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Recent research has demonstrated how brain-computer interfaces (BCI) based on

auditory stimuli can be used for communication and rehabilitation. In these applications,

users are commonly instructed to avoid eye movements while keeping their eyes

open. This secondary task can lead to exhaustion and subjects may not succeed in

suppressing eye movements. In this work, we investigate the option to use a BCI with

eyes-closed. Twelve healthy subjects participated in a single electroencephalography

(EEG) session where they were listening to a rapid stream of bisyllabic words while

alternatively having their eyes open or closed. In addition, we assessed usability

aspects for the two conditions with a questionnaire. Our analysis shows that eyes-

closed does not reduce the number of eye artifacts and that event-related potential

(ERP) responses and classification accuracies are comparable between both conditions.

Importantly, we found that subjects expressed a significant general preference toward the

eyes-closed condition andwere also less tensed in that condition. Furthermore, switching

between eyes-closed and eyes-open and vice versa is possible without a severe drop in

classification accuracy. These findings suggest that eyes-closed should be considered

as a viable alternative in auditory BCIs that might be especially useful for subjects with

limited control over their eye movements.

Keywords: eyes-open, eyes-closed, usability, event-related potentials, auditory, brain-computer interface, P300,

EEG

1. INTRODUCTION

In the last decade, brain-computer interfaces (BCIs) relying on auditory stimuli experienced a
burst of activity (Nijboer et al., 2008; Furdea et al., 2009; Klobassa et al., 2009; Halder et al., 2010,
2016; Schreuder et al., 2010, 2011; Höhne et al., 2011, 2012; Lopez-Gordo et al., 2012; Käthner
et al., 2013; Nambu et al., 2013; Pokorny et al., 2013; De Vos et al., 2014; Kindermans et al., 2014;
Tangermann et al., 2014, 2018; Simon et al., 2015; Baykara et al., 2016; Real et al., 2016; Xiao et al.,
2016; Zhou et al., 2016; Hübner and Tangermann, 2017). In these BCIs, the subject hears different
tones or natural sounds (e.g., animal sounds, syllables or words) while the subjects brain signals are
recorded, e.g., with electroencephalography (EEG). Using machine learning methods (Blankertz
et al., 2001; Wolpaw et al., 2002; Dornhege et al., 2007; Lemm et al., 2011; Wolpaw and Wolpaw,
2012), a computer can process these signals to predict which of the stimuli was attended (a so-called
target) and which was ignored (a non-target).
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Different applications are based on this information. Themost
widespread use-case is to allow paralyzed patients, e.g., those with
amyotrophic lateral sclerosis (ALS), a neurodegenerative muscle
disease, to communicate on a very basic level (Wolpaw et al.,
2002; Sellers and Donchin, 2006; Münßinger et al., 2010; Zickler
et al., 2013). In this scenario, each stimulus is associated with a
control command, e.g., a patient responds with “yes” by attending
a high tone and can say “no” by attending a low tone. Another
application field of auditory BCIs is the brain-state assessment
of patients with disorders of consciousness (Pokorny et al., 2013;
Real et al., 2016; Xiao et al., 2016). These approaches explore the
idea that BCIs can detect residual brain activity even for patients
where it is unknown whether they are conscious. Recently, we
have shown that auditory BCIs can also be used for language
training after stroke (Tangermann et al., 2018).

A problem that is typically encountered when recording brain
activity by means of EEG is the occurrence of artifacts. Although
most subjects have fewer problems to suppress body movements,
eye artifacts such as blinks or eye movements are hard to
eliminate during the measurement and their associated EEG
signals aremuch stronger than the brain signals of interest. This is
especially challenging for subjects wearing contact lenses (leading
to dry eyes) and for the – often elderly – patients. Blinking rates
were shown to be influenced by the workload (Van Orden et al.,
2001) which is often quite high in BCI experiments.

In our BCI-based language training (Tangermann et al.,
2018), we experienced one case where a chronic stroke
patient was unable to voluntarily reduce the number of eye
blinks. The subject was persistently blinking about once every
second. This led to an extremely deteriorated quality of the
EEG recordings. Different methods have been developed to
alleviate the effects of eye artifacts using linear regression
methods (Parra et al., 2005) or independent component analysis
(ICA) decompositions (Fatourechi et al., 2007; Winkler et al.,
2011, 2014), but they still lead to a significant data loss and cannot
perfectly separate eye artifacts from underlying brain activity.

