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ABSTRACT

Data alignment is one of the first key steps in sin-
gle cell analysis for integrating multiple datasets and
performing joint analysis across studies. Data align-
ment is challenging in extremely large datasets, how-
ever, as the major of the current single cell data
alignment methods are not computationally efficient.
Here, we present VIPCCA, a computational frame-
work based on non-linear canonical correlation anal-
ysis for effective and scalable single cell data align-
ment. VIPCCA leverages both deep learning for ef-
fective single cell data modeling and variational in-
ference for scalable computation, thus enabling pow-
erful data alignment across multiple samples, multi-
ple data platforms, and multiple data types. VIPCCA
is accurate for a range of alignment tasks includ-
ing alignment between single cell RNAseq and ATAC-
seq datasets and can easily accommodate millions of
cells, thereby providing researchers unique opportu-
nities to tackle challenges emerging from large-scale
single-cell atlas.

INTRODUCTION

Single cell sequencing (1–3) has been transformative in stud-
ies of gene regulation (4), cellular differentiation (5) and cel-
lular diversity (6). As the technologies have been improved
dramatically over recent years, the number of single cells
assayed by each experiment has increased exponentially,
along with a rapid growth and accumulation of datasets
produced from large-scale studies (7). Consequently, a ma-
jor computational challenge in current single cell studies is
the standardization of measurements from multiple differ-
ent samples or across different platforms and data types for
effective integrative and comparative analyses. Such inte-
grative analysis requires the development of single cell data
alignment methods that can remove batch effects and ac-
count for technical noises across datasets (8).

Many single cell data alignment methods have been re-
cently developed. The majority of them, with a few no-
table exceptions such as the recent iNMF (9), are tar-
geted towards small-size and medium-size datasets. These
existing methods can be summarized into four categories:
(i) reference-based methods, such as Scmap-cluster (10)
and scAlign (11), which align new inquiry datasets based
on a well-annotated reference dataset; (ii) clustering-based
methods, such as Harmony (12), DESC (13), which re-
move batch effects and align samples in an embedding
space by iteratively optimizing a clustering objective func-
tion; (iii) matching-based methods, such as MNN (14) and
Scanorama (15), which apply a mutually nearest neighbors
strategy to identify overlapped cells across datasets and (iv)
projection-based methods that use a statistical model to
project individual cells from different datasets into a lower
dimensional space, including Seurat (16,17) that applies
canonical correlation analysis for projection, LIGER (18)
that uses latent factors from non-negative matrix factoriza-
tion for projection, and scVI (19,20) and others (21–23) that
use variational techniques for projection.

Unfortunately, most existing alignment methods have in-
trinsic drawbacks that prevent them from successful appli-
cations to large-size datasets. Specifically, the alignment by
reference-based methods will be limited by the reference
data size and the pre-selected cell type annotations avail-
able in the reference, thus can lead to an increasing chance
of missing new discoveries when data size increases. The
matching-based methods like MNN use a round-trip walk
strategy that requires generation of all pairwise alignments
for datasets with more than two samples, which will be time-
consuming for large sample sizes. The methods with sophis-
ticated parametric models such as LIGER and scAlign or
methods with complicated post-hoc data processing such
as Seurat are also challenging to be scaled up to large-size
datasets. The ZINB-based methods such as scVI may be less
efficient in capturing complex expression features for mul-
tiple datasets. Although some existing recent methods (9)
can be scaled up to large-size datasets, they still have poten-
tial to inaccurately align cells due to complicated parametric
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models. Therefore, it is in urgent need to develop effective
alignment methods that are also computationally efficient.

Besides the urgent need of developing scalable align-
ment methods, another impeding issue of the current align-
ment methods is that their performance is often bench-
marked and optimized using only single cell RNA se-
quencing (scRNA-seq) data. Consequently, most existing
alignment methods are not ideal for integrating other
single cell sequencing data types such as single cell as-
say for transposase-accessible chromatin using sequencing
(scATAC-seq) (24). Furthermore, the returned results from
existing alignment methods such as Seurat can only retain
the true cell-cell relationships (or similarities), while they
don’t represent gene expression levels which make them un-
suitable for downstream analyses such as differential ex-
pression analysis or enrichment analysis (17).

To tackle these challenges, we propose a unified computa-
tional framework, VIPCCA, based on a non-linear proba-
bilistic canonical correlation analysis, for effective and scal-
able single cell data alignment. VIPCCA leverages cutting-
edge techniques from deep neural network for non-linear
modeling of single cell data, thus allowing users to cap-
ture the complex biological structures from integration of
multiple single-cell datasets across technologies, data types,
conditions, and modalities. In addition, VIPCCA relies on
variational inference for scalable computation, enabling ef-
ficient integration of large-scale single cell datasets with mil-
lions of cells. Importantly, VIPCCA can transform multi-
modalities into lower dimensional space without any post-
hoc data processing, a unique and desirable feature that is
in direct contrast to existing alignment methods. We show
through extensive real data analyses that the latent fac-
tors or variables in the shared lower dimensional space of
VIPCCA can be used for clustering cell subpopulations,
trajectory inference, and transfer learning across modali-
ties, and that the aligned data recovered in the original data
space by VIPCCA support effective downstream differen-
tial gene expression analysis.

MATERIALS AND METHODS

Model specification

We consider the analytic task of aligning k different single
cell sequencing datasets into a common low-dimensional
manifold. These k different datasets may represent different
samples, studies, data types, sequencing techniques, and/or
experimental conditions. We assume that the input data ma-
trix from the m-th dataset, X(m) (m = 1, · · · , k), is of di-
mensionality nm by p, measuring a common set of p fea-
tures in nm different cells. These feature measurements are
in the form of gene expression levels when the sequenc-
ing technology is scRNA-seq, representing the read counts
mapped to each gene in each cell; and in the form of gene-
specific chromatin accessibility levels when the sequencing
technology is scATAC-seq, representing a gene activity ma-
trix that summarizes the ATAC-seq peak counts on each
gene in each cell. Because our model requires the features to
be common across datasets, we naturally use genes as fea-
tures for both scRNA-seq and scATAC-seq in the present
study. Here, we assume that the feature measurements have

been properly normalized according to the sequencing tech-
nology (details in the next section). Our goal is to align these
input data matrices together and project them onto a com-
mon low-dimensional latent space. To do so, we assume that
the p feature measurements for each cell, regardless which
study the cell comes from, is originated from a common low-
dimensional space with dimensionality d (d < p). We denote
the latent representation of X(m) as Z(m), which is an nm by d
matrix of latent factors. We denote X(m)

i and Z(m)
i as the ith

row-vector of X(m) and Z(m), respectively. We assume that
the p-vector of features X(m)

i is connected to the d-vector of
latent factors Z(m)

i in the following form

X(m)
i = f

(
Z(m)

i , b(m)|θ
)

+ E(m)
i , (1)

where f (·) is a non-linear function defined with a set of pa-
rameters θ ; b(m) is a dataset specific vector with a dimension-
ality lb for modeling dataset specific effects; and E(m)

i is a p-
vector of residuals errors where each element independently
and identically follows a normal distribution N (0, σ 2). We
use Gaussian to characterize the distribution of the residual
errors as we directly use normalized data instead of count
data as input. For the latent factors Z(m)

i in equation (1), we
follow traditional factor analysis models and assume that
each element of Z(m)

i follows a standard normal distribution

Z(m)
i ∼ N (0, I) , (2)

with the covariance being a d by d diagonal matrix I. The
assumption in equation (2) ensures that the latent vari-
ables from different datasets all reside on a common low-
dimensional space.

