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Towards a minimal EEG channel 
array for a biometric system 
using resting‑state and a genetic 
algorithm for channel selection
Luis Alfredo Moctezuma* & Marta Molinas

We present a new approach for a biometric system based on electroencephalographic (EEG) signals of 
resting-state, that can identify a subject and reject intruders with a minimal subset of EEG channels. 
To select features, we first use the discrete wavelet transform (DWT) or empirical mode decomposition 
(EMD) to decompose the EEG signals into a set of sub-bands, for which we compute the instantaneous 
and Teager energy and the Higuchi and Petrosian fractal dimensions for each sub-band. The obtained 
features are used as input for the local outlier factor (LOF) algorithm to create a model for each 
subject, with the aim of learning from it and rejecting instances not related to the subject in the 
model. In search of a minimal subset of EEG channels, we used a channel-selection method based on 
the non-dominated sorting genetic algorithm (NSGA)-III, designed with the objectives of minimizing 
the required number EEG channels and increasing the true acceptance rate (TAR) and true rejection 
rate (TRR). This method was tested on EEG signals from 109 subjects of the public motor movement/
imagery dataset (EEGMMIDB) using the resting-state with the eyes-open and the resting-state with 
the eyes-closed. We were able to obtain a TAR of 1.000± 0.000 and TRR of 0.998± 0.001 using 64 
EEG channels. More importantly, with only three channels, we were able to obtain a TAR of up to 
0.993± 0.01 and a TRR of up to 0.941± 0.002 for the Pareto-front, using NSGA-III and DWT-based 
features in the resting-state with the eyes-open. In the resting-state with the eyes-closed, the TAR 
was 0.997± 0.02 and the TRR 0.950± 0.05, also using DWT-based features from three channels. 
These results show that our approach makes it possible to create a model for each subject using EEG 
signals from a reduced number of channels and reject most instances of the other 108 subjects, who 
are intruders in the model of the subject under evaluation. Furthermore, the candidates obtained 
throughout the optimization process of NSGA-III showed that it is possible to obtain TARs and TRRs 
above 0.900 using LOF and DWT- or EMD-based features with only one to three EEG channels, opening 
the way to testing this approach on bigger datasets to develop a more realistic and usable EEG-based 
biometric system.

The number of biometric systems based on electroencephalography (EEG) has been steadily growing using vari-
ous approaches to solve problems related to the authentication and verification stages. A research-grade EEG 
device guarantees a controlled environment and high-quality multi-channel EEG recording, which is offset by the 
high computational cost, non-portability of the equipment, and use of inconvenient conductive gels. The develop-
ment of dry EEG sensors has created new possibilities for the development of new types of portable EEG systems.

An important step towards this goal is a reduction in the number of required EEG channels while increasing, 
or at least maintaining, the same performance high-density EEGs. Depending on whether the paradigm is task-
related or task-free, certain EEG channels provide only redundant or sub-optimal information. Several techniques 
have been studied with the aim of developing low-density EEG-based systems with high performance, i.e, pre-
processing and feature extraction, channel selection, and paradigms to stimulate brain signals. For EEG-based 
biometric systems, several approaches have been presented using various paradigms to stimulate and record the 
EEG signals, i.e. imagined speech1–3, resting-state4–10, and event-related potentials (ERPs)11,12.
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The use of the resting-state does not require any training before using the system. We present an approach 
using the resting-state during which the eyes of the subjects were open and repeated the experiments using the 
resting-state during which the eyes of the subjects were closed. We organized our approach as a multi-objective 
optimization problem with three unconstrained objectives: (1) reduce the necessary number of EEG channels 
to perform identification, (2) obtain a true acceptance rate (TAR) as high as possible, and (3) obtain a true 
rejection rate (TRR) as high as possible. The TAR is the percentage of times the system correctly verifies a true 
claim of identity, and the TRR the percentage of times it correctly rejects the subjects that are not in the system.

In general, there are a number of approaches that use raw data as input for various configurations of neural 
networks (NN)13–16 and several have been proposed to tackle the high dimensionality of the data using methods 
for feature extraction, such as principal component analysis (PCA)17, the discrete wavelet transform (DWT)3, 
or empirical mode decomposition (EMD)2,3,11,12.

Several approaches have been proposed for the creation of a biometric system following various experiment 
configurations, with various paradigms and methods for feature extraction and classification using the public 
EEG Motor Movement/Imagery Dataset (EEGMMIDB), using various configurations of neural networks14,18–20, 
other supervised and unsupervised techniques5,21–31, and methods for EEG channel selection6,32,33.

One approach used a subset of eight pre-selected channels32 and EEG data from a task for training and then 
that from another task for testing. The selection of the channels was justified based on their stability across various 
mental tasks, and the results presented were evaluated using the half total error rate (HTER), which was 14.69%. 
Another approach used various tasks from the EEGMMIDB and channel selection, using the binary flower pol-
lination algorithm (BFPA),and reported accuracies of up to 0.87 using supervised learning and approximately 
32 EEG channels33. However, the analysis considered only non-intruders when using multi-class classification, 
and therefore the addition of more stages for detecting the intruders is necessary.

Other approaches use instances of different length with the same dataset, such as instances of 10 or 12 s5,24. 
Resting-state instances of 10 s have been validated with the leave one-out framework, consisting of five instances 
of 10 s for training and one instance for validating the model24, resulting in a correct recognition rate (CRR) 
of 0.997 for the resting-state with the eyes-open, and 0.986 with the eyes-closed, all using 64 EEG channels. 
Biometric systems based on resting-state and one-second EEG signals from only two channels (FP1 and FP2) 
and a 256-Hz sample rate has been proposed by extracting features directly from the raw data and using Fisher’s 
discriminant analysis, obtaining an up to 0.966 TAR and a 0.034 FAR9.