Additionally, the unnatural instruction to avoid eye blinks
for a prolonged period constitutes for an unwanted secondary
task that is distracting the subject from the main task and
typically involves a substantial level of stress. This can have the
undesired consequence that a training based on EEG signals is
less efficient due to the split of cognitive resources to the main
training task and to the secondary task of avoiding eye blinks.
In an extreme scenario, subjects may spend so much attention
on suppressing eye artifacts, that they are unable to perform the
main task.

The difficulty of avoiding eye movements over a long
period leads to the question if the number of eye artifacts
could be reduced and the measurement can be made more
comfortable for the test subject by having the subject close
their eyes while collecting the data. This idea is feasible in
auditory BCIs since visual input is not needed during a trial.
In this study, we will compare two conditions: eyes-closed (EC)
and eyes-open (EO). While many studies have shown that EC
leads to an increase in occipital alpha as well as a changed
topology and activity in different frequency bands compared

to EO (see Barry et al., 2007), the existing literature—to our
knowledge—lacks an analysis of the EC condition for event-
related potentials (ERPs) in the fast paradigms that are used for
BCIs.

These ERPs are voltage deflections that are the results of the
brain processing an event (such as hearing a tone or a word).
Many BCIs rely on the P300 component which describes a
positive voltage deflection that occurs after 250–400ms in an
oddball task where an infrequent target tone (e.g., a high tone)
is played among frequent non-target tones (e.g., low tones).
The P300 is thought to be produced by a distributed network
of brain processes associated with attention and subsequent
memory operations (Polich, 2007). The temporal delay between
the onsets of two sounds is called stimulus onset asynchrony
(SOA) and is known to modulate the P300 amplitude and
latency (Höhne and Tangermann, 2012). An older study by
Intriligator and Polich found that the “P300 amplitude is
relatively unaffected by the factor [whether the eyes are open
or closed]” in a two-tone oddball task with an SOA of 1
s (Intriligator and Polich, 1994). A more recent meta-review
comes to the same conclusion stating that latency and amplitude
of the P300 were not significantly different between EO and
EC in the standard oddball task with an SOA of 1 s and
tones as stimuli (van Dinteren et al., 2014). Remarkably, several

hundred subjects were included in this meta-analysis for each
condition (NEO = 555, NEC = 998) where the data was collected
from several studies (16 studies used EO and 23 studies
used EC).

However, results from this meta-analysis are not directly
transferable to BCIs as (a) the SOA between two stimuli in

the meta-review (1 s) is much longer than in recent BCIs

(typically SOAs vary between 250-550ms) and because (b) tone
stimuli lead to different ERP responses compared to natural

(more complex) sounds (animals sounds or words) that are
used in modern BCIs (Höhne et al., 2012; Tangermann et al.,
2014, 2018; Simon et al., 2015; Baykara et al., 2016; Halder
et al., 2016). In addition, questions regarding (c) the number
of eye artifacts and (d) user comfort and usability were not
investigated.

Another relevant research question is whether a system

trained on data recorded with EO could be applied when the

subject has their eyes closed and the other way around. If this

is the case, subjects could switch between conditions within one
session. This could be expected to improve the overall comfort of

the subject during the measurement and decrease the stress level.
In summary, this study should investigate four main

hypotheses.

H1: EC leads to fewer eye artifacts than EO.
H2: The achieved target vs non-target classification accuracies

do not differ significantly between EO and EC.
H3: The measuring process is overall more comfortable for the

subjects for EC than for EO.
H4: A system trained on data recorded in one condition can be

applied in the other condition without a substantial loss in
classification accuracy.
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2. MATERIALS AND METHODS

In a within-subject design, we compared the EEG signals and
usability aspects for the conditions EC and EO in an auditory BCI
paradigm using words as stimuli and a fast SOA of 250ms.

2.1. Participants
Twelve healthy volunteers [11 subjects between 22 and 29
(mean = 25.2 years, SD = 2.04 years), and one subject (S7)
aged 76, 5 female in total] were recruited for the experiment.
All 12 subjects reported having normal hearing. Following the
Declaration of Helsinki, approval for this study was obtained by
the ethics committee of the University Medical Center Freiburg
and all participants gave written informed consent prior to
participation. A session took about 3.5 h (including the EEG
set-up and washing the hair).