In the above model defined in Equations (1 and 2), two
terms are of particular importance: f (·) and b(m). The
function f (·) is shared across all datasets and relates the
latent variables Z(m)

i to X(m)
i through the same non-linear

functional form defined by a common set of parameters θ .
The parameter b(m), on the other hand, is dataset specific
and effectively determines how the latent variables Z(m)

i are
related to X(m)

i differently in different datasets. When f (·) is
a linear function and when b(m) is absent, the model defined
in Equations (1 and 2) reduces to the standard probabilis-
tic CCA model, which expresses X(m)

i as a weighted function
of Z(m)

i with weights being stored in a factor loading ma-
trix (25). Consequently, the non-linear function f (·) shared
across datasets and the dataset specific vectors b(m) all to-
gether generalize the standard probabilistic CCA model to-
wards modeling both non-linear and data specific effects
that are key for ensuring effective data integration. The
detailed relationship of our method with the probabilistic
CCA and other statistical models is provided in the Supple-
mentary Text. Importantly, our method defined in Equa-
tions (1 and 2) is also a data generative in nature and de-
scribes how different datasets are originated from a com-
mon shared latent space along with dataset specific features.

Technically, we use deep neural network to construct the
non-linear functional form of f (·). The detailed construc-
tion is provided in the Supplementary Text. Briefly, the neu-
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ral network takes input of the d-dimensional vector Z(m)
i

and the lb-dimensional vector b(m), and outputs a p-vector
of outcomes through several intermediate neural network
layers. We set the dimensionality d and lb to the default
value of 16 throughout the study and we randomly gener-
ate each element of b(m) from a discrete uniform distribution
U(0, 10). We construct the intermediate layers in the neural
network to be fully connected with each other through rec-
tified linear unit (ReLU) functions. Note that the alignment
results are robust with respect to the different b(m) generated
from different random seeds, with respect to the dimension-
ality of b(m), and with respect to the dimensionality of the
bottle layer (Supplementary Figures S15-17), thanks to the
flexibility of the deep neural network modeling framework.
We also include a batch normalization layer inserted before
each ReLU activation layer to accelerate inference and in-
clude a dropout layer interested after each ReLU activation
layer to avoid model overfitting.

Our goal is to obtain the posterior estimates of the la-
tent variables Z(m)

i based the feature matrices X(m)
i . Obtain-

ing these posterior estimates is challenging because of the
non-linear function f (·). In particular, the posterior esti-
mates of Z(m)

i based on the likelihood defined in Equations
(1 and 2) cannot be computed analytically when f (·) is
a non-linear function. To enable effective and scalable in-
ference, we develop a variational approximation algorithm
(details in the Supplementary Text). Briefly, we introduce a
relatively simple variational distribution q(Z(m)

i ) to approxi-
mate the complex posterior distribution p(Z(m)

i |X(m)
i , b(m)).

The variational distribution is assumed in the form of a mul-
tivariate normal distribution MVN(μ(m)

i , diag(σ 2(m)
i )), with

a d-dimensional mean vector μ
(m)
i and a diagonal covari-

ance matrix consists of a d-dimensional variance vector of
σ

2(m)
i . Because the posterior distribution for Z(m)

i is a non-
linear function of the observed expression data X(m)

i , we also
use a non-linear function constructed by a similar form of
the neural network to characterize the mean and variance
parameters in the variational distribution q(Z(m)

i ). With the
variational distribution, we minimize the Kullback-Leibler
(KL) divergence between q(Z(m)

i ) and p(Z(m)
i |X(m)

i , b(m)) to
obtain μ

(m)
i to serve as the estimates of Z(m)

i . In the vari-
ational inference, we rely on an optimization technique
based on mini-batch gradient descent to ensure scalable
computation. With mini-batch gradient descent, we iterate
through all single-cell datasets repeatedly with a default of
100 epochs. We update the parameters in accordance with
the gradient of error with respect to a subset of the datasets
with a batch size set to be 256. In the algorithm, we rely on
early-stop settings and take advantage of the reduce learn-
ing rate strategies. The overall computational complex is
O(n p5), with memory usage O(p2). Here, n and p are the
total number of cells and selected genes, respectively.

One key feature of VIPCCA that differs from many ex-
isting integration methods is its ability to remove dataset
specific batch effects and obtain normalized gene expres-
sion data. Specifically, we first obtain the estimated dataset-
specific embedding in the low dimensional space (i.e. Ẑ(m)

i )
and then paired it with the dataset-specific annotation (i.e.

b(m)) to recover the dataset-specific gene expression through
the non-linear function f (·). With the parameter estimates
θ̂ , the recovered gene expression data X̂(m)

i is in the form of
X̂(m)

i = f (Ẑ(m)
i , b(1)|θ̂).

We refer to the above method as the Variational Infer-
ence assisted Probabilistic Canonical Correlation Analysis
(VIPCCA) because of its close relationship to CCA and
the underlying variational inference algorithm. VIPCCA is
implemented in a python package, vipcca (≥0.2.6), freely
available at https://github.com/jhu99/vipcca.

Compared methods

We compared VIPCCA with seven existing integration
methods using default software settings. These meth-
ods include (i) DESC (v0.1.6.1), where we followed tu-
torial and used the functions normalize per cell, log1p
in the scanpy package for data preprocessing; (ii) har-
mony (v1.0), where we followed software recommendations
(12) and used NormalizeData, ScaleData, RunPCA with
npcs = 16 in Seurat for data preprocessing; (iii) LIGER
(v0.4.2), where we followed software recommendations and
used NormalizeData, ScaleData with scale.factor = 1e6,
do.center = F in Seurat for data preprocessing; (iv)
MNN (Batchlor/mnn correct v1.2.4), where we followed
software recommendations to use the preprocessed data
from Seurat as input and the mnnCorrect function with
k = 16; (v) ScAlign (v1.2.0), where we followed tutorial
and used the functions NormalizeData, ScaleData with
scale.factor = 1e6, do.scale = T and do.center = T in Seurat
for data preprocessing; (vi) Scanorama (v1.5.0), where we
followed software recommendation and used the functions
correct scanpy with dimred = 16; (vii) scVI (v0.5.0), where
we followed tutorial and used the count data as input and
(viii) Seurat (v3.1.0.9007), where we followed tutorial and
used function NormalizeData with scale.factor = 1e6 for
data preprocessing.

Real datasets

We applied our method and other existing integration meth-
ods to analyze a total of 17 published single cell sequencing
datasets through five applications.

In the first data application, we obtained eight scRNA-
seq datasets on human pancreatic islets that span 27 donors
and five scRNA-seq technologies (CelSeq, CelSeq2, Flu-
idigmC1, SMART-seq2, InDrops). These data are avail-
able either at the NCBI Gene Express Omnibus (GEO)
website (ID GSE84133 (26), GSE86469 (27), GSE81076
(28) and GSE85241 (29)) or the ArrayExpress repository
(ID E-MTAB-5061 (30)). We obtained processed data di-
rectly from the SeuratData package. The raw count data
contains a total of 34 363 genes measured on 14 890 cells
from 13 cell types that include acinar (n = 1864), activated
stellate (474), alpha (4615), beta (3679), delta (1013), duc-
tal (1954), endothelial (296), epsilon (30), gamma (625),
macrophage (79), mast (56), quiescent stellate (180) and
schwann (25).