Deep learning algorithms have shown to be a success in image processing and other fields, but when using 
EEG data they have not shown convincing and consistent improvements over the most advanced methods to 
date16,34. However, recently some new approaches have been presented with high accuracies, for instance, an 
approach using Convolutional Neural Networks (CNN) Gated Recurrent Unit (CNN-GRU) was presented15, 
and the authors evaluated the proposed method in a public dataset called DEAP, which consists of EEG signals 
from 32 subjects using 32 channels using different emotions as a paradigm35. Their experiments were performed 
using 10-s segments of EEG signals and reported that CNN-GRU reached up to 0.999 mean CRR with 32 chan-
nels, and 0.991 with 5 channels that were selected using one-way repeated measures ANOVA with Bonferroni 
pairwise comparison (post-hoc). The findings of this work are interesting and the accuracies obtained are high. 
However, deep learning approaches need to use a large amount of data, as well as the length of the signal segments 
and the paradigm followed are not the standard, and for a real-time application, the collection of a large number 
of instances, and instances during long periods can be exhausting and not competitive with current biometric 
systems in the industry (i.e fingerprint, face recognition, etc.).

The amount of data and time required for training NN are the main concerns for effective deployment and 
adoption in real-life scenarios of EEG-based biometric systems. In the literature, researchers report from simple 
NN structures (i.e., a single hidden layer) to more complex networks (Recurrent and CNN), but it requires the 
improvement of computational power, with faster CPUs and the use of GPUs15,28–31,34. To overcome the need for 
a large amount of data of deep learning approaches, there is an approach that uses simple data augmentation 
techniques by creating overlapped time windows18. Other related proposals using neural networks have been 
presented and compared in the state of the art28–31, where some of the most relevant works used around 100 
subjects and in most of the cases 64 channels for testing their approaches13,14,18,36. However, there is no defined 
method for channel selection, since the process for selecting the most relevant channels requires the repetition 
of the classification process several times, and it is well known that deep learning approaches are computation-
ally costly30,34.

Based on the results of our previous studies2,7,12, we compared EMD and DWT for decomposing the EEG 
signals into different frequency bands. When using EMD, we selected the two sub-bands closest to the original 
EEG signal for each channel, and for DWT we decomposed the EEG signal into four different sub-bands (Three 
levels of decomposition and the residual), as explained in the “Methods” section. For each sub-band, we then 
extracted the instantaneous and Teager energy and the Higuchi and Petrosian fractal dimensions, thus obtaining 
a set of eight features per channel when using EMD and 16 features for DWT.

We present the results from a set of experiments using the EEGMMIDB dataset, with 109 subjects, for cre-
ating an EEG-based biometric system that creates a model for each subject and can reject the other 108. We 
also present results from experiments using one-class support vector machine (OC-SVM) with the radial basis 
function (RBF) to compare the behavior with the second approach, which uses the local outlier factor (LOF). 
All the experiments were validated using 10 runs with 80% of the instances for training and 20% for testing. We 
solved the optimization problem using the non-dominated sorting genetic algorithm (NSGA)-III, which uses the 
Pareto-optimal solutions and a niche method to maintain stable sub-populations of good points37. NSGA-III has 
proven to be a robust method for channel selection, especially when using more than two objectives12,38. First, 
we report the results for a set of experiments using all the available channels to show the TAR and TRR using 
different parameters. We then present the results for experiments using OC-SVM and the optimization process 
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with EEG signals from the resting-state in which the eyes of the subjects were open. Finally, we repeated the 
experiments, solving the optimization problem for channel selection using LOF with different parameters and 
the EEG signals from the resting-state in which the eyes of the subjects were open and then closed.

Results
Subject identification using 64 EEG channels, comparing OC‑SVM and LOF using different 
parameters.  We used EEG signals from 64 channels of 109 subjects and 60 instances of one second with a 
sample rate of 160 Hz that were recorded during the resting-state in which the eyes of the subject were open. We 
used EMD- or DWT-based features, and evaluated the results using the TAR and TRR.

For ensuring tenfold cross-validation, we performed the experiments 10 times, selecting randomly 80% of the 
instances for training and 20% for testing, in this way we are ensuring that the method can be generalized and 
that the results can be obtained even using another subset of instances for training and testing. The models were 
created using OC-SVM or LOF models. It should be noted that the channels and parameters were optimized for 
all the subjects at the same time but creating a single machine-learning model for each subject. In general, the 
results presented in Table 1 were obtained by creating a model for each of the 109 subjects in which the model 
of the subject was used to recognize the subject and reject the rest of the 108 that were not part of the model.

The results obtained with OC-SVM showed the lowest TAR (Table 1), meaning that the models created with 
OC-SVM did not learn from the training set and thus rejected approximately 50% of the instances, on average, 
explaining why the TRR was high when using OC-SVM. The results obtained with LOF, using three different 
algorithms and one or ten neighbors, are also shown in Table 1 for illustrative purposes. LOF using the k-d tree 
algorithm and one neighbor resulted in the highest TAR and TRR, meaning that it was possible to identify each 
subject and reject almost all the rest that did not correspond to the models.

Previous results have shown that the algorithm and number of neighbors used are important for increasing 
the TAR and TRR. We repeated the experiments using DWT-based features considering only LOF with the k-d 
tree and 1 to 10 neighbors to provide more information about this behavior The average results obtained using 
10-fold cross-validation are presented in Fig. 1.