2.2. Experimental Structure and Stimuli
Subjects were asked to be seated comfortably on a chair, facing
a computer monitor. Six loudspeakers were centered in 60◦

steps, at ear height around the subjects head, with a radius of
approximately 60 cm (see Figure 1A). The auditory stimuli were
presented from the six loudspeakers according to the AMUSE
(Auditory MUlticlass Spatial ERP) paradigm (Schreuder et al.,
2010).

A session consisted of a total number of 18 runs, each
contained six trials. Runs where subjects had their eyes closed
were followed by runs where subjects had their eyes open and
vice versa (see Figure 1B) to alleviate effects of non-stationaritiy
in the EEG signals. The current condition was indicated to the
user on the screen. To prevent systematic errors, the condition
used in the first run alternated between participants.

In each trial, one out of six bisyllabic words (length = 300ms)
were cued by a sentence as target stimuli before presenting a
sequence of word stimuli (SOA= 250ms), see also Figure 1C. In
a familiarization phase before the EEG recording, these sentence-
word mappings were practiced with the subjects. During the
sequence, each speaker played a different distinct word 15 times,
resulting in a class-wise ratio of 1:5, with 15 target and 75 non-
target stimuli per trial. Per condition (EO/EC), 9 runs were
recorded. As each of them contains 6 trials, our experiment
resulted in 54 trials per condition. Multiplying these 54 trials
per condition with the number of targets per trials (15) and
the number of non-targets per trial (75) results in a total of
810 targets and 4050 non-targets per subject and condition
(EO/EC), respectively. In a run, each of the six stimuli was
chosen exactly once as a target, while the other stimuli served as
non-targets. We pseudo-randomized the ordering in which the
stimuli were presented and in which the targets were selected.
The mapping from stimulus to loudspeaker was also performed
pseudo-randomized.

2.3. Data Acquisition and Processing
The study consisted of the EEG recordings during the AMUSE
paradigm and the subjective ratings mainly after the EEG
measurements.

2.3.1. Subjective Ratings
For both conditions (EO / EC), we assessed several subjective
ratings after the session in a questionnaire. Subjects were asked
to rate their ergonomic experience during the EEG recordings
for eight items regarding motivation, concentration, fatigue,
eye movement suppression, eye blink suppression, stimulus
discrimination, exhaustion, and difficulty of the task on a 5-
point Likert scale. We also asked the subject which condition
they preferred overall (EO / EC / undecided). We further used
the Self-Assessment Manikin (SAM) (Bradley and Lang, 1994),
which is a non-verbal pictorial assessment technique, to assess
valence from 1 (negative) to 9 (positive), and arousal from 1
(calm) to 9 (excited). In addition, we asked the subjects to indicate
their general fatigue before and after the EEG measurement on a
5-point Likert scale.

2.3.2. EEG Data Acquisition
EEG activity was recorded and amplified by a multichannel
EEG amplifier (BrainAmp DC, Brain Products) and with 63
passive Ag/AgCl electrodes (EasyCap). The channels were placed
according to the 10-20-system, referenced against the nose and
grounded at channel AFz. Electrode impedances were kept below
15 k�. Eye signals were recorded by Electrooculography (EOG)
with an electrode below the right eye of a subject (the channel
associated with this electrode is hereafter called EOGvu). The
signal was sampled at a rate of 1 kHz.

In addition to the EEG and EOG channels, pulse (on an index
finger) and respiration (diaphragmatic breathing) were recorded,
but not further analyzed.

2.3.3. EEG Data Preprocessing
The offline analysis of the EEG data was performed using the
BBCI toolbox (Blankertz et al., 2010). The data was bandpass
filtered in [0.5 8]Hz using a Chebyshev Type II filter and
downsampled to 100Hz. EEG signals were then epoched between
–200 and 1,200ms relative to the stimulus onset. A baseline
correction was then performed based on data within the interval
[-200, 50]ms.

We marked those epochs where the difference of the highest
and lowest value in one epoch exceeded 60µV in one of the
frontal channels (Fp1, Fp2, F7, F8, F9, F10) to capture eye-
or other muscular artifacts. We call this step Minmax_60. The
percentage of epochs that gets flagged by this procedure (and by
additional steps that will be described below) is reported in the
result section. In total, we applied three different preprocessing
pipelines in addition to the steps mentioned before:

P1: Only the above steps were applied. We call this condition
Minmax_60.