In the second data application, we obtained
three published datasets (31) from the 10X Ge-
nomics single-cell portal: one on 2885 293T cells

https://github.com/jhu99/vipcca
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(https://support.10xgenomics.com/single-cell-gene-
expression/datasets/1.1.0/293t); one on 3285 Jurkat
cells (https://support.10xgenomics.com/single-cell-
gene-expression/datasets/1.1.0/jurkat); and one on
a 50:50 mixture of 1605 293T and 1783 Jurkat cells
(https://support.10xgenomics.com/single-cell-gene-
expression/datasets/1.1.0/jurkat:293t 50:50). All data
are measured on a common set of 32 738 genes. The cell
type labels of the 50:50 mixed samples were determined
in the original publication based on the expression of cell
type-specific markers CD3D (Jurkat) and XIST (293T).

In the third data application, we obtained a scRNA-seq
data and a scATAC-seq data. The scRNA-seq data consists
of gene expression measurements on 33,538 genes in 11 769
cells. The scATAC-seq data consists of 89 796 open chro-
matin peaks measured on 8728 nuclei. Both these data were
produced by 10X Genomics Chromium system and were
on PBMCs. We downloaded the processed data from 10X
genomics website (cell-expression/3.0.0/pbmc 10k v3 and
cell-atac/1.0.1/atac v1 pbmc 10k). We obtained 13 cell
types in the scRNA-seq data using the standard workflow
in Seurat (https://www.dropbox.com/s/3f3p5nxrn5b3y4y/
pbmc 10k v3.rds?dl=1). The 13 cell types include 460 B cell
progenitor, 2992 CD14 + Monocytes, 328 CD16 + Mono-
cytes, 1596 CD4 Memory, 1047 CD4 Naı̈ve, 383 CD8
effector, 337 CD8 Naı̈ve, 74 Dendritic cell, 592 Double
negative T cell, 544 NK cell, 68 pDC, 52 Plateletes and
599 pre-B cell. In addition to the two single cell sequencing
data, we also obtained a bulk ATAC-seq data on a subset
of human immune cell types from the UCSC Genome
Browser (https://s3-us-west-1.amazonaws.com/chang-
public-data/2016 NatGen ATAC-AML/hub.txt). For the
scATAC-seq data, we filtered out cells that have with fewer
than 5000 total peak counts to focus on a final set of 7,866
cells for analysis.

In the fourth data application, we obtained two large
datasets: one scRNA-seq dataset (32) (http://dropviz.
org) measured on 861 851 cells residing in nine re-
gions of the mouse brain and one single nuclei se-
quencing dataset (33) (GSE110823) measured on 156 049
single nuclei in both mouse brain and spinal cord at
two developmental stages (p2 and p11). The two data
were profiled with Drop-seq and SPLiT-seq, respectively.
The nine brain regions in the scRNA-seq data include
cerebellum, entopeduncular, frontal cortex, globus pal-
lidus, hippocampus, posterior cortex, striatum, substan-
tia nigra and thalamus. We obtained the cell type an-
notations from the original publications (http://dropviz.
org/ and https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE110823 with code at https://gist.github.com/Alex-
Rosenberg/5ee8b14ea580144facad9c2b87cebf10). A total
of 22 cell types and 187 subtypes were reported in the
scRNA-seq dataset, and 73 cell types were reported in
the SPLiT-seq dataset. The seven major cell types in
both datasets are astrocytes, endothelial, fibroblast-like,
microglia/macrophage, mural, oligodendrocytes, and poly-
dendrocytes. For simplicity, we merged these 73 sub-
celltypes into several main cell types following (34).

In the fifth data application, we obtained two scRNA-
seq datasets on male and female human embryos: one
normalized count data (TPM) of 2621 cells measured

on 24 153 genes (GSE86146); one normalized count
data (FPKM) of 328 cells measured on 23,394 genes
(GSE63818). After filtering away somatic cells with the
annotation data in the original publication, we used only
666 female (5–26W) 649 male (4–25W) PGCs in the first
dataset; and 83 female (4–17W) 141 male (4–19W) PGCs
in the second dataset. The annotation data can be freely
accessible at https://zenodo.org/record/1443566/files/real/
gold/germline-human-female-weeks li.rds?download=1,
https://zenodo.org/record/1443566/files/real/gold/
germline-human-male-weeks li.rds?download=1,
https://zenodo.org/record/1443566/files/real/gold/
germline-human-female guo.rds?download=1, and
https://zenodo.org/record/1443566/files/real/gold/
germline-human-male guo.rds?download=1.

Data processing

For the scRNA-seq data, we used anndata (v0.6.22.post1)
and scanpy (v1.4.4.post1) to normalize the expression
count data in each data application following scanpy’s tu-
torial. The only exception is the fifth application, which has
already been normalized in the original study. For scanpy
normalization, for each individual in turn, we first divided
the gene count by the total read depth and computed counts
per million mapped reads (cpm). We then performed log
transformation on the resulting cpm values. In the log trans-
formation, we added a pseudo count of 1 to avoid tak-
ing logarithm of zeros. The normalization procedure is
achieved by using the function pp.normalize total, with tar-
get sum = 1e6 and the pp.log1p option. In the first, second
and fourth applications, we first selected the top 2000 highly
variables genes (HVGs) in each dataset separately, using the
function pp.highly variable genes in scanpy with the option
flavor = ‘Seurat’. We then obtained the 2000 HVGs among
them that appeared in the largest number of batches to serve
as the final set of features for all integration methods. In
the third data application, by following (17), we obtained
3000 HVGs in the scRNA-seq data and focused on these
genes for analysis. In the fifth data application, we used 2200
HVGs for male, 2918 for female PGCs, which were obtained
from common genes of the two sets of HVGs used in (35,36).

For the scATAC-seq data, we examined one gene at a time
and obtained a gene activity measurement by summing all
peak counts within the genomic region between 2 kb up-
stream of the transcription starting site and the transcript
ending site based on the reference human genome anno-
tation file (ftp://ftp.ensembl.org/pub/grch37/release-84/gtf/
homo sapiens/Homo sapiens.GRCh37.82.gtf.gz). We re-
tained genes that are among the 3000 HVGs selected in
scRNA-seq data and with non-zero activity measurements
in at least one cell and we removed cells with less than 5,000
peaks. We focused on a final list of 2174 genes on 7866 cells
for analysis. In the stage of label transferring, we calculated
a prediction score for each scATAC-seq cell.

In each data application, we followed the integration
workflow of each compared method for analysis. For the
second application, LIGER failed on the original set of
2000 HVGs. Therefore, we had to use an alternative set
of ∼1600 HVGs for LIGER. These genes were common
HVGs shared by HVGs of the three input datasets, ob-
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https://s3-us-west-1.amazonaws.com/chang-public-data/2016_NatGen_ATAC-AML/hub.txt
http://dropviz.org
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tained by using similar variable selection function Find-
VariableFeatures in the Seurat package with method =
‘vst’ and nfeatures = 2000. For the third data appli-
cations, we carried out Seurat analysis exactly follow
its tutorial on the data (https://satijalab.org/seurat/v3.0/
atacseq integration vignette.html).

We did not scale and center the gene expression mea-
surements in VIPCCA because our neural network re-
quires nonnegative values. The p-vector outcome (i.e. non-
negative) of VIPCCA was calculated by adding two layers
with softplus and hard sigmoid activation functions.

