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Machine learning identifies molecular regulators
and therapeutics for targeting SARS-CoV2-induced
cytokine release
Marina Chan1, Siddharth Vijay1, John McNevin2 , M Juliana McElrath2 , Eric C Holland1,* &

Taranjit S Gujral1,3,**

Abstract

Although 15–20% of COVID-19 patients experience hyper-
inflammation induced by massive cytokine production, cellular
triggers of this process and strategies to target them remain
poorly understood. Here, we show that the N-terminal domain
(NTD) of the SARS-CoV-2 spike protein substantially induces multi-
ple inflammatory molecules in myeloid cells and human PBMCs.
Using a combination of phenotypic screening with machine
learning-based modeling, we identified and experimentally vali-
dated several protein kinases, including JAK1, EPHA7, IRAK1,
MAPK12, and MAP3K8, as essential downstream mediators of NTD-
induced cytokine production, implicating the role of multiple
signaling pathways in cytokine release. Further, we found several
FDA-approved drugs, including ponatinib, and cobimetinib as
potent inhibitors of the NTD-mediated cytokine release. Treatment
with ponatinib outperforms other drugs, including dexamethasone
and baricitinib, inhibiting all cytokines in response to the NTD from
SARS-CoV-2 and emerging variants. Finally, ponatinib treatment
inhibits lipopolysaccharide-mediated cytokine release in myeloid
cells in vitro and lung inflammation mouse model. Together, we
propose that agents targeting multiple kinases required for SARS-
CoV-2-mediated cytokine release, such as ponatinib, may represent
an attractive therapeutic option for treating moderate to severe
COVID-19.
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Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is

responsible for the current coronavirus disease 2019 (COVID-19)

pandemic. COVID-19 typically presents with symptoms attributed to

viral replication that resolve within 1–2 weeks. In approximately 15–
20% of cases, acute infection is followed by more serious events where

myeloid cells, including monocytes and macrophages, produce a cyto-

kine storm with the rapid release of IL-6, IL-1b, CXCL10, CCL7, and

other inflammatory molecules (Monteleone et al, 2020). The appear-

ance of cytokines in patient samples is concomitant with increased

viral load, loss of lung function, lung injury, and a fatal outcome

(Vaninov, 2020). Drugs or drug combinations that reduce the cytokine

storm, therefore, would be helpful in the treatment of COVID-19.

A recent study using a myeloid receptor-focused ectopic expres-

sion screen identified several C-type lectins and Tweety family

member 2 as glycan-dependent binding partners of the SARS-CoV-2

spike protein (Lu et al, 2021). The engagement of these receptors

with the SARS-CoV-2 virus induces robust proinflammatory

responses in myeloid cells that correlate with COVID-19 severity.

The downstream signaling pathways that induce severe presenta-

tion, however, are not fully identified, impeding the development of

targeted therapies. Here, we combined approaches from immunol-

ogy, systems biology, and biochemistry to uncover underlying

kinase-driven signaling networks triggering myeloid cell cytokine

release. We identified and validated FDA-approved, or clinical-grade

compounds inhibiting inflammatory cytokine production in the

context of SARS-CoV-2. Our goal was to determine if FDA-approved

drugs available for clinical use might forestall drug development

and deliver a timely solution for the COVID-19 pandemic.

Results

We used the macrophages derived from immortalized monocyte-

like cell line THP1(Bosshart & Heinzelmann, 2016) to model
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myeloid cell-SARS-CoV-2 interaction in vitro and mammalian

HEK293 cells that produced full-length Spike subunit S1 protein

(Val16-Gln690); the SARS-CoV-2 protein is essential for host cell entry

(Fig 1A). Consistent with previous observations, our preliminary

data show that 24-h stimulation with full-length mammalian cell-

derived S1 subunit of SARS-CoV-2 spike protein causes massive

upregulation of IL-1b in a dose-dependent manner (Fig EV1). We

asked if S1 protein could promote upregulated expression of cytoki-

nes observed to be elevated in COVID-19 patients. Our data show

that S1 protein stimulation (1 µg/ml) causes a significant increase in

the expression of a panel of cytokines including IL-8 (~96-fold), IL-6
(5-fold), IL-1b (~120-fold), TNF (~15-fold), and chemokines includ-

ing CXCL10 (600-fold), CCL2 (~70-fold), and CCL7 (4-fold) in THP1-

derived macrophages (Fig 1B). Similar changes in cytokines were

also observed in healthy donor PBMCs and Raw264.7 mouse mono-

cytes in response to full-length S1 protein (Fig EV1). Together, these

data indicate that interaction between Spike subunit S1 protein and

myeloid cells is sufficient to activate these cells.

We sought to determine the region of the S1 subunit that medi-

ates myeloid cell activation. Both SARS-CoV-2 and SARS-CoV recog-

nize the angiotensin-converting enzyme 2 (ACE2) receptor in

humans (Shang et al, 2020). The receptor-binding domain (RBD) of

SARS-CoV-2 spike subunit S1 protein binds to ACE2 (Shang et al,

2020), promoting virus entry into cells while the function of the N-

terminal domain (NTD) is not well understood. Surprisingly, we

found that stimulation with Val16-Ser305 NTD of S1 subunit is suffi-

cient to promote cytokine expression while stimulation with Arg319-

Phe541 RBD of S1 protein did not activate THP1 cells (Fig 1C). Simi-

lar changes in the release of cytokines in the conditioned media

were also observed in PBMCs from 20 healthy individuals in

response to stimulation with NTD of S1 subunit (Fig 1D). Consis-

tently, treatment with CV30 (Seydoux et al, 2020) (a highly potent

antibody targeting RBD of SARS-CoV-2) did not change S1 protein-

induced expression of cytokines in PBMCs (Fig 1E). Further, stimu-

lation with spike protein from two different endemic coronaviruses

(HCoV-COV-2 and HCoV-OC43) did not promote cytokine release in

THP1 cells (Fig EV1), suggesting that the S1 subunit of SARS-CoV-2

contains a unique feature of this specific spike protein sequence

required for myeloid cell activation. Together, these data indicate

that NTD of S1 subunit interacts with a different receptor than

ACE2, on myeloid cells to activate “cytokine release”.