P2: Before applying Minmax_60, we estimated the horizontal
eye movements based on the bipolar channel EOGh, which
is defined as the difference between the channels F9 and F10,
and the vertical eye movement based on the bipolar channel
EOGv, which is the difference between the channels Fp2 and
EOGvu. By assuming a stationary eyemovement pattern, the
regression approach from Parra et al. (2005) was then used
to project out the eye artifacts. In addition, channels showing
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FIGURE 1 | Structure and design of the study. (A) AMUSE setup in a top view. Six loudspeakers are spatially centered around the subject’s head. Figure adapted

from Schreuder et al. (2010). (B) A session consisted of 18 runs alternating between eyes-open and eyes-closed. Each run consists of 6 trials. (C) A trial comprises 4

distinct stages. The timings (in seconds) indicate the beginnings of each stage. During the word sequence, targets (T; blue) and non-targets (red) are interleaved and

played with a fast SOA of 250ms.

very little variance (less than 0.5µV in more than 10% of
the trials) or too much variance (more than 3 times the
difference between the 90th percentile and the 10th percentile
of the variance of all channels) were rejected. Moreover,
trials with very high variance (similar to before, trials with
variance exceeding 3 times the difference between the 90th

percentile and the 10th percentile of the variance of all trials)
were also flagged. We call the variance-related treatment of
artifacts as variance criterion (short Var).

P3: We applied the Multiple Artifact Rejection Algorithm,
short MARA (Winkler et al., 2011, 2014), a supervised
machine learning algorithm to reject eye components that
is based on independent component analysis (ICA). Its core
is 1290 expert-labeled ICA components that are used to
automatically classify ICA components as being artifacts or
not. ICA components that have been classified as artifacts
are then projected out. This approach has been shown to
reliably detect eye artifacts even on unseen data (Winkler
et al., 2014).

2.3.4. Classification
Per EEG channel, the amplitudes were averaged in eight intervals
([100, 190], [191, 300], [301, 450], [451, 560], [561, 700],
[701, 850], [851, 1000] and [1001, 1200]ms). These intervals
have shown good classification results in our previous studies
that used the same auditory BCI protocol. They had been
handcrafted to capture the time intervals with the highest
discriminatory power for typical subjects. We fixed them in
the study design before recording the data to avoid a potential
overfitting to the obtained classification accuracies. This strategy
resembles the situation in an online experiment, where no
classification parameters can be changed post-hoc. Of course,
and most importantly, the selected interval boundaries were
the same for the two conditions (EO/EC) to guarantee a fair
comparison. For visualization (Figure 5), we manually picked
those intervals that show the most discriminatory time intervals
after computing the grand averages.

This led to a 504-dimensional feature vector (63 channels with
8 intervals each) per epoch. The classification between target and

non-target stimuli was performed using a Linear Discriminant
Analysis (LDA) classifier with shrinkage-regularized covariance
matrix (Blankertz et al., 2011). The LDA classifier can be
understood as a hyperplane separating the multidimensional
feature space into binary classes. The shrinkage regularization
allows the LDA classifier to gain good classification results
even in the case of high feature dimensionality and a low
number of data points. An estimation of the class-wise means
and (regularized) covariance matrices was computed using the
samples within subjects. If not specified further, we applied
a five-fold chronological cross-validation for estimating the
classification accuracies. Accuracies are reported as area under
the curve (AUC) of the receiver-operator curve. The AUC values
can range between 0 and 1, with a theoretical chance level of 0.5.
An AUC value of 1 indicates a perfect separation between targets
and non-targets. The AUC can be understood as the probability
that a target receives a higher score by the classifier compared to
a non-target.

3. RESULTS

3.1. Hypothesis 1 (Eye Artifacts)
In order to test whether the EC condition leads to fewer artifacts
than the EO condition, we applied three different preprocessing
pipelines (P1-P3) to the data as explained in the method section.
The results are shown in Figure 2A. By visual inspection, one
can observe that the number of artifacts is higher for the EC
condition. A Wilcoxon signed rank test over the percentage of
artifact trials for each participant for EO and EC shows that
the number of artifacts is significantly higher for EC when
only Minmax_60 is applied (P1: W = 3, p = 0.0024), but
not for the other two preprocessing condition (P2: W = 29,
p = 0.5; P3: W = 9, p = 0.037) when applying the Bonferroni-
Holm correction (uncorrected p-values are reported). Hence, the
hypothesis that there are less artifact trials in the EC condition
could not be confirmed. Given the very consistent results, it is
unlikely that more subjects will deliver different results. Instead,
the data suggests the opposite, namely, that more eye artifacts
exist with EC compared to EO.
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FIGURE 2 | Number of artifacts and classification accuracies for different preprocessing methods. (A) The percentage of artifacts obtained by Minmax_60 (and the