To avoid causing unpredictable loss of algorithm perfor-
mance, we preprocessed the count data by following the tu-
torial of each package for preprocessing example datasets.
Hence, there are some slight differences in the data process-
ing of other algorithms: (i) DESC does not scale and cen-
ter the data after the log1p transformation; (ii) scanorama
and scVI take the count data as input; (iii) harmony, MNN,
scAlign and Seurat scale and center the data after the log1p
transformation; (iv) LIGER scale but do not center the data
after the log1p transformation.

Evaluation metric for single-cell integration

We compared the performance of different integration
methods using three evaluation criteria: kBET acceptance
rate (37), mixing metric (17) and adjusted rand index (ARI).
Both kBET and mixing metric assess how well mixed the
integrated data are, while ARI assesses how well cell types
are inferred. All these metrics are computed based on the
aligned low dimensional space following standard practice
in the field (17,34). Because kBET test is computationally
slow and requires a huge amount of physical memory, we
followed the recommendation of kBET user manual (https:
//github.com/theislab/kBET) and used a subsampling strat-
egy on the fourth dataset that is of particular large-scale.
Since ARI requires both predicted clustering labels and the
true cell type label, we performed clustering with the Find-
Clusters function in Seurat, which is based on the Lou-
vain algorithm (38), to perform clustering on all cells in the
aligned reduced dimensional space. The true cell type labels
were obtained from the original publication of each dataset.
Following (34), we performed kBET test (v0.99.6) for each
cell type over a range of neighborhood sizes that cover 5–
25% of the sample size, with 100 replicates for each neigh-
borhood size. In the last large-scale data application, kBET
tests were examined on 4,000 samples randomly selected
from each of the two datasets to ensure computational effi-
ciency. We computed mixing metric (17) using the function
LocalStruct in Seurat V3, where we set k = 5, k.max = 300
as recommended in (17). Finally, we used adjusted rand in-
dex (ARI) to measure the accuracy of cell type clustering
following (13). A high value of kBET test statistics, mixing
metric, or ARI indicates better performance.

Differential gene expression analysis

To test whether the batch-effects were effectively removed
without over-correction or less-correction, we performed
gene expression analysis on recovered expression data in
three scenarios: (i) differentially expressed genes (DEGs)

between two batches within one cell type; (ii) DEGs be-
tween two cell types within one batch; (iii) DEGs between
two cell types of two different batches. To do so, we used
FindMarkers with test.use = ‘wilcox’ in Seurat for iden-
tifying differentially expressed genes on the same set of
common variables across all compared algorithms. So, a
Wilcoxon rank-sum test was applied onto normalized ex-
pression data of each integration algorithm on a same set
of 2000 highly variable genes (13,17), which were selected
by using scanpy.pp.highly variable genes function with fla-
vor = ‘Seurat’. The differentially expressed genes were iden-
tified by using FindMarkers in the Seurat package (16) with
an FDR control of 0.05 (Bonferroni correction).

In the first data application, we tested DEGs between
celseq and celseq2 within each of four cell types (acinar, al-
pha, beta, ductal) in the first scenario. We selected the two
datasets and the four cell types because they have relatively
larger number of cells so that each compared group in the
two datasets has at least 50 cells involved. We tested DEGs
between alpha and beta within celseq in the second sce-
nario, and DEGs between alpha from celseq and beta from
celseq2 in the third scenario. In the second data application,
we tested DEGs between the first and the third datasets
within 293T, and DEGs between the second and the third
datasets within Jurkat in the first scenario. We tested DEGs
between 293T and Jurkat within the third dataset in the
second scenario, and DEGs between 293T from the first
dataset and Jurkat from the third dataset in the third sce-
nario. Jaccard index was used to quantify the similarity be-
tween the top100 DE genes detected in Scenario 2 and Sce-
nario 3. The top 100 DE genes were obtained by sorting DE
genes by their p value adj and –abs(avg log2FC) in increas-
ing order.

Trajectory inference

We performed trajectory inferences using Slingshot (v2.0.0)
(39) on female and male human primordial germline cells
separately. The inferred pseudotime would reflect the cell
state of PGCs in the development.

Reference-based cell type assignment for scATAC-seq and its
performance evaluation

For VIPCCA, we performed reference-based cell type as-
signment in the scATAC-seq data using the cell types anno-
tated on the scRNA-seq data. Specifically, after VIPCCA
integration, we constructed a neighborhood graph on the
cell embeddings in the reduced dimensional space using the
pp.neighbors in the scanpy package with n neighbors = 50.
For each scATAC-seq cell in turn, we then used a scoring
function to calculate a confidence value for each cell type
and assigned the cell type with the maximal score to the
scATAC-seq cell as its cell type. The confidence score is cal-
culated in the following form for the i th scATAC-seq cell
and each celltype c:

Sic = � j∈Nic e−
(

dist(i, j )2

2wc

)
,

where Nic represents the set of scRNA-seq neighbors of vi
that are of cell type c; dist(·) returns the Euclidean dis-
tance measured on the latent space between the i -th cell in

https://satijalab.org/seurat/v3.0/atacseq_integration_vignette.html
https://github.com/theislab/kBET
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scATAC-seq and its j th neighbor cell in scRNA-seq; and
the weight wc is predefined for the cell type c according to
its global celltype proportion. Those query ones without
any scRNA-seq neighbor, which are not well mixed with
scRNA-seq cells, are assigned ‘unknown’.

We validated the cell type assignment in the scATAC-seq
data by examining the scATAC-seq peaks in marker genes.
To do so, we first used sinto (v0.7.1) to extract the scATAC-
seq binary sequence/alignment map (BAM) file for each
cell type according to the barcode of the scATAC-seq cells.
We sorted and indexed each bam file using samtools (v1.7).
We calculated the RPKM normalized read coverage tracks
(bigwig format) on autosomes using bamCoverage in the
deepTools (v3.4.3) with binSize = 1 and the RPKM nor-
malization option. We then plotted the accessibility tracks
of eight known cell type marker genes using CoveragePlot in
Signac (v1.0.0). The marker genes include GNLY (marker
of NK cells), MS4A1 (marker of pre-B and B cell progen-
itor), BCL11B (marker of CD4 Naı̈ve, CD8 effector and
CD8 Naı̈ve cells), LYZ (marker of CD14 + monocytes,
pDC), CD8A (marker of CD8 effector and CD8 Naı̈ve
cells), CD3E (marker of CD4N, CD8E, NK and CD8N),
CD4 (marker of CD4N, CD4M, CD14M, CD16), HLA-
DRA (marker of CD16 and CD14M) (17,40,41). We further
calculated the average read coverage score for each marker
gene and its flanking regions (10k upstream and 2k down-
stream) in assigned cell types in scATAC-seq using multi-
BigwigSummary in the deepTools based on the bigwig files.
Besides examining the chromatin accessibility of marker
genes in the assigned cell types, we also created pseudo-bulk
ATAC-seq profile by pooling cells of each assigned cell type.
We then compared the pseudo-bulk ATAC-seq data with
the bulk ATAC-seq data of human immune cell types (B
cells, NK cells, CD8+ T cells, CD4+ T cells, Monocytes) ob-
tained from (https://s3-us-west-1.amazonaws.com/chang-
public-data/2016 NatGen ATAC-AML/hub.txt). In both
pseudo-bulk and bulk ATAC-seq data, we computed the av-
erage score in equally sized bins (bin size = 10k bases) that
consecutively covers the entire genome using multiBigwig-
Summary with the mode of bins. We then computed Pear-
son correlation for the global pattern of chromatin accessi-
bility between pseudo-bulk and bulk ATAC-seq data across
immune cell types (42).