To identify S1 spike protein-induced signaling pathways activat-

ing myeloid cells and to explore potential targets for therapeutic

development, we used a recently developed strategy combining

phenotypic screening with machine learning-based functional

screening approaches, called KiDNN (Vijay & Gujral, 2020) and KiR

(Gujral et al, 2014b). KiR is based on linear, elastic net regulariza-

tions, while KiDNN utilizes nonlinear deep neural networks (DNN).

Previously, we showed that KiR uses large-scale drug-target profil-

ing efforts, elastic net regularization, and broadly selective chemical

tool compounds to pinpoint specific nodes (kinases and associated

networks) underlying a given phenotype, such as cell growth or

release of secreted factors, e.g., cytokines (Gujral et al, 2014b) (Fig 2

A). In contrast, KiDNN uses DNN to predict responses to inhibitors

(Vijay & Gujral, 2020). We screened a set of 35 computationally

chosen kinase inhibitors (Gujral et al, 2014c) and quantified their

effect on changes in NTD-mediated release of seven cytokines in the

conditioned media from pooled PBMCs (Fig 2B, Dataset EV1). Using

results from this cytokine release experiment as a training dataset,

we built both KiR (Fig EV2) and KiDNN models (Fig EV3) to predict

kinases essential for the NTD-mediated release of cytokines. Model

performance was evaluated using leave-one-out cross-validation

(LOOCV) mean squared error (MSE) between predicted and

observed drug response. In LOOCV, each time 34 drugs’ activity

profiles were used to train the model to predict the remaining drug’s

effect on NTD-mediated cytokine release. MSE between predicted

and observed cytokine levels was used to assign an error score to

each model. Overall, models for each of the cytokines performed

with at least 85% accuracy (Fig EV2). The optimized models with

the least mean squared errors collectively identified 30 most "infor-

mative kinases" (out of > 300 kinases) that may be involved in the

NTD-mediated cytokine release (Fig EV4). These include several

kinases known to play a critical role in cytokine signaling, such as

JAK1 and IRAK1, as well as kinases not previously known to play a

role in this process, like EPHA7, MAP3K8, and MAP3K2. Overall,

MAP3K8 was shown to be enriched in the cytokine-mediated signal-

ing network of all seven cytokines, while EPHA7 was enriched in

networks of 4 out of 7 cytokines (Fig EV4). Therefore, based on this

analysis, we predicted that both MAP3K8 and EPHA7 are essential

for the NTD-mediated cytokine release.

To validate the role of the kinases that we predicted to be impor-

tant in cytokine signaling, we examined the effects of depleting

these kinases in gene knockdown experiments. Using a pooled set

of four siRNA, we knocked down the expression of top 13 kinases

in THP1 cells implicated by KiR analyses (Fig EV4) and measured

their effects on NTD-mediated cytokine release. Transient transfec-

tions of pooled siRNA led to a 35–80% knockdown of each of the

kinases measured by quantitative PCR (Fig EV4). Our data showed

that knockdown of 11 out of 13 kinases led to an > 1.5-fold decrease

in NTD-mediated cytokine levels compared with scrambled siRNA

controls (Fig 2C). Of these, knockdown of MAPK12, EPHA7,

MAP3K8, PRKACG, IRAK1, MAP3K3, and JAK1 led to a decrease in

more than one cytokine or chemokine (Fig 2C). Network analyses

based on prior information showed that several of these kinases are

known to regulate common transcription factors such as MYC and

REL (Fig EV4). Together, these data confirmed KiR models’ predic-

tions, validating the role of at least seven kinases in the SARS-CoV2

S1 subunit NTD-mediated cytokine release.

Given that our analyses implicated multiple kinases affecting dif-

ferent signaling pathways in triggering cytokine release, we hypoth-

esized that a rational drug combination, or multi-targeted therapy,

may represent an effective approach to blocking the SARS-CoV-2-

mediated cytokine storm. Next, we used the optimized KiDNN

models to predict both pairwise and single agent responses to 427

single inhibitors that reduce NTD-mediated cytokine levels (Fig 3A).

To predict the effect of drug combinations, a linear combination of

the activities corresponding to each drug for each kinase was

applied to create a pseudo-activity matrix. Subsequently, the

pseudo-matrix for all 428 by 428 combinations of drugs was

computed and inputted into KiDNN models for prediction. Combina-

tions containing the most promiscuous drugs, such as staurosporine

and K252a, were excluded from this analysis. In our analyses, we

prioritized those compounds that are FDA-approved for human use,

known to exhibit a low toxicity profile, and predicted inhibition of

release for multiple cytokines. Our data showed that ponatinib, an

FDA-approved drug for chronic myelogenous leukemia, was
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predicted as the most effective in blocking all seven cytokines as a

single agent, as well as in combination (top 360 out of 500 combina-

tions). However, a combination of other drugs with ponatinib

marginally improved overall response, indicating the effect of drug

combination is primarily driven by ponatinib. We experimentally

tested the efficacy of 10 compounds in vitro, including 5 FDA-

approved drugs, that we predicted to inhibit NTD-mediated cytokine

release (Fig 3B). Treatment with ponatinib and cobimetinib potently

inhibits NTD-mediated cytokine release in PBMCs. In addition, treat-

ment with sunitinib and bosutinib also inhibited all seven cytokines,
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Figure 1. SARS-Cov-2 Spike subunit S1 protein causes a significant increase in the expression and release of a panel of cytokines in THP1 cells and human
PBMCs.

