEG-3 cells (A12FL and A12Mut) lead

to an increase in mRNA and protein expression of the av subunit,

while b1 and b3 integrin subunit protein levels remained

unchanged, although b3 integrin subunit mRNA levels in A12FL

and A12Mut cells showed a modest decrease in expression

(Figure 7B). Since phosphorylation of FAK (phospho-397) is an

indicator of activated integrin signaling [33], we performed Western

blot analysis on protein lysates harvested from EVTs transfected

with ADAMTS-12 siRNA or JEG-3 cells expressing A12FL or

A12Mut and assayed for phospho-397 FAK and total FAK

expression (Figure 7C). Loss-of ADAMTS-12 in EVTs showed a

Figure 6. ADAMTS-12 modulates ECM binding mimicking that of an invasive phenotype. (A) Histogram depicting binding affinities of
EVTs and JEG-3 cells expressing LacZ, A12FL or A12Mut to specific human ECM proteins. A fluorimetric ECM protein binding assay utilizing a 96-well
microtiter plate coated with collagen I, collagen II, collagen IV, fibronectin, laminin, tenascin and vitronectin was used to analyze cell-ECM binding.
Pre-coated BSA served as a negative control. (B) Histograms showing a/b integrin binding affinities of EVTs and LacZ-, A12FL- and A12Mut-expressing
JEG-3 cells. Cell-integrin adhesion was determined in 96-well plates coated with monoclonal antibodies specific to a (a1, a2, a3, a4, a5, av, avb3) or b
(b1, b2, b3, b4, b6, avb5, a5b1) integrins. ECM and integrin adhesion was quantified by lysing bound cells, incubating with the nucleic acid binding
CyQuant GR dye, and reading fluorescence at 485/530 nm. Dotted line provides reference to baseline measurements (n = 3; * = P#0.05, where *
denotes a significantly different value compared to LacZ control values).
doi:10.1371/journal.pone.0018473.g006
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marked decrease in FAK phosphorylation whereas overexpression

of ADAMTS-12 lead to an increase in FAK phosphorylation.

Although total FAK levels in EVTs remained unchanged, we did

observe a proportional increase in total FAK compared to

phosphorylated FAK in JEG-3 cells overexpressing A12FL and

A12Mut. To investigate whether a physical interaction between

ADAMTS-12 and avb3 integrin occurs, we imunoprecipitated av

integrin from protein lysates obtained from A12FL-expressing JEG-

3 cells and probed for ADAMTS-12. IP analysis suggested that no

physical interaction between ADAMTS-12 and avb3 occurs (Figure

S3). Verification of av pull-down was achieved by re-probing the

immunoblot with a monoclonal av-integrin antibody.

ADAMTS-12 controls cell invasion through an avb3
integrin mediated mechanism

Seeing that ADAMTS-12 regulates the expression and function

of avb3 integrin, and that avb3 has been previously shown to

promote an invasive phenotype in human EVTs, we next tested

whether ADAMTS-12-mediated cell invasion is facilitated by

avb3. Treatment of LacZ, A12FL or A12Mut expressing JEG-3

cells with a function-perturbing av integrin antibody cultured in

Matrigel-coated Transwells significantly inhibited A12FL- and

A12Mut-mediated invasion, but had no affect on invasion of LacZ

expressing cells (Figure 8A). In concordance with our previous

data, A12FL and A12Mut showed a significant increase in cell

Figure 7. ADAMTS-12 regulates av integrin expression and FAK activity. (A) Representative ethidium bromide stained agarose gels
containing RT-PCR products (i) and Western blot autoradiographs (ii) respectively depicting mRNA and protein levels of ADAMTS-12, av-, b1-, and b3-
integrin subunits in EVTs untreated (-) or transfected with an siRNA oligonucleotide directed against ADAMTS-12 (A12i) or control non-silencing siRNA
(NS). GAPDH and b-actin serve as endogenous mRNA and protein controls respectively. (B) Ethidium bromide stained gels and Western blot
autoradiographs depicting mRNA (i) and protein levels (ii) of the genes described above in JEG-3 cells stably transfected with pcDNA3.1 constructs
expressing LacZ, A12FL or A12Mut. EVTs served as an ADAMTS-12 positive control. (C) Representative autoradiographs of Western blots depicting
phospho-397 FAK (p397) and total FAK (FAK) protein levels in the EVTs (i) and JEG-3 cells (ii) described above. The molecular weight markers (kDa) are
shown to the left.
doi:10.1371/journal.pone.0018473.g007
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invasion compared to LacZ, with A12FL demonstrating a slightly

more invasive phenotype over A12Mut. The effect on cell invasion

of a bi-cyclic RGD peptide that demonstrates preference towards

the avb3 integrin heterodimer had a similar affect to that of the av

perturbing antibody (Figure 8B). Specifically, peptide treatment

did not affect LacZ cell invasion, but significantly inhibited A12FL

and A12Mut invasion. Interestingly, the number of avb3 peptide-

treated cells that invaded through the Matrigel-coated insert were

higher in the A12FL population than in the A12Mut population,

suggesting that a component of ADAMTS-12-mediated invasion is

dependent on its catalytic domain. Any advantage that A12Mut

provided in JEG-3 cell invasion was completely abolished with bi-

cyclic RGD peptide treatment.