The use of a higher number of neighbors resulted in a decrease in the TAR from 1.000 to 0.923 and an increase 
in the TRR or its remaining higher than 0.988 (Fig. 1), meaning that the models were unable to learn about the 
features of each subject using that number of neighbors. This is relevant, as it shows the importance of select-
ing not only the best feature extraction method but also the LOF algorithm and the best number of neighbors.

Channel selection using NSGA‑III and OC‑SVM for EEG signals from the resting‑state with the 
eyes open.  We previously showed that the TAR and TRR of the models created using OC-SVM can be 
improved by finding the best nu and gamma parameters12. We performed the optimization process defined 
in the “Methods” section to provide more information about the behavior of OC-SVM models using a bigger 
dataset, trying to improve the TAR and TRR while reducing the necessary number of EEG channels for subject 
identification.

Table 1.   Average TARs and TRRs for subject detection with EEG data from 64 channels using different 
parameters for OC-SVM and LOF and DWT-based features with 109 subjects. Bold values indicates the best 
relationship between TAR and TRR.

Method Algorithm No. neighbors

EMD DWT

TAR​ TRR​ TAR​ TRR​

OC-SVM 0.502± 0.004 0.993± 0.001 0.499± 0.002 0.998± 0.000

LOF Ball tree 1 1.000± 0.000 0.923± 0.005 1.000± 0.000 0.979± 0.002

LOF Ball tree 10 0.926± 0.002 0.963± 0.007 0.968± 0.0038 0.989± 0.012

LOF kd tree 1 1.000 ± 0.000 0.989 ± 0.005 1.000 ± 0.000 0.998 ± 0.001

LOF kd tree 10 0.926± 0.001 0.955± 0.006 0.923± 0.001 0.988± 0.002

LOF Brute 1 1.000± 0.000 0.926± 0.004 1.000± 0.000 0.979± 0.004

LOF Brute 10 0.927± 0.001 0.939± 0.007 0.924± 0.003 0.989± 0.002

Figure 1.   TARs and TRRs obtained using various numbers of neighbors with the LOF k-d tree algorithm and 
DWT-based features.
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For this experiment, we used EEG signals of the 109 subjects during the resting-state with their eyes-open, 
using 80% of the instances for training and 20% for testing. We used NSGA-III for the channel selection method 
using 64 binary genes in a chromosome to represent the EEG channels (1 if the channel is used, 0 if not) and 
two genes with decimal values (both from 0 to 1) to select the best nu and gamma parameters, obtaining thus a 
chromosome of 66 genes.

The distribution of the results of one run, as an example, obtained using EMD- and DWT-based features is 
shown in Fig. 2. The average and standard deviation of the results obtained using 10-fold cross-validation are 
presented in Table 2.

As mentioned previously, we performed the optimization 10 times for cross-validation. For some runs, the Pareto-
front contained only channel combinations with one to five channels and others with one to seven. Using these 
different subsets found, we can further analyze the channels in common, and the others. With this, it may be pos-
sible to recommend a set of channels for a new possible headset (Considering the best subset found and the most 
appropriate for a new design.), but first, it is necessary to perform the analysis to choose the best paradigm or sub-task 
(i.e. resting-state with the eyes open or closed) for EEG data collection. For comparative purposes, we present the 
average TAR and TRR obtained using channel combinations of one to five channels in the Pareto-front of the 10 runs.

We obtained a TAR of 0.822± 0.028 and a TRR of 0.969± 0.022 with only five channels when using EMD-
based features (Table 2). The TAR and TRR were 0.822± 0.028 and 0.981± 0.017, respectively, when using 
DWT-based features and five channels with the optimization process.

As it is presented in Fig. 2, the candidates generated using EMD- or DWT-based features and OC-SVM 
showed a clear tendency to reject all the subjects (Which increases the TRR, since the models are rejecting 
correctly the intruders), even the subject in each model (Which decreases the TAR), meaning that the models 
created for each subject did not learn from the provided features. TAR increases only if the right nu and gamma 
parameters and channels are selected, which also vary in each run and is reflected in the standard deviation.

Figure 3 presents the set of channels used during the optimization process in the 10 runs. The set of chan-
nels found when using EMD-based features are presented in the top and the bottom is for DWT-based features. 
Each set of channels from left to right correspond to using one to five channels, and as it was mentioned early, in 
some of the runs, the channels found by NSGA-III were different to other runs, but the figure presents one set of 
them. Using EMD-based features, the channels found when using one to five channels differ, but it is possible to 
observe that channels around T10 and T8 are consistent across most sets. When using DWT-based features it is 
more clear that channel IZ appears in all the sets, and channels C4 and T10 appear in most of the sets.

Channel selection using NSGA‑III and LOF for EEG signals from the resting‑state with the eyes 
open.  We performed the optimization process using the 109 subjects in the dataset, but now considering LOF 
for creating the models of each subject. We used NSGA-III for the channel selection method using 64 binary 
genes in a chromosome to represent the EEG channels and two genes with integer values to select the algorithm 
(1: Ball tree, 2: k-d tree, 3: Brute force) and the number of neighbors (From 1 to 10, which were proposed 
experimentally) to be used, obtaining thus a chromosome of 66 genes. The experiment was repeated 10 times for 
validation, each time using 80% of the instances of each subject for training and 20% for testing.

Figure 2.   Frontal and aerial view of the TARs and TRRs obtained in the channel selection process using EMD-
based features (left) and DWT-based features (right) with OC-SVM.

Table 2.   TARs and TRRs obtained for the first five EEG channels in the Pareto-front for three objectives 
solved with NSGA-III using EMD- and DWT-based features with OC-SVM. Bold values indicates the best 
relationship between TAR and TRR.