A A schematic showing major SARS-CoV-2 proteins and domain structure of spike protein.
B Changes in the expression of cytokines in THP1 macrophages (left) and PBMCs (right) upon treatment with full-length S1 subunit at 1 µg/ml for 24 h.
C Changes in the expression of cytokines in THP1 macrophages upon treatment with different domains of S1 subunit at 1 µg/ml for 24 h.
D Measurement of cytokine release from healthy donor PBMCs treated with PBS or NTD at 1 µg/ml for 24 h.
E Effect of an anti-RBD antibody on S1 subunit stimulated changes in the expression of cytokines in PBMCs. Left, a schematic showing the domain structure of S1 spike

protein and anti-RBD antibody. Right, changes in cytokine gene expression in response to S1 spike protein in the presence or absence of anti-RBD antibody. Gene
expression was measured by qPCR. Cytokine release in the conditioned media was measured by Luminex. Full-length S1 and S1 subunits are purified from HEK293
cells.

Data information, in (B, C, E), data are shown as the mean of three technical replicates; in (D), data are shown as the mean of 20 individual donors. Error bars denote
SEM. *P < 0.05, **P < 0.01, Multiple t-test.
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released in the media were measured by Luminex and normalized to DMSO control.
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siRNA.
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although to a lesser extent (Fig 3B). We also validated the response

to axitinib, which was predicted to be ineffective by our model

(Dataset EV1). Importantly, treatment with ponatinib outperforms

baricitinib, a JAK inhibitor FDA-approved for the treatment of

COVID-19 (Favalli et al, 2020), in inhibiting all seven cytokines in

response to NTD in PBMCs (Fig 3A). Kinase activity profiling of

ponatinib showed that this drug inhibits 8 out of 10 experimentally

validated kinases necessary for the NTD-mediated cytokine and

chemokine release (Fig 3C and D). In contrast, baricitinib was

shown to inhibit only 4 of these essential kinases. Thus, our data

indicate that ponatinib, a multi-specific kinase inhibitor, blocks the

activity of several kinases that are essential for cytokine signaling,

thereby dampening the NTD-mediated cytokine production.

Clinical presentation of cytokine storm has been associated with

systemic infections such as sepsis and after immunotherapies such

as Coley’s toxins (Fajgenbaum & June, 2020). Previous studies have

shown that a subset of monocytes may be infected by SARS-CoV-2

and differentiate into infected macrophages in local tissue,

contributing to the inflammatory cytokine storm in patients (Jafar-

zadeh et al, 2020) (Guo et al, 2020). Therefore, we asked whether

PBMCs isolated from COVID-19 patients respond differently to NTD

treatment from healthy donor PBMCs. We found that the fold

change in a subset of cytokines released in response to NTD stimu-

lation was significantly higher in COVID-19 PBMCs than healthy

donor PBMCs (Fig EV5). Whether this difference can be attributed

to the duration of infection, clinical presentation, or patient charac-

teristics such as age and pre-existing conditions warrants future

investigations. Nonetheless, ponatinib still outperforms dexametha-

sone in inhibiting NTD-stimulated cytokine release from COVID-19

PBMCs (Fig EV5).

Recently, several new variants of SARS-CoV-2 have emerged,

including the B.1.1.7 first identified in the United Kingdom, B.1.351

identified in South Africa, and more recently B.1.165.2 (delta vari-

ant), that harbor mutation sites in the NTD. Therefore, we asked if

these variants could also promote cytokine release. We show that

all three B1.1.7, B.1.351, and B.1.165.2 NTDs could promote the

release of cytokines in PBMCs at the levels comparable with the

NTD from Wuhan SARS-CoV-2 (Fig 4A). Notably, ponatinib treat-

ment could inhibit the NTD-mediated release of cytokines from all

variants. Ponatinib also outperforms both dexamethasone and baric-

itinib to block the cytokine release, including IFNγ, even at a

substantially reduced dose (125 nM ponatinib vs. 1,000 nM barici-

tinib or dexamethasone) (Figs 4A and EV6). Accordingly, we found

the effective ponatinib concentration range for the panel of cytoki-

nes tested, required to inhibit 50% of NTD-mediated cytokine

release (EC50), was between 3 and 25 nM (Fig 4B), further demon-

strating a strong potency of ponatinib in inhibiting cytokine release

caused by NTD from SARS-CoV-2 and various emerging variants.