Discussion

Multiple ADAMTS (ADAMTS-1, -2, -4, -5, -6, -7, -9, and -12)

were detected in tissue samples of first trimester human placenta.

With the exception of ADAMTS-5, this repertoire of ADAMTS

subtypes was maintained, albeit at differing levels, in cultures of

highly invasive EVTs propagated from these tissues and in poorly

invasive JEG-3 cells. Although the overall biological significance of

this expression pattern of ADAMTS proteins in the human

placenta remains to be elucidated, our studies demonstrate that

ADAMTS-12 plays a non-redundant role in human trophoblastic

cell invasion in vitro. In addition, ADAMTS-12 mRNA levels in

EVTs are differentially regulated by TGF-b1 and IL-1b in a

concentration- and time-dependent manner. Thus, ADAMTS-12

is tightly regulated in human trophoblastic cells and signaling

pathways that control invasion act, at least in part, by

downregulating ADAMTS-12 gene expression.

In agreement with our findings, ADAMTS-2 mRNA has been

detected in first trimester placenta [36], with mRNA transcripts

encoding ADAMTS-1, -4, -5, -6, -7, -9, and -10 mRNA also being

found in human term placenta [37–41]. In addition to these

ADAMTS subtypes, we found that ADAMTS-12 is present in

placenta obtained during the first trimester of pregnancy and in

primary cultures of EVTs propagated from these tissues. Cal et al

[21] failed to detect ADAMTS-12 mRNA transcripts in normal

human tissues that included term placenta, but found it exclusively

in fetal lung. Additionally, ADAMTS-12 expression has been

detected in normal cartilage where it is proposed to regulate

chondrocyte differentiation [42]. Differences in placental

ADAMTS-12 mRNA levels are likely attributable to the changes

in the subpopulations of cytotrophoblasts that constitute this

dynamic tissue throughout gestation. In particular, EVTs

predominate during the first trimester with the number of these

cells declining sharply thereafter and being absent in term

placental tissues [1]. Failure to detect ADAMTS-5 in human

trophoblastic cells in vitro suggests that the expression of this

ADAMTS subtype in the placenta is restricted to one or more of

the other cellular compartments that comprise this dynamic tissue,

particularly the mesenchymal core and/or vasculature. Molecular

weight discrepancies between endogenous ADAMTS-12 protein

species in EVTs and first trimester placenta (35 kDa major

product) compared to exogenous ADAMTS-12 in JEG-3 cells

(83 kDa major product) were observed. This could in part be

explained by the different cell types analyzed and variability in

expression of proteolytic processing enzymes. Artificially high

levels of over-expressed ADAMTS-12 may saturate proteolytic

processes resulting in a decrease in these cleavage products.

In contrast to its restricted expression in normal human tissues,

ADAMTS-12 mRNA is readily detectable in the cartilage and

synovium of patients with arthritis and in cancer cell lines of diverse

origin with levels of this mRNA transcript being present at higher

levels in gastric carcinomas compared to matched normal tissue

controls [21]. These later findings suggest a putative role(s) for

ADAMTS-12 in the development of an invasive cellular phenotype,

and indeed our studies revealed that manipulating the function of

this ADAMTS subtype ascribed a pro-invasive phenotype in human

trophoblastic cells. Altered expression levels of other ADAMTS

subtypes have also been detected in human carcinomas but their

individual contribution(s) to the onset and progression of cancer

remains unclear [7,9,10,43–45]. For example, ADAMTS-1 mRNA

levels have been shown to be either increased [41] or decreased [9]

in breast carcinomas. Higher levels of this ADAMTS subtype have

also been associated with pancreatic and hepatocellular cancer [43]