No. channels

EMD DWT

TAR​ TRR​ TAR​ TRR​

1 0.776± 0.138 0.851± 0.055 0.801± 0.063 0.905± 0.042

2 0.776± 0.092 0.911± 0.043 0.774± 0.066 0.958± 0.023

3 0.763± 0.150 0.969± 0.020 0.629± 0.180 0.959± 0.022

4 0.779± 0.144 0.966± 0.033 0.720± 0.069 0.980± 0.020

5 0.822 ± 0.028 0.969 ± 0.022 0.822 ± 0.028 0.981 ± 0.017
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The results of the first run are presented in Fig. 4 as an example of the distribution of the TARs and TRRs 
during the optimization process and Table 3 presents the average results for both methods of feature extraction, 
EMD or DWT.

The use of DWT-based features allowed us to obtain an average TAR of up to 0.993± 0.001 and a TRR of 
0.941± 0.002 using only three EEG channels (Table 3). Interestingly, the distribution of the results was very 
distinct and clear (Fig. 4), indicating that we can obtain similar TARs and TRRs with different channel combina-
tions using LOF and EMD- or DWT-based features.

The average distribution of the parameters used in the complete optimization process (In all generations and 
all chromosomes) is presented in Fig. 5, showing that the algorithm more often used by LOF was ball tree with 
three neighbors when using EMD-based features. The ball tree and k-d tree algorithms were used equally, with 
three neighbors, when DWT-based features were used. Analysis of only the parameters used for the results in 

Figure 3.   Set of one to five channels found during the optimization process for creating the biometric system 
with OC-SVM using EMD-based features (top) or DWT-based features (bottom), and resting-state with the 
eyes open.

Figure 4.   Frontal and aerial view of the TARs and TRRs obtained in the channel selection process using EMD-
based features (left), and DWT-based features (right) with LOF.

Table 3.   TARs and TRRs obtained for the first seven EEG channels in the Pareto-front for three objectives 
solved with NSGA-III using EMD-based features and LOF. Bold values indicates the best relationship between 
TAR and TRR with the lowest number of channels.

No. channels

EMD DWT

TAR​ TRR​ TAR​ TRR​

1 0.930± 0.005 0.904± 0.006 0.979± 0.001 0.888± 0.003

2 0.949± 0.002 0.909± 0.005 0.991± 0.001 0.922± 0.002

3 0.960± 0.003 0.909± 0.005 0.993 ± 0.001 0.941 ± 0.002

4 0.964± 0.005 0.918± 0.028 0.995± 0.011 0.949± 0.004

5 0.969± 0.008 0.926± 0.011 0.996± 0.006 0.952± 0.004

6 0.980± 0.003 0.938± 0.011 0.997± 0.006 0.957± 0.009

7 0.980± 0.004 0.940± 0.005 0.997± 0.001 0.957± 0.005
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the Pareto-front in the 10-fold cross-validation (For obtaining the results presented in Table 3) confirmed that 
the ball tree algorithm with 3 to 4 neighbors is the most often used for EMD-based features, and for DWT-based 
features, the ball tree and k-d tree are used with only two neighbors, as it is shown in Fig. 6.

Figure 7 presents the set of channels of the 10 runs used for obtaining the results on Table 3, which correspond 
to the use of one to seven channels, using EMD-based features (Top of the figure) and DWT-based features (Bot-
tom of the figure). Interestingly, in this case, the channels are almost the same using both methods, and they 
did not differ too much when using one or three channels. Another important point is that channels IZ, T8, and 
T10, appear in most of the cases, in both methods, using EMD- or DWT-based features. It is possible to observe 
that the most relevant area is around C6, T8, T10 and F5 channels.

Channel selection using NSGA‑III and LOF for EEG signals from the resting‑state with the eyes 
closed.  Previous experiments using LOF resulted in higher TARs and TRRs with a lower number of EEG 
channels than using OC-SVM. We repeated the optimization process with EEG data from 109 subjects but 
considering the resting-state with the eyes closed, as described in the “Methods” section, to provide additional 
information about the performance of LOF with EMD- or DWT-based features.

The chromosome representation was as in the previous experiment: 64 genes for representing the EEG chan-
nels and two additional genes with integer values for the different algorithms and number of neighbors. Each 
experiment was performed 10 times, randomly selecting 80% of the instances for training and 20% for testing, 
ensuring thus the tenfold cross-validation. The results obtained from a run when using EMD- and DWT-based 
features are presented in Fig. 8 for visualization and understanding the behavior during the optimization process.

The average TAR and TRR in the Pareto-front for the first seven channels, in both cases, using EMD and 
DWT for feature extraction, are presented in Table 4. The results show that subject identification is possible using 
the resting-state with the eyes closed. The TAR and TRR are similar to those presented in Table 3. Interestingly, 

Figure 5.   Average distribution of the algorithms and number of neighbors used in the optimization process 
with EMD-based features (left) and DWT-based features (right).

Figure 6.   Average distribution of the algorithms and number of neighbors used for the results in the Pareto-
front of the optimization process with EMD-based features (left) and DWT-based features (right).

Figure 7.   Set of one to seven channels found during the optimization process for creating the biometric system 
with LOF, and EMD-based features (top) or DWT-based features (bottom), and resting-state with the eyes open.
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the results were maintained in the 10 runs, especially when using DWT for feature extraction, as the standard 
deviation was 0.011 for the TAR and 0.009 for the TRR.