RESULTS

VIPCCA method overview

A brief method schematic is provided in Figure 1 and
technical details are provided in the Supplementary Text.
Briefly, we consider the problem of aligning gene expres-
sion measurements (e.g. from scRNA-seq) and/or gene ac-
tivity measurements (e.g. from scATAC-seq) obtained from
multiple single-cell datasets and project them onto a com-
mon low dimensional space. To do so, we incorporate
non-linearity into the commonly used canonical correla-
tion analysis (CCA) and express the gene expression and/or
gene activity matrix from each dataset as a non-linear func-
tion of the common latent factors. The non-linear func-
tion is constructed using a deep neural network with sev-
eral interconnected layers. A unique feature of our method

is its ability to incorporate dataset notational inputs into
the neural network to represent dataset specific components
of gene expression, thus allowing for flexible and accurate
gene expression modeling across multiple scRNA-seq stud-
ies. Unlike the previous adaption of CCA for scRNA-seq
alignment (16,17), our method is fully based on a data gen-
erative model, does not require any post hoc data processing
or normalization, is applicable for a wide variety of align-
ment tasks coupled with various downstream analyses. To
accompany our model, we develop a variational approxi-
mation algorithm for inference, which, when further paired
with a mini-batch based stochastic gradient descent pro-
cedure, is highly computationally scalable. Because of the
close relationship of our method to the probabilistic version
of CCA, we refer to our method as the Variational Inference
assisted non-linear Probabilistic CCA (VIPCCA). VIPCCA
is freely available at https://github.com/jhu99/vipcca.

We examine the effectiveness of our method and compare
it with seven existing alignment approaches through five
real data applications. The compared approaches include
DESC, Harmony, LIGER, MNN, scAlign, Scanorama,
scVI and Seurat V3 (17) (details in Materials and Methods).
The variety of real data applications we examined here aim
to cover a wide range of integration tasks encountered in
single cell data analysis.

Cross-sample integration by VIPCCA leads to reliable and
robust downstream analysis

Our first application focuses on integrating a collection of
34 363 genes measured on 14 890 cells from eight scRNA-
seq datasets on human pancreatic islets that span 27 sam-
ples and five technologies (26–30) (Supplementary Figure
S1). Before integration, the eight datasets were coupled with
batch effects and technical biases (17). The challenge of the
task here is thus to remove nuisance factors such as batch
effects through data integration, while preserving the true
expression signals for various downstream applications.

We first visualized the integrated data using UMAP (43)
(Figure 2A, B). UMAP visualization suggests that cells
from all eight datasets are well mixed after we apply the inte-
gration methods VIPCCA, LIGER, or Seurat, more so than
the other six methods. In addition, cells in the integrated
data obtained by VIPCCA, Harmony, or Seurat can be eas-
ily distinguished into different cell types, including three
major types (delta, activated stellate, endothelial), more so
than the other six methods. We further evaluated method
performance using three metrics: the kBET acceptance rate
(37), the mixing metric (17), and the adjusted rand index
(ARI). Both the kBET acceptance rate and the mixing met-
ric assess how well the cells are mixed after integration,
while ARI assesses how well the cells can be clustered cor-
rectly into the 13 known cell types (Materials and Meth-
ods). Quantification supports the superior performance of
VIPCCA, LIGER, Seurat in terms of mixing: their mix-
ing metric scores are 251.5, 254.5 and 246.5, respectively, as
compared to 105.0–206.0 for the rest (Figure 2C); VIPCCA
and LIGER also achieve the highest kBET acceptance rates
across cell types, which are followed by Seurat, and further
followed by the rest (Figure 2D, Supplementary Figure S2).
In terms of clustering, VIPCCA achieves the best perfor-

https://s3-us-west-1.amazonaws.com/chang-public-data/2016_NatGen_ATAC-AML/hub.txt
https://github.com/jhu99/vipcca
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Figure 1. Method schematic for VIPCCA. VIPCCA takes an input from a normalized expression vector of X(m)
i from the i th cell in the mth single cell

dataset and expresses it as a summation of two terms: a non-linear function term f ( ·|θ ) and a residual error term. The non-linear term is a function
of a cell type specific latent factor Z(m)

i for the i th cell and a dataset-specific annotation code b(m) for the mth dataset. The non-linear function f (·|θ )
projects the latent factor into the original space with a non-linearity feature to flexibly capture the complex data structure across single cell datasets. The
dataset-specific annotation code b(m) is introduced to model the dataset-specific variation that exists due to distinct experimental conditions, platforms,
and technologies across datasets. VIPCCA infers the latent factors Z(m)

i and recovers the aligned expression values in the original space through a scalable
variation inference algorithm.

mance (ARI = 0.91), followed by Harmony (0.84) and then
the others (range from 0.36 to 0.70) (Figure 2E).

A key benefit of VIPCCA is its ability to generate nor-
malized gene expression data that are free of batch effects
for downstream analysis. Only three other methods (MNN,
Scanorama, and Seurat) are capable of such gene expres-
sion recovery. Here, we followed (13,44) and evaluated the
gene expression recovery accuracy of these four methods
through differential expression (DE) analyses. Specifically,
we first performed DE analysis on cells of the same cell type
(either acinar, alpha, beta, or ductal) between two datasets
(details in Materials and Methods). Intuitively, if the recov-
ered data are free of batch effects, then we would not expect
to observe strong DE evidence from such analysis. Indeed,
the median −log10P-value across genes from DE analysis
on VIPCCA recovered data is only 1.4, several folds lower
than that of Scanorama (3.7), Seurat (12.5), scVI (18.6) or
MNN (27.0) (Figure 2F). Besides examining the null, we
also examined alternatives by performing DE analysis be-
tween two distinct cell types (alpha and beta cells) in two
different ways: comparing the two cell types in the same
dataset or comparing one cell type from one dataset with
the other cell type from another dataset. Intuitively, if batch
effects are properly removed through data integration, then
the DE genes obtained in these two distinct ways would
be similar to each other. Indeed, the two lists of the top
100 DE genes obtained from VIPCCA have high overlap
(Jaccard index = 0.71), much more so than that obtained
from the other methods (Scanorama, 0.32; scVI, 0.26;
Seurat V3, 0.13; MNN, 0.01) (Supplementary Figure S3).

Overall, VIPCCA facilitates the integration across multiple
datasets collected from different samples and different tech-
nologies, leading to more reliable and robust downstream
analyses.