variance criterion in case of P2) for all subjects. (B) Cross-validated classification accuracy for all subjects. The solid blue-ish bars depict the smaller value for the two

conditions (EO/EC). The red or green bars indicate the value of that condition which led to a higher outcome.

3.2. Hypothesis 2 (Accuracy)
We examined whether the accuracies differ between EO and
EC. Depending on the preprocessing and condition, the grand
average performance was around 75–80% (see Figure 2B). The
Wilcoxon signed-rank test was used to test the null hypothesis
that the accuracies are the same for both conditions. We found
that for all three preprocessing pipelines, there was no significant
different between the two conditions (P1: W = 38, p = 0.9, P2:
W = 40, p = 0.9, P3: W = 17, p = 0.1). It may be the case that
a clear trend evolves in the case of measuring a larger number of
subjects. However, the small difference between the two groups
(the absolute difference between the average performances is
less than 1.5% classification accuracy for all three preprocessing
pipelines in our data) and the non-significant result from the
meta-review concerning the oddball ERP responses for several
hundreds of subjects, convinces us that the effect of the condition
on classification accuracy is rather limited.

3.3. Hypothesis 3 (Usability)
In order to determine whether the measuring process is more
comfortable for subjects in the EC condition than in the EO
condition, we statistically evaluated a subset of five questions that
the participants have answered in the questionnaire.

1. How much did you struggle with fatigue in the different
conditions?

2. How easy was it to avoid eye movements in the different
conditions?

3-4. How was your mood during the different conditions in
terms of valence (negative vs. positive) and arousal (calm
vs. tensed)?

5. Overall, which condition did you prefer?

We limited the statistical evaluation to these five questions
to reduce the number of multiple comparisons, but report the
results for all categories of the questionnaire (see Figure 3). For
the five statistical tests, we corrected the resulting p-values with
the Bonferroni-Holm correction. A paired t-test was applied as
it was shown to have the same statistical power as a signed
Wilcoxon signed-rank test in case of a 5-point Likert scale
(see De Winter and Dodou, 2010).

We found no significant differences for fatigue [t(11) = 1.77,
p = 0.10] and the ease of suppressing eye movements
[t(11) = 1.16, p = 0.27], see Figure 3A. For valence, results
suggest that EC was perceived as more positive [t(11) = 2.35,
p = 0.039 (uncorrected)], but this was not significant after
Bonferroni-Holm correction (Figure 3B). Significant effects were
found for arousal [t(11) = 3.92, p= 0.002 (uncorrected)] showing
that participants were calmer with EC and also for the general
preference (Figure 3C). Nine out of twelve subjects preferred EC,
only one subject preferred EO and two subjects were undecided.
A one-sided binomial test yields p = 0.006 (uncorrected), hence
we can reject the null hypothesis that both conditions have the
same comfort level (Figure 3D). Please find the complete results
of the questionnaire in the Supplementary Table S1.

3.4. Hypothesis 4 (Transferability)
We investigated whether a system trained on data recorded
with EO could be applied in runs with EC and vice versa.
Therefore, we ran a post-hoc offline simulation consisting of
two parts. The first part describes the influence of the training
set size only, while no transfer learning between conditions
was applied. For each subject, we utilized data of the first 18
trials of a condition (EO / EC) to draw an increasing number
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FIGURE 3 | Questionnaire results regarding usability. The mean values and standard deviation of the 12 subjects are shown for each category (A–D). p∗ indicates

Bonferroni-Holm corrected p-values, n.s. means “not significant”.

of randomly chosen trials. Then each of these sets was used to
train a shrinkage-regularized LDA classifier. The performance
of each classifier was then tested on another randomly selected
(but unseen) trial from the same condition and subject. This
procedure was repeated many times and with different seeds
for the random selection of training and testing data. The
average over these repetitions delivered a reliable performance
estimate for growing sizes of training data sets. The grand
average results are shown in Figure 4A (left to the red dashed
line). Both conditions performed very similarly during this
part.