The average distribution of the parameters used during the entire optimization process is shown in Fig. 9. 
The k-d tree algorithm was the most used, in both cases, using EMD or DWT, and the number of neighbors 
ranged from 1 to 4, with a clear advantage of using two neighbors. The average parameters used for obtaining 
the results in the Pareto-front are presented in Fig. 10, confirming that the k-d tree algorithm is the most used 
and the number of neighbors still ranges from 1 to 4, with preferential use of only 2 neighbors.

As in the previous experiment using resting-state with eyes open, Fig. 11 presents the set of channels found in 
the optimization process of the 10 runs creating the models for the biometric system using resting-state with the 
eyes closed, using EMD-based features (Top of the figure) as well as DWT-based features (Bottom of the figure). 
Interestingly, the results presented in Figs. 7 and 11 do not differ too much, even across methods and in the sets 
of different number of channels (In the sets created in the 10 runs with 1 to 7 channels). The most relevant area 
is still around the channels C6, T8, T10 and IZ.

Discussion
Our research on biometric systems has focused on the study and comparison of various task-related and task-
free paradigms, i.e. resting-state, ERPs, and imagined speech, using various types of electrodes, and various 
numbers of channels2,3,7,11. The resting-state has been used in the state-of-the-art for this purpose since it does 
not require any training process for the subject. There are approaches based on multi-class classification using 
machine-/deep-learning and one-class classification. Although most of the approaches can discriminate between 
the subjects in the database when using multi-class classification, they do not consider possible intruders. In 
the best case, a study presented a set of eight EEG channels selected beforehand32. Another study used deep 

Figure 8.   Frontal and aerial view of the TARs and TRRs obtained in the channel selection process using EMD- 
(Left) and DWT-based features (Right) from the resting-state with the eyes closed, using LOF.

Table 4.   TARs and TRRs obtained with LOF for the first seven EEG channels in the Pareto-front for three 
objectives solved with NSGA-III, using EMD- or DWT-based features and the resting-state with the eyes 
closed. Bold values indicates the best relationship between TAR and TRR with the lowest number of channels.

No. channels

EMD DWT

TAR​ TRR​ TAR​ TRR​

1 0.945± 0.005 0.888± 0.008 0.979± 0.001 0.881± 0.004

2 0.945± 0.005 0.918± 0.007 0.995± 0.001 0.935± 0.005

3 0.955± 0.005 0.918± 0.007 0.997± 0.002 0.950± 0.005

4 0.969± 0.003 0.926± 0.006 0.997± 0.002 0.950± 0.003

5 0.971± 0.002 0.933± 0.002 0.997± 0.002 0.951± 0.003

6 0.975± 0.001 0.945± 0.002 0.998± 0.000 0.953± 0.002

7 0.979± 0.002 0.955± 0.005 0.998± 0.000 0.955± 0.002

Figure 9.   Average distribution of the algorithms and number of neighbors used in the optimization process 
with EMD-based features (left) and DWT-based features (right) using EEG signals from the resting-state with 
the eyes closed.
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learning with a set of five EEG channels also selected beforehand, but they did not use resting-state15. We previ-
ously presented a method for channel selection using a two-stage method tested on a dataset with 26 subjects 
for detecting intruders and then using multi-class classification to detect the name of the subject12. The stage for 
intruder detection was created using OC-SVM with nu and gamma parameters determine by a genetic algorithm 
that also selected the most relevant channels for the task. However, OC-SVM has been shown to be very sensitive 
to the nu and gamma parameters.

Here, we present a new approach for an EEG-based biometric system using brain signals recorded during the 
resting-state with the eyes open and the resting-state with the eyes closed, using LOF and channels selected by 
NSGA-III. In short, we created a model using LOF with EMD-/DWT-based features for each subject, and then 
were able to reject the other 108 subjects in the dataset, confirming that the features extracted from each subject 
can help to discriminate between the subject in the model and the rest of the subjects, with good results, even 
with a low number of EEG channels and using 108 subjects as intruders.

First, we conducted experiments using EEG signals from the resting-state with the eyes open and 64 EEG 
channels, with OC-SVM and LOF, using different parameters. We show that we can attain a TAR of up to 
1.000± 0.000 and a TRR of 0.998± 0.001 using LOF and the k-d tree algorithm with only one neighbor, all using 
DWT-based features. Then, we repeated the experiment using 1 to 10 neighbors with DWT-based features, LOF, 
and the k-d tree algorithm, as they were the best parameters found in the previous experiment, and also to show 
that a different number of neighbors affects the TAR and TRR.

We also showed that OC-SVM resulted in a TAR of 0.502± 0.004 and a TRR of 0.993± 0.001, meaning that 
the models are unable to learn from any of the features of the subject (EMD- or DWT-based). It was thus neces-
sary to fit the best nu and gamma parameters by using the multi-objective optimization process12. This resulted in 
substantially higher TAR and TRR values (See Fig. 2). In the best case, we obtained a TAR of up to 0.822± 0.028 
and a TRR of 0.969± 0.22 with EMD-based features, and a TAR of 0.822± 0.28 and a TRR of 0.981± 0.017 with 
DWT-based features. However, the standard deviation was high.

The results presented with LOF when using the resting-state with the eyes open show that we can obtain a 
TAR of up to 0.993± 0.01 and a TRR of 0.941± 0.002, with only three EEG channels, and with only two EEG 
channels using DWT-based features. We obtained a TAR and TRR above 0.900, which are higher than the best 
results obtained in the Pareto-front using EMD-based features. As shown in Fig. 4, the distribution of the TAR 
and TRR values was consistent when reducing the number of EEG channels during the optimization process, 
showing that the models created with LOF learn well from the features provided and that different channel com-
binations are used to obtain the best results, as presented in Table 3. In this case, the most used algorithm for the 
complete optimization process was ball tree, with three neighbors. Analysis of the parameters using DWT-based 
features and only the results obtained in the Pareto-front show the use of the ball tree and k-d tree algorithms to 
be highly similar, using only two neighbors.