A functional T-cell response is critical to the resolution of viral

infection. We therefore employed an in vitro Activation-Induced

Marker (AIM) assay to assess the effect of ponatinib on T-cell

response at concentrations that strongly inhibit myeloid cell-

induced cytokine production. In vitro AIM assays have been used to

determine T-cell response to viral peptides with or without drug

interventions, including SARS-CoV-2 (Moderbacher et al, 2020). In

order to determine whether ponatinib affected anti-viral T-cell

function at the concentrations used to block the NTD-induced

cytokine release, we stimulated human PBMCs with synthetic

cytomegalovirus (CMV) peptide pool in the presence of various

concentrations of ponatinib, dexamethasone, and baricitinib. CMV-

specific T-cell response was measured as a percentage of AIM+ cells

(Fig EV7A). Treatment with ponatinib had little or no effect on CMV

peptide-induced CD8+ T-cell activation at 10–40-fold above the EC50

concentrations of inhibiting the myeloid cell-induced cytokine

production, while some inhibitory effect on CD4+ T cells was

observed at high concentrations (Fig EV7B). Notably, both dexam-

ethasone and baricitinib induced stronger or similar inhibition on

CD8+ and CD4+ T cells at the same doses. In addition, ponatinib did

not affect PBMC cell viability (Fig EV7C). Taken together, these data

show that ponatinib is highly effective in blocking NTD-mediated

cytokine production by myeloid cells while preserving the ability of

a T-cell response.

The lipopolysaccharide (LPS)-induced models of acute lung

injury (ALI) and acute respiratory distress syndrome (ARDS) in mice

are well-established in vivo models to study pulmonary infection.

Further, both ALI and ARDS are known to occur in the clinical

presentation of severe SARS-CoV-2 disease (Li et al, 2020). Thus,

we sought to compare S1 protein and LPS-mediated changes in cyto-

kine expression in THP1 cells and determine whether ponatinib

could inhibit LPS-mediated cytokine production in these cells. Our

data show that both S1 spike protein (1 µg/ml) and LPS (1 µg/ml)

stimulation increased the expression of all measured cytokines

(Fig 5A). However, some specific differences in cytokine expression

were also observed: LPS stimulation caused ~1,000-fold increase in

the expression of IL-6 compared with 10-fold increase caused by S1

spike protein stimulation (Fig 5A). Conversely, S1 protein stimula-

tion caused ~1,000-fold change in the expression of CXCL10

compared with a 10-fold increase caused by LPS stimulation. Impor-

tantly, ponatinib treatment inhibited LPS-mediated expression of IL-

1b, IL-6, IL-8, and TNFα (Fig 5B). Consistent with these in vitro

data, we show that a 1-h pre-treatment with ponatinib (35 mg/Kg)

significantly reduces symptoms of acute lung inflammation in the

LPS-induced lung inflammation mouse model (Fig 5D and E). Previ-

ously, a similar dose of ponatinib and vehicle control was used in

cancer mouse models (O’Hare et al, 2009; Gozgit et al, 2011).

Notably, the mean plasma levels reached ~800 and ~550 nM at 2

and 6 h, respectively, after a single dose of 30 mg/kg ponatinib

treatment (O’Hare et al, 2009). In our study (Fig 5C), treatment with

ponatinib at 35 mg/kg alleviated LPS-induced lung injury, including

interstitial and intra-alveolar edema, septal thickening, alveolar

collapse, and inflammatory cell infiltration, assessed by histology

(Fig 5D). Bronchoalveolar lavage fluid (BALF) collected at 5 h post-

LPS treatment showed a significant reduction in GMCSF, IL-6, and

TNFα levels measured by Luminex (Fig 5E). Together, these data

suggest that ponatinib also blocks LPS-mediated downstream signal-

ing and cytokine production.

Discussion

Most COVID-19 patients develop mild to moderate symptoms, while

15–20% of patients face hyper-inflammation induced by cytokine

production leading to respiratory failure. A significant challenge in

targeting immune response is an incomplete understanding of how

host cells trigger cytokine release. Here, we report both viral and

host-specific molecular mechanisms of how SARS-CoV-2 spike
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protein induces cytokine release. We discovered a previously

unknown function of the NTD of SARS-CoV-2 spike protein in

promoting cytokine release in immune cells. Our findings further

highlight the importance of non-RBD region on spike protein and

have implication for developing more effective neurtalizing antibod-

ies. To identify signaling pathways activated in myeloid cells in
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Figure 3. Machine learning-based functional screening identified ponatinib as a potent inhibitor of the NTD-mediated cytokine release.

A A heatmap showing the effect of single and combinatorial drug predictions by machine learning on indicated cytokine release (left), a zoomed view of top 500 drug
predictions (middle), and frequency of ponatinib occurrence in the top 500 predictions (right). A total of 92,234 single and combinatorial drug predictions were
generated from 394 drugs. Predicted cytokine release is expressed as % of DMSO control.

B A heatmap showing experimental validation of model-predicted inhibitor response. All inhibitors were tested at 500 nM. Green text indicates an FDA-approved drug.
Our model predicted axitinib to be ineffective, therefore, used as a negative control.

C Comparison of kinase inhibition profile of ponatinib and baricitinib.
D A schematic showing ponatinib inhibits multiple kinases involved in the SARS-CoV2-NTD-mediated cytokine signaling.

▸Figure 4. Ponatinib inhibits the SARS-Cov2 variant NTD-mediated cytokine release.

A A heatmap showing changes in indicated cytokines in response to NTD from indicated SARS-Cov-2 variants and inhibitors. Data are shown as fold change between
NTD treatment and PBS control. Dex; dexamethasone.

B Dose-response curves of ponatinib treatment on SARS-Cov2 NTD (Wuhan)-mediated cytokine release in PBMCs. Right, a table showing EC50 (nM) values of ponatinib-
mediated inhibition of cytokine release in response to indicated SARS-Cov2 variant NTD treatments in PBMCs.
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Figure 5. Ponatinib alleviates symptoms of acute lung inflammation in LPS-induced lung inflammation mouse model.