In the second part we investigated the effects of transfer
learning, i.e., the switching between conditions after 18 trials
and continued application on the remaining 36 trials (remember
that we had 54 trials per condition in total). Four different
transitions were simulated offline: two transitions with a
change of conditions (EO→EC, EC→EO) and—to allow for
comparisons—another two without a change of conditions
(EO→EO, EC→EC). In each of the four scenarios, we took the
LDA classifier that was trained on the first 18 EO or EC trials
(depending on the condition before the transition). Afterward,
we tested the classifier on a randomly drawn trial of the condition
after the transition. This trial was then added to the training data
and the LDA classifier was retrained on the slightly enlarged
training data. As a result of changed conditions, the target
vs. non-target accuracy initially dropped around 3–4% (from
∼74% to ∼71%), while no drop was observed when conditions
were maintained (see Figure 4A, right to the red dashed
line). Collecting and including more data from the condition
after the transition, the performance differences between
change and no change rapidly decreased until they were not
distinguishable anymore after 30 new trials (see Figure 4B). In
both phases, we applied the aforementioned randomization
procedure with 20 different seeds to obtain reliable
results.

3.5. ERP Analysis
In addition to the four main hypotheses, we also investigated the
shapes, amplitudes and latencies of the ERP responses for both
conditions. Figure 5 shows the grand average ERP responses after
processing the data with pipeline P2 (although noisy channels
were not removed when computing the grand average). The most
relevant features (in a linear discriminatory sense) can be inferred
from the signed r2 plots in the bottom row of Figures 5A,B. Two
main components are visible for EO and EC: An early negativity
with a peak location around FCz and a peak latency of around
200 ms (“N200”) and a later positivity (“P300”) in the parietal
area. To quantitatively describe these components, we computed
the peak amplitudes and latencies for each subject. The results are
presented in Table 1.

The most striking difference between EO and EC is that
the late parietal positivity (P300) appears to be earlier in the
EC condition compared to the EO condition, see Figure 5C.
A two-sided paired t-test for the four quantities (N200 amplitude
and latency and P300 amplitude and latency) showed no
significant differences between the experimental conditions after
Bonferroni-Holm correction, although the P300 latency differs
strongly [uncorrected T-test, t(11) = 2.96, p= 0.013] and is likely
to become significant with more data points.

4. DISCUSSION AND CONCLUSION

The goal of this study was to compare the EC and EO condition
in a fast auditory BCI paradigm. In brief, our results show
that EC leads to comparable signals (with slightly more eye
artifacts) while clearly being preferred by the users. Although
we have investigated a limited number of subjects only, we
observed significant effects which indicate a strong influence of
the condition on usability. In the introduction, we mentioned
a stroke patient that could not avoid very frequent eye blinks.
We instructed this patient to proceed with EC. Afterward, he
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FIGURE 4 | Influence of changing from eyes-closed to eyes-open and vice versa. (A) A switch of conditions was simulated after 18 trials (dashed red line) yielding a

small reduction in target vs. non-target classification accuracy (measured by AUC). All classifiers were continuously retrained after each trial (see text). (B) This subplot

shows the loss in accuracy when changing from one condition to the other.

FIGURE 5 | Grand average ERP responses for eyes-open (A), eyes-closed (B), and their differences (C). Top rows: Average responses evoked by target (blue) and

non-target (green) stimuli in the central channel Cz (thick) and the fronto-central channel FCz (thin). The signed r2 values for these two channels are provided by two

horizontal color bars. Their scale is identical to the scale of the plots in the bottom row of scalp plots. Target/non-target rows: scalp plots visualizing the spatial

distribution of mean target and non-target responses within five selected time intervals: [140, 250], [251, 460], [461, 700], [701, 820], and [821, 1200]ms relative to

stimulus onset. Bottom row: scalp plots with signed r2 values indicate spatial areas with high class-discriminative information.

could successfully control an auditory BCI although he reported
to sometimes ‘’drift away,” i.e., to lose focus.

These important findings can have a direct impact on the
usability of auditory BCIs. It suggests that subjects should either
start with EC right from the beginning or, even better, subjects

should simply have the choice to use their preferred condition
(EC/EO). This strategy could mitigate major difficulties that are
faced when working with subjects that have limited control over
their eye movements. In addition, we could show that a transition
from one condition to another leads only to a small loss in
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TABLE 1 | Overview of peak latencies (in ms) and amplitudes (in µV) for the 12

subjects.