Figure 10.   Average distribution of the algorithms and number of neighbors used for the results in the Pareto-
front of the optimization process with EMD-based features (left) and DWT-based features (right) using EEG 
signals from the resting-state with the eyes closed.

Figure 11.   Set of one to seven channels found during the optimization process for creating the biometric 
system with LOF, using EMD-based features (top) or DWT-based features (bottom), and resting-state with the 
eyes closed.
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The use of EEG signals from the resting-state with the eyes closed and LOF confirmed that DWT-based 
features works better, with a TAR of up to 0.997± 0.002 and TRR of up to 0.950± 0.005, with only three EEG 
channels. The k-d tree algorithm, with 2 to 4 neighbors, was the most used for the complete optimization process, 
as well as the results obtained for the Pareto-front.

The use of OC-SVM can offer good results if the appropriate parameters are chosen. Otherwise, the TAR can 
decrease substantially. This behavior needs to be further investigated using different feature-extraction methods 
and compare with the results using different-size datasets. On the other hand, LOF proved to be a robust classifier 
for creating an EEG-based biometric system, especially using DWT-based features, with the ball tree or k-d tree 
algorithms and 2 to 4 neighbors. In the future we will evaluate whether solving the problems related to EMD 
(Best spline, end effects, mode mixing, etc.) can improve the results presented in this study.

Comparing the results presented in Figs. 3, 7 and 11, one can argue that when using LOF it is more clear to 
see the most relevant area for choosing a possible set of channels and compare these findings in the future. It is 
interesting to see that when using resting-state with eyes open or closed did not differ substantially in the chan-
nel’s distribution. The localization of most of the relevant channels, i.e the channels that are found in most of 
the sets, is mainly around channels F5, T8, T10 and IZ, and as it has been shown in Fig. 7, it is more clear when 
using resting-state with the eyes open. In general, it is possible to mention that most of the channels are localized 
in the temporal and frontal areas, as well as around the inion, which may be associated with the previous task 
performed during the data collection. This is an aspect that must be tested in other datasets39–41.

One of the purposes of this paper was to prove that resting-state can be used as a paradigm for creating a 
biometric system in a larger dataset than in our previous work. We have provided a set of experiments where 
high-density EEG was available during training and testing stages, but for a real-time implementation of the 
biometric system, we will select only a few of the best channels for designing a new portable headset tailored for 
this purpose. With the set of experiments and the methods tested for classification and optimization, we have 
provided a proof-of-concept for a biometric system based on resting-state using a few electrodes, and proved it 
in a pool with a high number of subjects (109 subjects) compared with our previous work on a smaller dataset. 
However, with our current results it is not possible to argue that there exists a unique subset of EEG channels or 
brain regions that works better when creating the biometric system using resting-state. This study is a starting 
point for analyzing different public and private datasets trying to identify a unique subset of channels that may 
be used for designing a new portable and easy to use EEG headset that can be tested in real-time, adding new 
subjects to the system and identifying them with a few electrodes.

It is noticeable the progress in subject identification using EEG signals from different paradigms, but one of 
the most relevant unsolved problems is that usually the new approaches up to now, are proposed and validated 
using EEG datasets recorded in well-controlled environments30,42. Most of the proposals using high-density 
EEG signals are recorded with medical-grade sensor systems (Using gel or saline solution for improving the 
conductivity), which may increase the performance of the methods. However, for practical and portable devices, 
ease-of-use will be essential and dry electrodes might be offer opportunities here42. In general, the analysis and 
validation in real-life scenarios is necessary. With this, also the best and faster methods will be studied in a more 
realistic way, and the appropriate and necessary number of trials per subject will be considered7.

For certain brain–computer interface (BCI) applications, the problem of recognizing new instances from new 
sessions has been studied using EEG data from different sessions or adding new instances for calibration. In the case 
of session-to-session or subject-to-subject transfer, the learning problem has been studied using linear discriminant 
analysis (LDA) and SVM, based on motor imagery or P300 paradigms34,43–46. To adapt the EEG feature space and 
thus reduce session-to-session variability, we can use a data space adaptation method based on the Kullback-Leibler 
divergence criterion (Also called relative entropy), aiming to minimize the distribution of differences from the 
training session to a different session44. There is evidence that for certain BCIs, it is possible to use background noise 
immediately before a new session to improve session-to-session variability using a regularized spatio-temporal filter45.

The dataset used in this paper consists of EEG signals from a single session, which limits the experimental 
configurations and does not allow evaluation of whether we can create models for each subject from a certain ses-
sion and be able to recognize the subjects or reject them using data from another session. Future steps will center 
the attention on tackling this problem and analyzing a possible way to use new correctly-classified instances 
to decrease session-to-session variability, as well as using and comparing current progress in transfer learning, 
using machine-/deep-learning methods for this problem16,46.

Another point to be analyzed in our future work is the comparison with our current proposal and a new way 
for extracting and selecting the features, looking for improving the TRR and TAR. This can be achieved using a 
big bag-of-features from the different sub-bands (Possibly from both methods, EMD and DWT) and add addi-
tional GA genes for representing these features in the chromosomes and thus select the best features during the 
optimization process, at the same time of selecting the best channels.

In general, the resting-state has been shown to be a good candidate but there is not yet sufficient research 
evidence using larger datasets and different stages. Our future efforts will be focused on relevant parameters that 
can be extracted from the EEG signals of each subject and thus add information for the complete authentication 
and verification process, such as re-evaluating the accepted subject using multi-class classification, detecting 
the age-range and sex of the subjects47, etc. Additionally, the use of ever larger datasets is still necessary, using 
EEG data from different sessions and of different lengths, as well as considering fewer instances for training.