A Comparison of LPS and full-length S1 spike protein-mediated changes in cytokines in THP1 macrophages.
B Ponatinib inhibits LPS-mediated cytokine release in THP1 macrophages in vitro.
C A schematic showing the overall design of in vivo study evaluating the efficacy of ponatinib in LPS-induced lung inflammation mouse model.
D Representative H&E images showing ponatinib alleviates LPS-induced inflammatory cell infiltration, septal thickening, alveolar edema in mouse lungs. Scale bars

100 µm (upper) and 50 µm (lower).
E Plots showing pre-treatment (60 min) with ponatinib (35 mg/kg) inhibits LPS-induced cytokine release in BALF. Cytokine levels were measured using Luminex.

Data information, in (A-B), data are shown as the mean of three technical replicates. Error bars denote SEM. In (E), data are mean of five biological replicates from two
independent studies, error bars denote SEM. *P < 0.05, **P < 0.01, Welch’s t-test.
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response to the NTD of S1 spike protein, we employed a combina-

tion of phenotypic screening with machine learning-based modeling.

We identified previously known kinases including JAK1 (Luo et al,

2020), MAPK12 (Bachstetter & Van Eldik, 2010), and IRAK1 (Rama-

samy & Subbian, 2021) and several new host cell-specific kinases

including EPHA7, MAP3K8, and MAP3K2 that are important for the

release of cytokines and chemokines in myeloid cells (Fig 2C). The

molecular mechanisms of how the NTD of the spike protein acti-

vates multiple kinases and how these newly identified kinases

promote cytokine release in myeloid cells warrant further investiga-

tions.

Machine learning-based approaches represent a tempting oppor-

tunity for discovering new targets and drugs for human diseases. By

taking advantage of our machine learning-based models, we

predicted responses to 428 kinase inhibitors as single agent and 91

thousand two-drug combinations that could affect the NTD-

mediated cytokine release. Our findings of several kinases involved

in the cytokine release strongly suggest that simultaneous targeting

of multiple host kinases involved in SARS-CoV-2-mediated cytokine

production would yield in more effective treatment options than the

use of more selective agents. We identified FDA-approved, multi-

kinase inhibitor, ponatinib, as a potent inhibitor of cytokine produc-

tion in response to the NTD from SARS-CoV-2 and its emerging vari-

ants. Despite the development of highly effective vaccines, COVID-

19 will continue to be a healthcare burden, especially in persons who

remain unvaccinated. We envision a potential clinical trial of pona-

tinib in COVID-19 patients will entail 5–7 days of treatment, similar

to the baricitinib trial in severe COVID-19 patients (Bronte et al,

2020). This treatment period is much shorter than the ponatinib regi-

men given to cancer patients (median 32.1 months), reducing poten-

tial toxicity concerns. In addition, the EC50 values of ponatinib-

mediated inhibition of cytokine release in myeloid cells are in the low

nano-molar ranges (< 25 nM), which is a clinically achievable dose.

Overall, we believe that ponatinib and other FDA-approved drugs

including cobimetinib, sunitinib, and bosutinib identified in this study

could represent strong candidates for drug repurposing efforts aimed

at providing an alternative and timely treatment for COVID-19

patients exhibiting major, life-threatening symptoms.

Materials and Methods

Reagents and Tools table

Reagent/resource Reference or source Identifier or catalog number

PBMCs and cell lines

THP1 ATCC TIB-202

Raw264.7 ATCC TIB-71

PBMCs from healthy donors Bloodworks NW, Seattle, WA N/A

PBMCs from COVID patients The Seattle Vaccine Trials Unit N/A

Recombinant purified proteins

Full-length S1 protein SARS-CoV-2 Wuhan Ray Biotech Life 230-30161

RBD SARS-CoV-2 Wuhan Ray Biotech Life 230-30162

NTD SARS-CoV-2 Wuhan Leinco Technologies Inc S853

NTD SARS-CoV-2 Wuhan Acro Biosystems S1D-C52H6

NTD SARS-CoV-2 U.K. (B.1.1.7) Acro Biosystems S1D-C52Hd

NTD SARS-CoV-2 South Africa (B.1.351) Acro Biosystems S1D-C52Hc

NTD SARS-CoV-2 Delta (B.1.651.2) Acro Biosystems S1D-C52Hf

S1 protein HCoV-229E Sino Biological Inc. 40605-V08B

S1 protein HCoV-OC43 Sino Biological Inc. 40607-V08H1

Chemicals and biologics

Ponatinib Selleck Chemicals S1490

Dexamethasone Selleck Chemicals S1322

Baricitinib Selleck Chemicals S2851

SB218078 Tocris Bioscience 2560

Cobimetinib Cayman Chemicals 19563

AT9283 Selleck Chemicals S1134

Sunitinib Cayman Chemicals 13159

Bosutinib Tocris Bioscience 4361

TAE-684 Cayman Chemicals 17670
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Reagents and Tools table (continued)

Reagent/resource Reference or source Identifier or catalog number

GSK-650394 NCGC00250410 NCATS (NCGC)