Eyes-open Eyes-closed

N200 (FCz) P300 (Pz) N200 (FCz) P300 (Pz)

Lat. Ampl. Lat. Ampl. Lat. Ampl. Lat. Ampl.

S1 197 –2.42 792 2.41 206 –1.70 310 2.32

S2 230 –0.65 808 1.53 203 –0.87 428 3.73

S3 150 –0.23 740 0.80 150 –0.50 805 0.81

S4 195 –0.82 796 1.99 197 –0.41 346 2.93

S5 237 –1.85 390 1.81 244 –1.91 437 1.96

S6 169 –0.41 704 1.19 179 –1.04 561 0.89

S7 239 –2.36 615 2.09 250 –2.08 543 2.01

S8 220 –1.27 840 1.86 212 –1.60 512 1.64

S9 195 –2.02 755 1.94 221 –1.46 687 1.91

S10 213 –1.28 359 1.84 223 –1.37 339 1.25

S11 190 –3.53 742 1.59 190 –2.92 570 1.81

S12 179 –1.48 743 1.47 195 –3.23 742 2.11

Mean 201 –1.53 690 1.71 206 –1.59 523 1.95

SD 27.6 0.96 158 0.43 27.4 0.87 161 0.82

N200 peaks were computed using channel FCz in the interval [140, 280]ms. P300 peaks
were calculated from channel Pz in the interval [300, 900]ms. A bootstrapping approach
was used to improve the reliability of the peak estimates in which peaks were estimated 10
times on subsets containing randomly-drawn 80% of the data and then averaged across
subsets.

classification accuracy that quickly diminishes when the classifier
is retrained on new data. Especially during longer sessions, we
think that this small sacrifice of classification accuracy justifies
the improved user comfort.

To understand why condition EC led to an increased number
of eye artifacts, we have conducted an additional analysis where
we computed the number of artifacts for the two bipolar channels
EOGh and EOGv (see preprocessing pipeline P2). These channels
should mainly capture horizontal and vertical eye movements,
respectively. The analysis shows that eye artifacts in the EC
condition originate from vertical as well as from horizontal
eye movements with a similar proportion. We believe that the
increased number of eye artifacts in the EC condition comes
from the absence of a fixation cross. With that, it is rather
difficult to not move the eyes and subjects involuntarily produce
small saccades. Interestingly, this point has not been reported
by the subjects in the questionnaire. Although not significant,
they reported that they perceived it as easier to suppress eye
movements in the EC condition.

Although not significant, we observed that the P300 peak
latency is much larger for the EO condition compared to the
EC condition. To explain this observation, we hypothesize that
the EO condition has a higher task demand due to the need
to simultaneously process visual and auditory input whereas no
visual input needs to be processed in the EC condition. This may
lead to higher overall workload in the EO condition and thus,
explain increased P300 latencies.

We designed the protocol is such a way that EC and EO runs
are alternating. The idea behind this design was to reduce the
effect of any non-stationarities that occur over the course of a

longer session due to human factors (user learning, changed user
strategies, fatigue), medication or external factors (drying gel,
changed cap position) changing the ERP responses (Shenoy et al.,
2006). On the one side, we believe that this design actually led to
an underestimation of the severity of eye movements in the EO
condition due to the frequent runs where subjects had their eyes
closed. One subject remarked that “it would have been difficult to
leave the eyes open without the runs where I had my eyes closed.”
On the other side, fatigue might become a more severe problem
when longer sessions with EC are conducted. We think that the
EC strategy should be further tested in real application scenarios
to identify possible shortcomings.

A possible limitation with our questionnaire regarding the
subjective ratings is that the answers for each item were ordered
from unfavorable to favorable, e.g., for the question “How
motivating were the different conditions for you?” the possible
answers were sorted from “not at all motivating” to “very
motivating.” This same ordering for all questions might increase
the effect of participants trying to answer consistently. Ordering
the possible answers for each item randomly might help to avoid
this issue.

Taken together, this is the first study that systematically
compares the eyes-closed and eyes-open condition for an
auditory BCI. We found that the eyes-closed condition should
be considered as a viable alternative to increase the user comfort.
In addition, we encourage other scientists and BCI practitioners
to test the eyes-closed condition for subjects that fail to control a
BCI due to frequent eye movements.
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