Methods
Dataset.  We used a public dataset that consists of EEG signals of 109 subjects from 64 channels, localized 
according to the 10–10 international system, with a sample rate of 160 Hz and the recorder using the BCI2000 
system. The dataset is part of the physionet project48.
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Each subject performed two 1-min resting-state runs, one with the eyes open and one with the eyes closed. 
Then, three 2-min runs were carried out for four different tasks: two motor movement tasks and two imagery 
tasks49. The four types of motor movement and imagery tasks were performed for opening and closing the left 
or right fist, imagining opening and closing the left or right fist, opening and closing both fists or both feet, and 
imagining opening and closing both fists or both feet according to the position of a target on the screen (Left, 
right, top, or bottom).

For this study, we used only the two 1-min baseline runs and created instances of 1 s, obtaining 60 instances 
of 1 s during the resting-state with the eyes open and 60 instances of 1 s during the resting-state with the eyes 
closed for each subject.

Pre‑processing and feature extraction.  We used the common average reference (CAR) method for 
improving the signal-to-noise ratio from the EEG signal, which removes the common information from all elec-
trodes that were simultaneously recorded. It can be computed for an EEG channel VCAR

i  , where i is the number 
of the channel, as follows:

where VER
i  is the potential between the i-th electrode and the reference and n the number of electrodes.

For comparative purposes, we used two different methods for decomposing the EEG signals and then obtained 
a set of features for each sub-band.

The first method used was EMD, which is a method that decomposes an EEG signal into a set of finite intrin-
sic mode functions (IMFs)50. Some IMFs that contain limited information may appear in the decomposition, 
depending on the parameters used in the EMD method (Spline for the interpolation, the method for solving 
the end effect problem, etc.) and because the numerical procedure is susceptible to errors51. These signals show 
maximum Minkowski distances with respect to the original signal52.

Based on the results obtained in our previous research2,7,12, we used the closest two IMFs, based on the 
Minkowski distance, and each IMF was characterized by extracting a set of four features: 

1.	 Instantaneous energy, which provides the energy distribution53.
2.	 Teager energy, which reflects variations in both the amplitude and frequency of the signal53,54.
3.	 Higuchi fractal dimension, which approximates the mean length of the curve using segments of k samples 

and estimates the dimension of a time-varying signal directly in the time domain55.
4.	 Petrosian fractal dimension to provide a rapid computation of the fractal dimension of an EEG signal by 

translating the time series into a binary sequence56.

The second method used for decomposing the EEG signals into different frequency bands was DWT. When using 
DWT, it is necessary to specify the mother function and the levels of decomposition. Here, we use bi-orthogonal 
2.2 with three levels of decomposition. We characterized each level of decomposition by extracting the same set 
of four features described previously.

The process for extracting four features for each selected IMF returns eight features per channel, or 16 features 
per channel when using DWT. The process is repeated for each channel used to then concatenate them to obtain 
a single feature vector that represents the EEG signal for each instance.

Classification.  The first classifier that we used for comparative purposes was the well-known OC-SVM, 
which is an unsupervised algorithm that learns a decision function for outlier detection, classifying new data as 
similar to or different from that of the training set57. The radial basis function (RBF) was used as the kernel and 
certain important parameters required fitting. As in our previous research12, we found that the models based 
on OC-SVM are very sensitive to nu and gamma parameters, and they define how well the model learns. The 
nu parameter is an upper bound on the fraction of training errors and a lower bound of the fraction of support 
vectors that should be in the interval [0, 1]. Gamma defines how much influence a single training example has. 
The larger the gamma, the closer other examples must be to be affected and the interval must be greater than 0; 
normally it is 1/no_features.

This work focuses mainly on the use of LOF, which is a density-based unsupervised outlier detection algo-
rithm that defines a degree of being an outlier by calculating the local deviation of a given data point with respect 
to its surrounding neighborhood. The score assigned to each data point is called the local outlier factor58. It is 
based on a concept of local density given by the distance of the k-nearest neighbors. Comparing the local density 
of a data point with the local densities of its k neighbors, it is possible to identify regions with similar density and 
outliers, which have lower density. The lower the density of a data point, the more likely it is to be identified as 
an outlier. We can use brute force, ball tree, or k-d tree algorithms for computing the nearest neighbors.

EEG channel selection.  The process for EEG channel selection is critical for the development of a portable 
low-cost device, and also for analyzing only EEG channels with the relevant information for the discrimination 
between subjects.

Genetic algorithms (GAs) mimic Darwinian evolution and use biologically inspired operators. Its popula-
tion is comprised of a set of candidate solutions, each with chromosomes than can be mutated and altered. 
GAs are normally used to solve complex optimization and search problems59. Our approach is based on the 

(1)VCAR
i = VER

i −
1

n

n∑

j=1

VER
j
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non-dominated sorting genetic algorithm (NSGA)37, which uses a non-dominated sorting ranking selection 
method to emphasize good candidates and a niche method to maintain stable sub-populations of good points 
(Pareto-front). NSGA-II solved certain problems related to the computational complexity, non-elitist approach, 
and the need to specify a sharing parameter to ensure diversity in a population presented in the first version. 
NSGA-II also reduced the computational cost from O(MN3) to O(MN2) , where M is the number of objectives 
and N the population size. Additionally, the elitist approach was introduced by comparing the current population 
with the previously found best non-dominated solutions60.