Axitinib Selleck Chemicals S1005

Phorbol 12-myristate 13-acetate LC Laboratories P-1680

Lipopolysaccharides Sigma Aldrich L2630

Cell culture reagents

RPMI1640 Fisher Scientific 11875135

DMEM Fisher Scientific MT10017CM

FBS Gibco 26140-079

Penn Strep. Fisher Scientific 15140163

Sodium pyruvate Fisher Scientific BW13115E

Luminex capture antibodies

Mouse GMCSF BioLegend 505408

Mouse IL-6 BD Biosciences 554398

Mouse TNFα BioLegend 510804

Human IL1 β R&D Systems MAB601

Human IL-6 R&D Systems MAB206

Human IL-8 Fisher Scientific M801

Human IL-10 Fisher Scientific M010

Human MCP1 BD Biosciences 555055

Human GMCSF BD Biosciences 554502

Human TNFα BD Biosciences 551220

Luminex detection antibodies

Mouse GMCSF BioLegend 505502

Mouse IL-6 BioLegend 504602

Mouse TNFα BioLegend 506312

Human IL1 β R&D Systems BAF201

Human IL-6 R&D Systems BAF206

Human IL-8 Fisher Scientific M802B

Human IL-10 BioLegend 501502

Human MCP1 BioLegend 502609

Human GMCSF BD Biosciences 554505

Human TNFα BioLegend 502904

AIM assay reagents

Human Serum AB Gemini Bio 100-512

Cytomegalovirus control peptide pool AnaSpec AS-62339

Staphylococcal enterotoxin B Calbiochem 11100-45-1

Live/Dead Aqua Invitrogen L34957

Cell Staining Buffer BioLegend 420201

Human TruStain FcX BioLegend 422302

Brilliant Stain Buffer Fisher Scientific BDB563794

Paraformaldehyde Fisher Scientific 50-980-487

AIM assay antibodies

CD40 Miltenyi 130-094-133

CD3 ECD Beckman Coulter IM270SU

CD4 Alexa Fluor 488 BD Biosciences 557695
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Reagents and Tools table (continued)

Reagent/resource Reference or source Identifier or catalog number

CD8 PerCP eFluor 710 eBioscience 46-0087-42

CD69 BV421 BD Biosciences 562884

CD137 APC BD Biosciences 550890

CD154 PE BD Biosciences 555700

Small interfering RNA

si-MAPK12 Dharmacon L-003590-00

si-EPHA7 Dharmacon L-003119-00

si-MAP3K8 Dharmacon L-003511-00

si-PRKACG Dharmacon L-004651-00

si-IRAK1 Dharmacon L-004760-00

si-MAP3K3 Dharmacon L-003301-00

si-JAK1 Dharmacon L-003145-00

si-PTK2B Dharmacon L-003165-00

si-MAPK14 Dharmacon L-003512-00

si-PTK5 Dharmacon L-003139-00

si-MAP4K2 Dharmacon L-003587-00

si-STK17A Dharmacon L-005377-00

si-CAMKK2 Dharmacon L-004842-00

si-Scrambled Dharmacon D-001810-10

Oligonucleotides

qPCR primers Bio-Rad

Real time primers See Dataset EV2

Animals

C57BL/6J mice, male The Jackson Laboratory 000664

Other reagents

CellTiter-Glo 2.0 Cell Viability Assay Promega G9241

Lipofectamine RNAiMax Thermo Scientific 13778150

RNeasy Mini Kit QIAGEN 74104

RT2 First-Strand Kit QIAGEN 330411

SYBR Green Supermix Bio-Rad 1725274

Instrument

Luminex 200 instrument Luminex N/A

Plate reader N/A N/A

Bio-Rad CFX384 thermocycler Bio-Rad 1855484

Northern Lights spectral flow cytometer Cytek N/A

Software

GraphPad Prism 8.0 https://www.graphpad.com/ N/A

SpectroFlo Cytek N/A

Methods and Protocols

Cell culture

• Peripheral blood mononuclear cells (PBMCs) from healthy donors

spanning various age groups and THP1 cells were cultured in

RPMI1640 media supplemented with 10% FBS, 1% P/S, 1 mM

sodium pyruvate.

• Raw264.7 cells were maintained in Dulbecco’s minimum essential

medium (DMEM) supplemented with 10% FBS and 1% Penn

Strep.

• All cell lines were grown at 37°C under 5% CO2, 95% ambient

atmosphere.

• THP1 cells were differentiated into macrophages by induc-

ing with phorbol 12-myristate 13-acetate (PMA) at 25 ng/ml for

24 h.
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Human peripheral blood mononuclear cells from
COVID-19 patients
Consenting SARS-CoV-2-infected (n = 19) donors, age 18 years and

older, provided anticoagulated blood samples by venipuncture at

the Seattle Vaccine Trials Unit. SARS-CoV-2 donors were diagnosed

by PCR testing of nasopharyngeal swabs, had mild-moderate

disease, and were sampled post-symptom onset. PBMC were

isolated and cryopreserved within 4 h of collection. Cell viabilities

were assessed post-thawing and after 24 h of treatment. Fred

Hutchinson Cancer Research Center Institutional Review Board

approved all aspects of this study (IRB 10440, 00001080, and

00022371). Informed consent was obtained from all subjects, and

experiments conformed to the principles set out in the WMA Decla-

ration of Helsinki and the Department of Health and Human

Services Belmont Report.

Cytokine measurement
Cytokines were measured by Luminex multiplex assay.

• Samples and cytokine standards were incubated with Luminex

microbeads (one unique bead population per cytokine) coated

with cytokine-specific antibodies.

• Beads are washed then incubated 1 h with biotinylated anti-

cytokine antibodies and washed again then incubated 30 min with

a phycoerythrin-streptavidin conjugate.

• After a final wash, the assay is read on a Luminex 200 instrument,

classifying each bead as to its cytokine-specificity and phycoery-

thrin fluorescence intensity. Phycoerythrin fluorescence of each

bead will be proportional to the cytokine concentration in the

samples or standards.

• A 5-parameter logistic standard curve is generated for each cyto-

kine, with sample concentrations calculated from these curves.