whereas ADAMTS-1 mRNA levels are unchanged in the onset and

progression of kidney cancer [46] and decreased in lung carcinomas

[41]. Exogenous expression of ADAMTS-1 has been shown to

decrease the experimental metastasis of Chinese hamster ovary cells

[46] but increase the metastatic potential of mammary and lung

cancer cell lines in vivo [47] whereas our study demonstrates that

Figure 8. ADAMTS-12 promotes cell invasion through an avb3
integrin mediated mechanism. (A) A histogram representing the
number of JEG-3 cells stably transfected with LacZ, A12FL or A12Mut
that invaded through Matrigel-coated Transwell invasion chambers.
Cells were cultured in complete DMEM media alone (-) or containing a
function-perturbing antibody against the av integrin subunit (av Abi;
1:50 dilution) for 48 h. (B) A histogram showing the invasiveness of the
aforementioned JEG-3 cells in Matrigel-coated Transwell invasion
chambers. Cells were cultured in complete DMEM media containing
5 nM of an avb3 integrin-specific bi-cyclic RGD peptide (cyclic RGD),
control peptide (peptide con) or media alone (-) for 48 h. All assays
were performed in triplicate and performed on three independent
occasions (n = 3; * = P#0.05, compared to controls).
doi:10.1371/journal.pone.0018473.g008
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increased expression levels of ADAMTS-1 do not alter the invasive

capacity of human trophoblastic cells in vitro. A possible explanation

for these contradicting observations involves auto-proteolytic

processing that can account for pro- or anti-metastatic effects

depending on the cleavage site [46]. It is proposed that proteolytic

cleavage of the substrate binding site in ADAMTS-1 impairs

substrate binding and unveils anti-angiogenic TSP-1 motifs.

Recent studies characterizing the role of ADAMTS-12 in tumor

progression demonstrated an anti-tumorigenic role for this subtype

[48]. Llamazares et al showed ADAMTS-12 to inhibit HGF-

mediated scattering of MDCK cells and also prevented bovine

aortic endothelial cells from forming tubules in response to VEGF.

Additionally, subcutaneous injection of SCID mice with the highly

aggressive lung carcinoma A549 cell line over-expressing

ADAMTS-12 repressed tumor growth. More recently, El Hour

et al [49] characterized the role of ADAMTS-12 in regulating

tumorigenesis using a malignant keratinocyte model system in

ADAMTS-12 null mice. Although this study did not specifically

address cell invasion, it did shed light on the importance of how

ADAMTS-12 in the tumor microenvironment inhibits key aspects

of tumorigenesis, such as cell proliferation and angiogenesis. In

lieu of novel data describing ADAMTS-12 as a putative tumor

suppressor gene expressed predominantly in the stroma [49,50],

further studies are required to evaluate the biological and clinical

significance of (dys)regulated expression levels of ADAMTS-12 in

the onset and/or progression of cancer to the later stages of the

disease state, and to delineate the function of this ADAMTS

subtype in processes such as cell migration, invasion, and growth

in other in vivo tumor model systems.

Our demonstration that ADAMTS-12 modulates both cell-

ECM binding and cell invasion through an RGD-dependent

mechanism is an intriguing finding as neither the disintegrin-like

domain, the TSP-repeat domains nor any other domain of any

characterized ADAMTS metalloproteinase contain RGD-like

motifs [8]. It is therefore unlikely that ADAMTS-12 promotes

an invasive phenotype directly through an RGD-dependent

interaction, but rather regulates the function or expression of

proteins capable of controlling RGD-mediated cell-matrix adhe-

sion and cell invasion. Our work demonstrated that ADAMTS-12

regulates cell-ECM binding to specific ECM substrates and cell

attachment facilitated by specific integrin cell adhesion molecules.

Specifically, we showed that ADAMTS-12 expressing trophoblas-

tic cells bind more readily to collagen II, collagen IV and

vitronectin and up-regulate the expression of av and avb3

integrins on their cell surface. Furthermore, this up-regulation is

associated with an increase in integrin signaling activity and cell

invasion. Collagen IV is a basement membrane protein whereas

collagen II is a fibrillar collagen predominantly found in cartilage

connective tissue and interacts predominantly with b1 or b2

integrins [51,52]. While we did not observe any changes in b1 or

b2 integrin-mediated binding in ADAMTS-12 transfected JEG-3

cells, this conflicting finding may be explained by the ability of

EVTs to synthesize the collagen II degrading protease, MMP-13

[53]. Collagen II remodeling by MMP-13 may result in the

uncovering of cryptic integrin-binding sites that may lead to

increased cell-matrix adhesion by integrins other than b1 or b2.

Collagen interactions mediated by other integrins absent in our

microplate integrin adhesion assay may provide additional

explanations as to why we observed increases in cell binding to

collagens II and IV. For example, a10b1 and a11b1 integrins

have been shown to bind to these collagens in vitro [54]. Lastly, the

association of ADAMTS-12 with the ECM might lead to

proteolytic-independent conformational ECM changes that may

also result in uncovering cryptic integrin binding sites.