We used NSGA-III, as it has been shown to efficiently solve 2- to 15-objective optimization problems38 and 
also because of our previous results12. NSGA-III follows the NSGA-II framework but uses a set of predefined 
reference points that emphasizes population members that are non-dominated, yet close to the supplied set38,61. 
The predefined set of reference points are used to ensure diversity in the obtained solutions.

We used a systematic approach that places points on a normalized hyper-plane that is equally inclined to all 
objective axes and has an intersection with each axis. For example, in a three-objective optimization problem, 
the reference points are created on a triangle with apexes at (1, 0, 0), (0, 1, 0), and (0, 0, 1)61,62.

Algorithm 1 presents the pseudo-code of the NSGA-III main procedure for a particular generation. The par-
ent population Pt of size N is randomly initialized, and then the tournament selection, crossover and mutation 
operators are applied to create an offspring population Qt . Then, both populations are combined and sorted 
(According to their domination level) and the best N members are selected from the combined population to 
form the parent population for the next generation. After non-dominated sorting, all acceptable front members 
and the last front Fl that could not be completely accepted are saved in a set St . Members in St/Fl are selected 
for the next generation and the remaining members are selected from Fl . NSGA-III use the supplied reference 
points Zr for selecting a well distributed set of points. Subsequently, orthogonal distance between a member in 
St and each of the reference lines (Joining the ideal point and a reference point) is computed. The member is 
then associated with the reference point having the smallest orthogonal distance. Next, the niche count ρ for 
each reference point, defined as the number of members in St/Fl that are associated with the reference point, 
is computed for further processing. The reference point having the minimum niche count is identified and the 
member from the last front Fl that is associated with it is included in the final population. The niche count of 
the identified reference point is increased by one and the procedure is repeated to fill up population Pt+1 . This 
niche count as ρj for the j − th reference point. A new niche preserving operation is devised by identifying the 
reference point set Jmin = {j : argminj(ρj)} having minimum ρj . In case of multiple such reference points, one 
( j∗ ∈ Jmin ) is chosen at random. If ρ∗

j = 0 (meaning that there is no associated Pt+1 member to the reference 
point j∗ ), two scenarios can occur. First, there exists one or more members in front Fl that are already associated 
with the reference point j∗ . In this case, the one having the shortest perpendicular distance from the reference 
line is added to Pt+1 . The count ρ∗

j  is then incremented by one. Second, the front Fl does not have any member 
associated with the reference point j∗ . In this case, the reference point is excluded from further consideration for 
the current generation. In the event of ρ∗

j ≥ 1 (Meaning that already one member associated with the reference 
point exists), a randomly chosen member, if exists, from front Fl that is associated with the reference point Fl 
is added to Pt+1 . If such a member exists, the count ρ∗

j  is incremented by one. After ρj counts are updated, the 
procedure is repeated for a total of K times to increase the population size of Pt+1 to N37,38,61,63. 
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Definition of the problem to optimize.  After the pre-processing and feature extraction stages, we 
obtain a set of features for each EEG channel. These features can be used to create a model for each subject that 
can recognize it and reject the rest of the subjects. Our approach is to create a model for each subject with 80% 
of the instances and use 20% for testing. This requires that certain important parameters be fitted and that the 
most relevant EEG channels are selected. Thus, the problem is defined as an optimization problem with three 
unconstrained objectives: minimize the number of necessary EEG channels and maximize the TAR and TRR. 
The size of each population in each iteration is defined as 20, which was determined experimentally. The ter-
mination criterion for the optimization process is defined by the objective space tolerance, which is defined as 
0.0001. This criterion is calculated every 10th generation. If optimization is not achieved, the process stops after 
a maximum of 300 generations.

We used 64 binary genes in a chromosome to represent the 64 EEG channels, one gene with integer values 
to select the algorithm (1: Ball tree, 2: k-d tree, 3: Brute force) and another gene with integer values for selecting 
the number of neighbors (from 1 to 10, which were proposed experimentally), obtaining thus a chromosome 
of 66 genes. When using OC-SVM in the optimization process, we used the same 64 genes for representing the 
EEG channels and two genes with decimal values for selecting the nu and gamma parameters, similarly to our 
previous research12. The chromosome created to represent the candidate channels in the search space and the 
flowchart of the complete optimization process using LOF models is illustrated in Fig. 12.

As explained in the feature extraction method, we extracted eight features per channel when using EMD, 
and 16 when using DWT. The features are organized and stored for iterative use, depending on the channels 
marked as “1” in the chromosomes. For instance, using EMD-based features, if the chromosome consists of only 
one gene, the classification process will be performed only with eight features from the channel indicated in the 
chromosome. The entire process is then performed by NSGA-III, as shown in Fig. 12, which starts creating 20 
possible candidates for each generation.

The output for each chromosome for each generation is the number of channels used and the obtained TAR 
and TRR with the subset of channels in the chromosome. The results are returned to NSGA-III to evaluate each 
chromosome in the current population, and the new generation of chromosomes is created based on the best 
candidates found. This process is repeated until the termination criterion or the maximum number of genera-
tions is reached.

We performed the experiments for this study on the NTNU IDUN computing cluster64. The cluster has more 
than 70 nodes and 90 GPGPUs. Each node contains two Intel Xeon cores and at least 128 GB of main memory 
and is connected to an Infiniband network. Half of the nodes are equipped with two or more Nvidia Tesla P100 
or V100 GPGPUs. Idun’s storage is provided by two storage arrays and a Lustre parallel distributed file system.

Data availability
The dataset used for this study can be found at EEG Motor Movement/Imagery Dataset (EEGMMIDB) https​://
physi​onet.org/conte​nt/eegmm​idb/1.0.0/ from physionet.
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