Kinase inhibitor screening
Kinase inhibitor screening was performed as described previously

(Gujral et al, 2014a). Briefly, 35 kinase inhibitors were tested for the

effect on NTD-mediated cytokine release in PBMC. All inhibitors

were tested at 500 nM. Pooled PBMC from several donors were

plated in 12-well plate (1 × 106 cell per well in 1ml). Kinase inhibi-

tors or DMSO control was subsequently added to each well. Condi-

tioned medium collected 24 h post-treatment was snap-frozen for

cytokine analysis.

Cell viability
The effects of inhibitors on viability of PBMCs were measured using

CellTiter-Glo assay as described previously (Gujral et al, 2014c;

Vijay & Gujral, 2020). Briefly, cells (5 × 103 in 100 µl culture

medium) were seeded on a 96-well plate (Corning, NY, USA). Cells

were then treated with various inhibitors at 500 nM as single agent.

After 24 h, cells were incubated with CTG2.0 reagent for 5 min and

total viability was measured by obtaining luminescent signal inten-

sity. The quantified data were normalized to untreated control and

plotted in Prism (GraphPad software).

Small interfering RNA transfection
siRNA transfections were done in 12-well plates using Lipofec-

tamine RNAiMax according to manufacturer instructions.

RNA extraction and quantitative PCR
Total cellular RNA was isolated using an RNeasy Mini Kit. mRNA

expression changes in genes encoding for various cytokines were

determined by quantitative real-time PCR (qPCR). Briefly, 0.5–1 μg
of total RNA was reverse transcribed into first-strand cDNA using

an RT2 First-Strand Kit. The resultant cDNA was subjected to qPCR

using human cytokine-specific primer and GAPDH as a control. The

thermocycle profile used an initial denaturation step of 10 min at

95°C, followed by 15 s at 95°C and 60 s at 58°C for 40 cycles and

was performed with a Bio-Rad CFX384 thermocycler. The mRNA

levels of genes encoding cytokine expression were normalized rela-

tive to the mean levels of the housekeeping gene and compared

using the 2−ΔΔCt method as described previously (Gujral et al,

2014a).

Kinase inhibitor Regularization (KiR) modeling
KiR models for NTD-mediated release of each cytokine in PBMCs

were generated as previously described (Gujral et al, 2014a). Briefly,

a panel of 427 kinase inhibitors previously had their pairwise effects

on 298 human kinases profiled (Anastassiadis et al, 2011; preprint:

Rata et al, 2020). The result is a quantitative drug-target matrix,

where each entry is a percentage between 0 and 100 that represents

that kinases residual activity (as a percent of control, uninhibited

activity) in the presence of that inhibitor. A set of 35 inhibitors were

tested on pooled PBMCs as described above, with the end result

being a single response for each drug that represents the change in

cytokine release (as % DMSO control) at the profiled dose of the

inhibitor (usually 500 nM). The kinase inhibition profiles of each

inhibitor and the quantitative responses to those inhibitors were

used as the explanatory and response variables, respectively, for

elastic net regularized multiple linear regression models (Zou &

Hastie, 2005). Custom R scripts (available at https://github.com/

FredHutch/KiRNet-Public) employing the glmnet package were used

to generate the final models (Friedman et al, 2010). Leave-one-out

cross-validation (LOOCV) was used to select the optimal value for

the penalty scaling factor λ. Models were computed for 11 evenly

spaced values of α (the relative weighting between LASSO and Ridge

regularization) ranging from 0 to 1.0 inclusive. Kinases with positive

coefficients in at least one of these models (with the exception of

α = 0, which always has non-zero coefficients for every kinase)

were considered hits (Figure S4A). Model accuracy was assessed via

the LOOCV error as well as the root-mean-squared error of the

predictions for the tested inhibitors (Figure S2).

Deep Neural Network (DNN) Development
The development of the KiDNN models was achieved through the

Keras and TensorFlow Deep Learning framework as described previ-

ously (Chollet, 2015; preprint: Abadi et al, 2016; Vijay & Gujral,

2020). Briefly, a multi-phase Grid Search method was used to opti-

mize the DNN hyperparameters (epochs, batch size, optimizer,

weight initializer, activation function, hidden layer quantity, and

nodes per hidden layer) (Bergstra et al, 2011). Grid Search is a

commonly employed method of hyperparameter optimization that

evaluates combinations of numerous hyperparameter values to

identify the model characteristics resulting in the lowest error

between observed and predicted migration. The error function that

was used to compare numerous models was LOOCV (leave-one-out-

cross-validation) MSE (Zhang, 1993). In LOOCV, each time n − 1
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drugs’ activity profiles are used to train the model to predict the

remaining drug’s effect on cell migration. The process is repeated n

times, excluding and predicting each and every drug. Mean squared

error (MSE) between predicted and observed migration is used to

assign an error score to each model built with various combinations

of hyperparameter values. In each phase of Grid Search, various

combinations of hyperparameters are tested and the combination

with the lowest LOOCV MSE is used in the subsequent phase of

optimization until the final phase is reached. After optimization, the

top performing hyperparameters are used to build the final KiDNN

models.

Prediction of naÿve drugs and drug combinations
To predict the effect of all 428 drugs of the original matrix, the final

KiDNN-cytokine models were trained on the training dataset. Keep-

ing the weights and biases of the KiDNN-cytokine network constant,

new kinase activity data for naı̈ve drugs were inputted into the

model for prediction. Further, the effect of combinations of drugs

was also predicted by creating pseudo-activity matrices. Assuming

two activity matrices for two different drugs defined by [J1,J2,J3,. . .