VIPCCA effectively integrates datasets with partially over-
lapped cell types

Our second data application examines the setting when cell
types are partially overlapped across datasets, where some
cell types are dataset-specific. Aligning partially overlapped
datasets has been a major challenge for many single cell
alignment methods. Here, we considered three published
scRNA-seq datasets (31): one contains 2885 293T cells; one
contains 3285 Jurkat cells; and one contains a 50:50 mix-
ture of 1605 293T and 1783 Jurkat cells; all measured on 32
738 genes. We apply VIPCCA along with the other meth-
ods to align these three different datasets. UMAP visual-
ization shows that both VIPCCA and Harmony success-
fully integrated and mixed the three datasets together, with
a clear separation between the two cell types (Figure 3A,
B). Seurat, scVI, DESC and Scanorama also separated cells
from all three datasets into two cell types, though were un-
able to mix well the cells of the same cell type from dif-
ferent datasets. LIGER, scAlign, and MNN, on the other
hand, failed to separate cells into the two cell types. Further
quantification supports the visualization results. Specifi-
cally, VIPCCA and Harmony mixed cells within each cell
type well, more so than the other methods: the mixing met-
ric score is 286 for both methods, but range from 281 (scVI)
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Figure 2. Integration of eight scRNA-seq datasets on human pancreatic islets. The examined datasets span 27 samples, five technologies, and four labora-
tories. The examined integration methods include DESC, Harmony, LIGER, MNN, scAlign, Scanorama, scVI, Seurat V3 and VIPCCA. UMAPs are used
for visualizing integration results by either technologies (A) or cell types (B). The overall integration quality is measured by four metrics: mixing metric
(C), kBET acceptance rate (D), adjusted rand index (ARI) (E) and differential expression analysis (F).

to 0 (for scAlign) for the remaining seven methods (Figure
3C); VIPCCA and Harmony also achieve higher kBET ac-
ceptance rates across both cell types as compared to the re-
maining methods (Figure 3D, Supplementary Figure S4a).
In addition, scVI and VIPCCA achieves accurate cell type
clustering (ARI = 0.97, 0.92), with its performance followed
by Harmony (0.79) and the other methods (range from 0.11
to 0.72) (Figure 3E); however, scVI achieves a poor mix-
ing metric in terms of median kBET acceptance rate (0.28)

across a range of sampling rate from 5% to 25%, which is
much lower than that of VIPCCA (0.93).

We again evaluated the effectiveness of VIPCCA in re-
covering gene expression through DE analysis. We first ex-
amined the null setting by performing DE analysis on cells
from the same cell type between the two corresponding
datasets. Similar to what was observed in the first data
application, the median −log10P-value from DE analysis
on VIPCCA recovered data is low (0.9), much lower than
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Figure 3. Integration of three scRNA-seq datasets with partially overlapped cell types. The examined datasets include one with 293T cells, one with
Jurkat cells, and one with a 50:50 mixture of the two cell types. The examined integration methods including DESC, Harmony, LIGER, MNN, scAlign,
Scanorama, scVI, Seurat V3, and VIPCCA. UMAPs are used for visualizing integration results by either batches (A) or cell types (B). Overall integration
quality is measured by four metrics: mixing metric (C), kBET acceptance rate (D), adjusted rand index (ARI) (E) and detection of differentially expressed
genes (F).

that from Seurat (35.3), scVI (66.5), Scanorama (300) and
MNN (300; Figure 3F). We also performed two additional
sets of DE analyses: one between the two cell types in the
mixed datasets; and the other between the two cell types
from the two datasets. Consistent with the first data anal-
ysis, we found that the two lists of the top100 DE genes
obtained from VIPCCA also have high overlap (Jaccard in-

dex = 0.82), more so than the other four methods (scVI,
0.79; Scanorama, 0.63; MNN, 0.53; Seurat, 0.07) (Sup-
plementary Figure S4b). Overall, VIPCCA generates high
quality integrated data for reliable and robust downstream
analyses, even though partial overlaps across experiments
are known to make comparison and integration particularly
challenging.
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VIPCCA offers a neat solution to align scATAC-seq with
scRNA-seq data

Previous methods are predominantly developed and opti-
mized for scRNA-seq datasets, thus can be suboptimal or
even inappropriate for integration across data types. In our
third data application, we examined the task of integrat-
ing two different data types, a scRNA-seq data and a single
cell ATAC-seq (scATAC-seq) data. Our goal is to perform
reference-based cell type inference to annotate cell types in
the scATAC-seq data based on the cell types in the scRNA-
seq data. In particular, we examined a scRNA-seq data of
19 089 genes measured on 9432 cells and a scATAC-seq data
of 89 796 peak measurements on 7866 nuclei, both collected
on human peripheral blood mononuclear cells (PBMCs)
(42). Standard alignment methods are not directly applica-
ble for aligning scATAC-seq with scRNA-seq data and/or
for performing subsequent cell type inference in scATAC-
seq due to the distinct data structures in the two data types
(17). So far, only Seurat implements cell type inference for
scATAC-seq data through the alignment with scRNA-seq
data. Different from the Seurat alignment algorithm used
for scRNA-seq only datasets examined in previous exam-
ples, a reference-based cell type inference is introduced,
which relies on a complicated procedure that weaves trans-
fer learning, latent semantic indexing and anchor detection
(17). We compared the reference-based inference algorithm
in Seurat with VIPCCA for across data type integration.

In the analysis, we found that VIPCCA can be directly
used to align these two data types without employing
any complicated ad-hoc algorithmic procedure as used in
Seurat. Indeed, UMAP visualization shows that VIPCCA
mixes two data types well, more so than that obtained by
Seurat (Figure 4A,B). Both mixing metric score (VIPCCA:
287.5; Seurat: 260.5) and kBET acceptance rate (Supple-
mentary Figure S5a) confirms such observation. VIPCCA
assigned 7233 out of the 7866 nuclei (92.0%) into a known
scRNA-seq cell type and assigned the remaining 633 nu-
clei as unknown. The known cell types in scATAC-seq in-
ferred by VIPCCA display expected chromatin accessibility
pattern that are consistent with bulk ATAC-seq data (42)
(Supplementary Figure S5b) and largely consistent with
the cell types inferred by Seurat (Figure 4C). A careful ex-
amination of the chromatin accessibility profile near eight
known cell type marker genes (17,40) revealed similarity be-
tween VIPCCA and Seurat based inferences (Supplemen-
tary Figures S6−S9), along with subtle but important dif-
ferences: for example, a clear ATAC-seq peak is observed in-
side the pDC marker gene LYZ (41) in pDC cells inferred by
VIPCCA (Supplementary Figure S7a), but not observed in
pDC cells inferred by Seurat (Supplementary Figure S7b).
On the other hand, the unknown scATAC-seq cell types in-
ferred by VIPCCA are notably different from that inferred
by Seurat (n = 274): the unassigned cells by VIPCCA are
typically of low data quality as they are characterized by an
excessive number of duplicate mapped read-pairs, chimeri-
cally mapped read-pairs, read-pairs with at least one end
not mapped, or fragments overlapping with TSS regions,
much more so than the unassigned cells by Seurat (Figure
4D−F). Overall, the above analyses strongly support the
effectiveness of VIPCCA in integrating scATAC-seq data
with scRNA-seq data.