Vitronectin is an RGD-containing multifunctional protein

found in serum and extracellular matrices, and is secreted by

trophoblastic cells during the first trimester of pregnancy [55,56].

It has been demonstrated that integrin receptors containing RGD

binding motifs (ie. avb3, avb5, a5b1 and aIIbb3) bind to

vitronectin [52]. The avb3 integrin has been shown to play

important roles in promoting both trophoblast and cancer cell

invasion [34,57–61]. Binding of avb3 integrin to its ligands results

in the activation of mitogen-activated protein kinase (MAPK) and

focal adhesion kinase (FAK) [56]. Kabir-Salmani et al [35]

demonstrated that IGF-I-mediated migration of trophoblasts is

avb3 integrin-dependent and is associated with avb3 integrin

heterodimer co-localization with phosphorylated FAK, paxillin

and viniculin at focal adhesions. These data, along with the

findings in our study, provide strong evidence in assigning a key

role for the avb3 integrin in promoting an invasive phenotype in

human trophoblasts. Activation of FAK is facilitated by many b1

and b3-containing integrins and is therefore not a singular avb3

event [62]. Analysis of FAK activation in our cell culture system

should be interpreted only as an indicator for the acquisition of an

invasive phenotype facilitated by ADAMTS-12. In light of these

observations, avb3 integrin appears to play key roles in facilitating

cell invasion processes in both physiological and pathological

contexts. Recent findings that have shown ADAMTS proteinases

to regulate cell motility through Ras-MAPK signaling events by

mechanisms independent of their MMP-like domain support our

findings [63]. Exactly how ADAMTS-12 regulates integrin

expression remains to be elucidated. Our data would suggest that

ADAMTS-12 acts in a cell automomous manner regulating ECM

activity independent of its endogenous proteolytic function,

however more studies are required to fully interrogate the

mechanisms by which ADAMTS-12 regulates av integrin

transcription and function.

In summary, we have determined that ADAMTS-12, indepen-

dent of its proteolytic activity, plays a critical role in human

trophoblastic cell invasion in vitro. This study not only provides an

insight into the molecular mechanism underlying epithelial cell

invasion but also extends our understanding of the cell biology and

complexity of the ADAMTS gene family. Furthermore, the

trophoblastic cell cultures examined in these studies offer an ideal

model to further dissect the contributions of the distinct domains

of ADAMTS-12 in regulating epithelial cell invasion.

Supporting Information

Figure S1 Exogenous ADAMTS-12 does not alter cellular
aggregation. Photomicrographs show JEG-3 cells stably trans-

fected with pcDNA3-ADAM-TS12 (A12FL), pcDNA3-ADAM-

TS12-MUT (A12Mut) or pcDNA3-LacZ (LacZ) that were

cultured in 20 ml hanging drops for 2 or 8 h prior to being

inverted and mounted with a glass cover slip. The histogram

quantitatively describes cellular aggregation assayed at 2 h as

determined by grouping cell aggregates into three categories (,5

cells/aggregate, 5–15 cells/aggregate, .15 cells/aggregate).

Hanging drop assays were done in triplicate and the experiment

was performed on three independent occasions (n = 3).

(TIFF)

Figure S2 ADAMTS-12 does not regulate the expression
of a subset of ECM proteins. Ethidium bromide-stained

photographs of RT-PCR products generated using primers

specific to the ECM proteins vitronectin (V), fibronectin (F),

laminin (L) and tenascin (T) and the housekeeping gene GAPDH

from cDNA’s made from (A) JEG-3 cells stably transfected with

ADAMTS-12 (A12FL) or control LacZ or from (B) cDNA’s made
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from EVTs or JEG-3 cells. GAPDH levels (C) provide PCR

product standardization between lanes. L; DNA ladder. PCR

reactions were performed on two separate occasions (N = 2).

(EPS)

Figure S3 ADAMTS-12 does not associate with the av
integrin. av integrin was immunoprecipitated from protein

lysates of JEG-3 cells stably transfected with LacZ (lanes 1 and 2),

A12FL (lanes 3 and 4) or A12Mut (lanes 5 and 6). Immunopre-

cipitates (IP) were probed for with antibodies directed against

ADAMTS-12 (A) and av integrin (B). Representative autoradio-

graphs from three independent experiments (N = 3) as described

for A and B are shown. The molecular weight markers (kDa) are

shown to the left. IB, immunoblot.

(EPS)

Table S1 Names of genes, DNA primer sequences and
PCR conditions for the semiquantitative analysis of levels

of mRNA transcripts for ADAMTS, integrin and ECM
genes in human placental tissue and trophoblastic cells.
(DOC)
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