Jn] and [K1,K2,K3,. . .Kn], where n corresponds to a specific kinase’s

inhibition, a linear combination of the two activities corresponding

to each drug for each kinase was applied to create a pseudo-activity

matrix (P) combining both drug’s effect on a kinase:

Pn ¼ JnKn

JnþKn� JnKn
(1)

Subsequently, the pseudo-matrix for all 428 by 428 (including

control) combinations of drugs was computed and inputted into

KiDNN for prediction.

In vitro Activation-Induced Marker (AIM) assay to assess T-cell
response
A modified flow cytometric AIM assay (Reiss et al, 2017) was used

to assess the effect of antigen-specific T cells in the presence of drug

candidates.

• Single cryopreserved PBMC vials were thawed (37°C) and washed

(centrifuged at 300 ×g) twice, resuspended in 5 ml RPMI-HEPES

(supplemented with L-glutamine and penicillin/streptomycin)

containing 10% Human Serum AB (R10 HS) and incubated at

37°C/5% CO2 for 3 h at a concentration of 2 × 107 cells/ml.

• Cells were counted using a Guava Easycyte (Luminex) flow

cytometer, resuspended in R10 HS containing 1 µg/ml anti-CD40

antibody at a concentration of 1 × 107 cells/ml. Cell suspensions

(0.1 ml) for each stimulation condition were transferred to individ-

ual wells of a 96-well microtiter culture plate (Thermo Fisher) and

incubated at 37°C/5% CO2 for 30 min.

• Cytomegalovirus (CMV) control peptide pool, containing defined

HLA-restricted epitopic synthetic peptides, was used as a positive

control, and peptide pool diluent (PBS containing 0.01% DMSO)

was used as a negative control.

• Ponatinib, baricitinib, or dexamethasone was serially diluted (2-

fold) and added to appropriate wells at a final concentration range

of 3.9–250 nM. CMV or peptide pool diluent was added to positive

controls and negative controls (at each drug dilution); the final

CMV peptide pool concentration was 2 µg/ml for each condition.

• Polychromatic flow cytometric (PFC) compensation controls

(Live/Dead Aqua; CD3 ECD; CD4 Alexa Fluor 488, CD8 PerCP

eFluor 710, CD69 BV421, CD137 APC, CD154 PE-BD) were set up

in parallel without drug treatment. For CD69, CD137, and CD154,

compensation control Staphylococcal enterotoxin B was added to a

concentration of 1 µg/ml.

• Microtiter plates containing cells were centrifuged at 300 ×g for

5 min. Stimulations and compensation controls were incubated at

37°C/5% CO2 for 16 h.

• Cells were washed twice with 1X PBS (Thermo Fisher).

• The Live/Dead Aqua compensation control and stimulations were

stained with Live/Dead Aqua for 30 min.

• Cells were washed with Cell Staining Buffer (CSB) supplemented

with Human TruStain FcX (FcX CSB).

• An antibody cocktail (0.1 ml per stimulation) was prepared in FcX

CSB using PFC antibodies and Brilliant Stain Buffer (BSB). Appro-

priate compensation controls and stimulations were stained with

single antibodies (prepared in BSB) and antibody cocktail, respec-

tively, for 30 min.

• Cells were washed with CSB and fixed with 4% paraformaldehyde

in PBS for 30 min. Cells were washed again with CSB prior to flow

cytometric acquisition.

• A Northern Lights spectral flow cytometer was used to acquire

spectral flow cytometric data. SpectroFlo software was used to

unmix and analyze data.

Animals and experimental procedure
The study was conducted under the approval of the Institutional

Care and Use Committee (IACUC) for Fred Hutchison Cancer

Research Center. Male adult C57BL/6J mice (12-weeks-old, body

weight 25–30 g) were used. Mice were treated with lipopolysaccha-

rides (LPS) using oropharyngeal administration to induce lung

inflammation as previously described (Allen, 2014).

• Briefly, mice were pre-treated with ponatinib at 35 mg/kg or pona-

tinib vehicle control (25 mM citrate buffer, pH 2.75) for 30 min

via intraperitoneal injection.

• Mice were then anesthetized by isoflurane.

• Anesthetized mouse was suspended on the intubation stand by its

front incisors. The tongue was gently pulled out of the mouth with

the angled forceps until slight resistance was felt to access the

trachea.

• While holding the tongue in the extended position, a dose of 20 µg
LPS in 50 μl 1× phosphate-buffered saline (PBS) was administered

into the back of the throat.

• The nostrils were covered with a gloved finger while the tongue

was held extended for 5–10 additional breaths for LPS to be

inhaled.

• The mouse was removed from the intubation stand and placed in

a cage.

• Five hours after LPS inoculation, mice were sacrificed and bron-

choalveolar lavage fluid (BALF) was collected.

• Briefly, a nick was made in the trachea. A 20-G blunt needle was

inserted into the trachea, and a 1-ml syringe containing 1 ml PBS

was attached to the blunt needle. The entire volume was slowly

discharged to inflate the lungs and then withdrawn by pulling

back the plunger to collect BALF.
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• Cytokines in BALF including GMCSF, IL-6, and TNFα were

measured by Luminex multiplex assay as described above.

• The lungs were formalin-fixed, embedded in paraffin blocks, and

cut into 4-μm sections for hematoxylin and eosin staining.

Data availability

The custom python scripts that implements KiDNN framework are

available on GitHub: https://github.com/gujrallab/Covid-19. This

repository also includes all associated files needed to execute the

script and produce a sample model using the training dataset. R

scripts for KiR modeling is available at https://github.com/FredHutc

h/KiRNet-Public

Expanded View for this article is available online.
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