VIPCCA enables scalable integration of millions of cells

Scalability is a key bottleneck for single cell alignment meth-
ods. In the fourth data application, we exploited with a
large-scale integrative analysis of 1 099 538 cells from two
studies: a scRNA-seq study on nine regions in the mouse
brain with Drop-seq (32) and a single nuclei RNA-seq
study on the mouse brain and spinal cord with SPLiT-
seq (33). Only five methods (DESC, Harmony, Scanorama,
scVI and VIPCCA) are applicable for such large-scale in-
tegrative analysis. In the analysis, UMAP visualization
shows that both Harmony and VIPCCA mixed cells from
the two datasets well and were able to correctly segregate
cells by both cell types and regions, more so than DESC,
Scanorama and scVI (Figure 5A−C). In contrast, DESC
produces multiple curvature patterns that appear to be
highly artificial while Scanorama segregates cells into their
original regions but not cell types. Quantification supports
the same conclusion in terms of mixing: both VIPCCA
and Harmony lead to higher kBET acceptance rates than
DESC, Scanorama and scVI (Figure 5D); and VIPCCA
achieves the highest mixing metric score (250.0), which is
followed by Harmony (233.5), Scanorama (147.5), scVI
(147.5) and DESC (147.5) (Figure 5E). VIPCCA also infers
cell types reasonably accurately (ARI = 0.28), more so than
scVI (0.18), Scanorama (0.13), DESC (0.13), and Harmony
(0.09) (Figure 5F). The cell types inferred by VIPCCA are
enriched with cell type specific markers as one would expect
(Supplementary Figures S10 and S11). In addition, both
VIPCCA and Harmony are more computationally efficient
than the other three (Figure 5G, H). Overall, the results sug-
gest that VIPCCA is both effective and computationally ef-
ficient for large-scale data integration.

VIPCCA integration facilitates trajectory inference

Trajectory inference refers to the process of determining the
pattern of a dynamic process experienced by cells and sub-
sequently ordering cells based on their progression. Sam-
ples used for trajectory inference are often expected to con-
tain cells with distinct biological states or under different
developmental stages, the alignment of which can be par-
ticularly challenging. In the last data application, we exam-
ined the performance of VIPCCA to aligning samples that
contain cells with heterogeneous and dynamic states. Specif-
ically, we examined two-time series scRNA-seq studies on
human primordial germline cells (PGCs): one with 666 fe-
male cells (5–26 weeks) and 649 male cells (4–25 weeks)
measured on 24 153 genes (35), another with 83 female cells
(4–17 weeks) and 141 male cells (4–19 weeks) measured on
23 394 genes (36). PGCs are the embryonic precursors of
the gamete, with male and female PGCs undergoing several
distinct sequential phases during development (35,36). Be-
cause of the distinct transcriptomic features of female and
male PGCs after 4 weeks of gestation (35), we separately
integrated the female and male PGCs from the two col-
lected datasets. UMAP visualization shows that five meth-
ods (Harmony, LIGER, Scanorama, Seurat V3, VIPCCA)
can mix the two datasets well (Figure 6A, Supplementary
Figure S12a). We applied trajectory inference on the in-
tegrated data using Slingshot (39). The alignment results
suggest that VIPCCA can successfully identify a linear lin-
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Figure 4. Integration of scRNA-seq and scATAC-seq datasets on PBMCs. (A) and (B) show UMAP visualizations of scRNA-seq and scATAC-seq data
based on the cell embeddings obtained from Seurat and VIPCCA, respectively. Each dot represents a cell/nucleus colored by either datasets (left) or cell
types (middle and right). We are unable to color cell types predicted by Seurat V3 because it relies on a completely different strategy to infer cell types that
do not look well on the low dimensional space. (C) compares results between Seurat V3 and VIPCCA by visualizing the number of overlapped cells and
the Jaccard index for each pair of predicted cell types. (D) shows the distribution of cells on the UMAP space that are enriched with unknown nuclei by
VIPCCA, unknown nuclei by Seurat V3, duplicate mapped read-pairs, chimerically mapped read-pairs, read-pairs with at least one end not mapped, and
fragments overlapping with TSS regions. (E) shows the mean duplicate mapped read-pairs and mean TSS fragments in the unassigned cells by the two
methods. (F) shows the mean chimerically mapped read-pairs and unmapped read-pairs in the unassigned cells by the two methods.
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Figure 5. Integration of over a million cells from Drop-seq and SPLiT-seq from mouse brain and spinal cord. Examined integration methods include
DESC, Harmony, scVI, Scanorama, and VIPCCA. Each of the 9 CNS regions and the nuclei were downsampled to 10% for UMAP visualization and
visualize results are shown by technologies (A), cell types (B) or regions (C). Cells from each dataset are colored by several major cell types according to
the cell type annotations from the original publications. Overall integration quality is measured by three metrics: the average kBET acceptance rate (D),
mixing metric (E) and ARI (F). Total cpu time (G) and peak memory usage (H) are also recorded for different methods, all measured on a workstation
with 24 cores of Intel(R) Xeon(R) CPU E5-2620 v2, with 256G memory, and with one GPU of GeForce GTX 2080 Ti.
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Figure 6. Integration of two datasets of human male germline cells that were collected on a series of time points from 4 weeks to 25 weeks. The examined
integration methods include DESC, Harmony, LIGER, MNN, Scanorama, scVI, Seurat V3 and VIPCCA. Data are visualized by either batches (A)
or collection time (B) on the UMAP space before integration and after integration using different integration methods. Slingshot was applied to perform
trajectory inference based on the cell embeddings in reduced dimensional space inferred by each alignment method. Integration quality is further evaluated
by the mixing metric (C) and kBET acceptance rate (D).

eage on both the male and female data (Figure 6B, Supple-
mentary Figure S12b). Our results also demonstrated that
the early-stage cells span from 4W to 25W in male PGCs,
and from 4W to 26W in female PGCs (Figure 6B, Sup-
plementary Figure S12b), which is consistent with the re-
sults reported in (35). The mixing metric score for the five
methods in male PGCs are in the range of 280–285, which
are higher than that obtained before integration (163.3), by
DESC (158.8), by scVI (204.5) or by MNN (249.0) (Figure

6C). The mixing metric score for the five methods in female
PGCs are in the range of 271–282, which are again higher
than that obtained before Integration (200.0), by DESC
(225.0), by scVI (235.0) or by MNN (246.0) (Supplemen-
tary Figure S12c). VIPCCA also achieves the highest kBET
acceptance score in both male and female cells, with its
performance followed by LIGER, Harmony, and the other
methods (Figure 6D, Supplementary Figure S12d). Care-
ful examination of known early vs late stage PGC marker
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genes confirms the expected segregation of late-stage PGCs
from early-stage PGCs in VIPCCA aligned data (Supple-
mentary Figures S13−S14). Early-stage male PGCs (mi-
totic stage) clearly expressed both early markers (36) (e.g.
KIT) and pluripotency markers (e.g. POU5F1, NANOG,
KLF4) (Supplementary Figure S13) and displayed substan-
tial transcriptomic heterogeneity. For example, the two sub-
clusters of early-stage male PGCs are clearly visible and
correspond to migrating PGCs and gonadal mitotic (Fig-
ure 6B). Late-stage male PGCs (mitotic arrest stage) ex-
pressed well characterized marker genes in male mitotic ar-
rest phase (e.g. NANOS2 and CDK6) (Supplementary Fig-
ure S13). Therefore, VIPCCA integration reveals true bio-
logical states during cell development and facilitates trajec-
tory inference.

DISCUSSION

The explosion of single cell technologies brings opportu-
nities and challenges that call for more powerful and scal-
able integration methods. We have presented a new method,
VIPCCA, which is versatile, flexible, and broadly applicable
to a wide range of single-cell data integration tasks. Com-
pared with previous methods, VIPCCA’s contributions are
3-fold: (i) VIPCCA builds upon a data generative model,
which yields normalized results leading to better interpre-
tation and more reliable downstream analyses, without any
post hoc data processing; (ii) non-linearity modeling, in-
spired by the latest practice from deep learning community,
enables VIPCCA to capture complex data structure, which
has been shown highly adaptive across platforms, data types
and cell states; (iii) fueled by variational inference compu-
tational techniques, VIPCCA implements computationally
efficient algorithms that are scalable to millions of cells,
placing the incoming large-scale atlas datasets within reach.

We expect VIPCCA to be broadly used for various inte-
grative analyses such as reference atlas assembly and trans-
fer annotations of reference single-cell data across experi-
ments and modalities. Although we have only demonstrated
the ability of VIPCCA in integrating data types through
the analysis of scRNA-seq and scATAC-seq data, our inte-
gration strategy has the potential for integrating other data
types such as the recent spatially resolved transcriptomics
datasets with single cell RNAseq data (45,46). Specifically,
for single-cell resolution spatial transcriptomics such as
MERFISH, SeqFISH, SeqFISH + and STARmap, we can
directly treat each location of the spatial transcriptomics
data as a single cell and proceed with VIPCCA alignment as
if the spatial transcriptomics data is a single cell RNA-seq
data. For regional resolution spatial transcriptomics such
as 10x visium, Slide-seq and high-definition spatial tran-
scriptomics (HDST), each spatial location would contain
potentially a few to a few dozen single cells. For these re-
gional resolution data, we can attempt to represent each lo-
cation of the spatial transcriptomics data by the major cell
type residing there and proceed with VIPCCA alignment by
treating the spatial transcriptomics data approximately as a
single cell data. Alternatively, we can extend VIPCCA by
introducing a one-to-many mapping matrix, which can be
used to relate each spatial location of the spatial transcrip-
tomics to multiple cells in the scRNA-seq data to facilitate

data alignment. With similar approaches, VIPCCA can be
extended to integrate two or more spatially resolved tran-
scriptomics datasets that are collected on adjacent or simi-
lar tissue sections. These applications could potentially offer
us the promise of understanding cellular and spatial hetero-
geneity of a complex tissue or a disease tissue in the spa-
tial context. Further, the continued development of com-
plementary tools will facilitate comparative analysis of two
or more samples under different biological conditions (e.g.
tumor samples and tumor samples with drug treatment),
which would benefit us with insights for understanding how
cells respond to therapy. VIPCCA allows us to take advan-
tage of the rapid pace of single-cell technological develop-
ment and the vast accumulation of single cell data types for
gaining unique insights into the cellular and spatial hetero-
geneity of complex tissues.

Like some other existing single cell alignment methods
(19,47,48), we have primarily focused on using a Gaussian
noise distribution to model normalized gene expression or
gene activity data that are converted from the original count
data. Modeling normalized data is computationally much
more tractable than modeling the original count data using
over-dispersed or zero inflated Poisson models (e.g. nega-
tive binomial, Poisson mixed models, zero-inflated negative
binomial etc.) (49–51). However, scRNA-seq and scATAC-
seq data are of count nature. Because of the relatively low
sequencing depth of single cell sequencing, accounting for
the mean and variance relationship by modeling the origi-
nal count data directly often has added benefits (52). There-
fore, extending our method to align the original count data
from scRNA-seq and scATAC-seq directly while properly
accounting for the over-dispersion or dropout events will
likely improve alignment accuracy further.
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37. Büttner,M., Miao,Z., Wolf,F.A., Teichmann,S.A. and Theis,F.J.
(2019) A test metric for assessing single-cell RNA-seq batch
correction. Nat. Methods, 16, 43–49.

38. Blondel,V.D., Guillaume,J.L., Lambiotte,R. and Lefebvre,E. (2008)
Fast unfolding of communities in large networks. J. Stat. Mech.
Theory Exp., 2008, P10008.

39. Street,K., Risso,D., Fletcher,R.B., Das,D., Ngai,J., Yosef,N.,
Purdom,E. and Dudoit,S. (2018) Slingshot: cell lineage and
pseudotime inference for single-cell transcriptomics. BMC Genomics,
19, 477.

40. Thomas,G.D., Hamers,A.A., Nakao,C., Marcovecchio,P.,
Taylor,A.M., McSkimming,C., Nguyen,A.T., McNamara,C.A. and



e21 Nucleic Acids Research, 2022, Vol. 50, No. 4 PAGE 16 OF 16

Hedrick,C.C. (2017) Human blood monocyte subsets: a new gating
strategy defined using cell surface markers identified by mass
cytometry. Arterioscler. Thromb. Vasc. Biol., 37, 1548–1558.

41. Zhang,H., Gregorio,J.D., Iwahori,T., Zhang,X., Choi,O.,
Tolentino,L.L., Prestwood,T., Carmi,Y. and Engleman,E.G. (2017) A
distinct subset of plasmacytoid dendritic cells induces activation and
differentiation of B and T lymphocytes. Proc. Natl. Acad. Sci. U.S.A.,
114, 1988–1993.

42. Corces,M.R., Buenrostro,J.D., Wu,B., Greenside,P.G., Chan,S.M.,
Koenig,J.L., Snyder,M.P., Pritchard,J.K., Kundaje,A., Greenleaf,W.J.
et al. (2016) Lineage-specific and single-cell chromatin accessibility
charts human hematopoiesis and leukemia evolution. Nat. Genet., 48,
1193–1203.

43. Becht,E., McInnes,L., Healy,J., Dutertre,C.A., Kwok,I.W., Ng,L.G.,
Ginhoux,F. and Newell,E.W. (2019) Dimensionality reduction for
visualizing single-cell data using UMAP. Nat. Biotechnol., 37, 38–44.

44. Fei,T. and Yu,T. (2020) scBatch: batch-effect correction of RNA-seq
data through sample distance matrix adjustment. Bioinformatics, 36,
3115–3123.

45. Sun,S., Zhu,J. and Zhou,X. (2020) Statistical analysis of spatial
expression patterns for spatially resolved transcriptomic studies. Nat.
Methods, 17, 193–200.

46. Zhu,J., Sun,S. and Zhou,X. (2021) SPARK-X: non-parametric
modeling enables scalable and robust detection of spatial expression

patterns for large spatial transcriptomic studies. Genome Biol., 22,
184.

47. Eraslan,G., Simon,L.M., Mircea,M., Mueller,N.S. and Theis,F.J.
(2019) Single-cell RNA-seq denoising using a deep count
autoencoder. Nat. Commun., 10, 390.

48. Hu,J., Zhong,Y. and Shang,X. (2021) A versatile and scalable
single-cell data integration algorithm based on domain-adversarial
and variational approximation. Brief. Bioinform.,
https://doi.org/10.1093/bib/bbab400.

49. Sun,S., Zhu,J., Mozaffari,S., Ober,C., Chen,M. and Zhou,X. (2019)
Heritability estimation and differential analysis of count data with
generalized linear mixed models in genomic sequencing studies.
Bioinformatics, 35, 487–496.

50. Sun,S., Hood,M., Scott,L., Peng,Q., Mukherjee,S., Tung,J. and
Zhou,X. (2017) Differential expression analysis for RNAseq using
Poisson mixed models. Nucleic Acids Res., 45, e106.

51. Lea,A.J., Tung,J. and Zhou,X. (2015) A flexible, efficient binomial
mixed model for identifying differential DNA methylation in bisulfite
sequencing data. PLoS Genet., 11, e1005650.

52. Kim,T.H., Zhou,X. and Chen,M. (2020) Demystifying “drop-outs”
in single-cell UMI data. Genome Biol., 21, 196.

https://doi.org/10.1093/bib/bbab400

