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Summary

Background Triptolide is an active natural product, which inhibits cell proliferation, induces cell apoptosis, suppresses tumor
metastasis and improves the effect of other therapeutic treatments in several cancer cell lines by affecting multiple molecules
and signaling pathways, such as caspases, heat-shock proteins, DNA damage and NF-kB. Purpose We investigated the effect
of triptolide towards NF-kB and GATA1. Methods We used cell viability assay, compare and cluster analyses of microarray-
based mRNA transcriptome-wide expression data, gene promoter binding motif analysis, molecular docking, Ingenuity
pathway analysis, NF-kB reporter cell assay, and electrophoretic mobility shift assay (EMSA) of GATAL. Results Trip-
tolide inhibited the growth of drug-sensitive (CCRF-CEM, U87.MG) and drug-resistant cell lines (CEM/ADRS5000, U87.
MGAEGFR). Hierarchical cluster analysis showed six major clusters in dendrogram. The sensitive and resistant cell lines
were statistically significant (p=0.65 x 1072) distributed. The binding motifs of NF-kB (Rel) and of GATA1 proteins were
significantly enriched in regions of 25 kb upstream promoter of all genes. IPA showed the networks, biological functions,
and canonical pathways influencing the activity of triptolide towards tumor cells. Interestingly, upstream analysis for the 40
genes identified by compare analysis revealed ZFPM1 (friend of GATA protein 1) as top transcription regulator. However,
we did not observe any effect of triptolide to the binding of GATAL in vitro. We confirmed that triptolide inhibited NF-xB
activity, and it strongly bound to the pharmacophores of IkB kinase § and NF-kB in silico. Conclusion Triptolide showed
promising inhibitory effect toward NF-kB, making it a potential candidate for targeting NF-xB.

Keywords Microarrays - Natural products - Network pharmacology - Phytochemicals - Precision medicine

Introduction

Triptolide, a diterpenoid triepoxide, is predominantly an
active natural product isolated from the medicinal plant Trip-
terygium wilfordii Hook F (TWHF) [1]. Triptolide exhibits
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potent pharmacological activities against inflammation,
fibrosis, cancer, viral infection, oxidative stress and osteo-
porosis [2—4]. Triptolide has a similar structure as steroid
hormones, and it showed high binding affinity to a nuclear
receptor, human estrogen receptor alpha (ERa) [5]. It selec-
tively inhibits the activity of peroxiredoxin I, which has cru-
cial functions in the development of cancer and inflamma-
tion [6]. The XBP1 subunit of the transcription factor TFIH
core complex is one of the molecular targets of triptolide,
which is important for the inhibitory activity of triptolide to
RNA polymerase [I-mediated transcription [7]. This feature
provides one explanation of the activity of triptolide against
several diseases such as inflammation and cancer [8-10].
Triptolide shows proapoptotic and anti-proliferative
effects on tumor cell lines in vitro and reduces the tumor
size or inhibits tumor growth in vivo. It inhibits cell prolif-
eration, induces cell apoptosis, suppresses tumor metastasis
and improves the effect of other therapeutic treatments in
several cancer cell lines [11]. It affects multiple molecules
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and signaling pathways, such as caspases, heat-shock pro-
teins, DNA damage and NF-kB. It also enhances chemora-
diosensitivity in cancer therapy [12].

Nowadays, targeting transcription factor drivers in cancer
is becoming a successful strategy for treatment of cancer [1].
This mainly based on the fact that most of the oncogenes
involved in tumorigenesis processes are transcription factors
such as forkhead box O (FOXO), nuclear factor kappa B
(NF-kb), Kriippel-like factor 8 (KLF8), MYC, GATA bind-
ing factor (GATAL1), activator protein 1 (AP-1), etc. [13, 14].

NF-kB is a family of transcription factors that are consti-
tutively active in different types of tumors. NF-kB has been
identified as a key player in carcinogenesis process, since it
has a role in activation of cellular pathways such as: cell pro-
liferation, survival, apoptosis, angiogenesis, and metastasis
[15]. Hence, targeting NF-xB is of significant therapeutic
value. NF-kB is located in the cytoplasm in inactive form
by its binding to inhibitory proteins (IxkB). In the presence
of specific stimuli, IkB is phosphorylated by the IxB kinase
(IKK) and eventually degraded. Activated NF-kB is now
free to translocate to the nucleus and binds to its specific
DNA sequences at the cis-acting elements of the target genes
enhancing their expression [16].

The GATA-binding factor (GATA) proteins constitute a
large family of transcription factors. In mammals, it is com-
posed of six members (GATA1-GATA®6) that can be further
classified into two subfamilies based on their expression
profile and the structure of the gene [17]. GATAI and its
friend Zinc Finger Protein (ZFPM1, FOG1) are transcription
factors and transcription regulators, respectively [18]. They
regulate the differentiation of the erythroid and megakaryo-
cytic cell lineages by regulating the expression of the key
genes related to cell proliferation, cell differentiation, and
apoptosis [19]. ZFPM1 binds to GATA1 to form a heterodi-
mer complex to synergistically activate transcription at the
specific regulatory region of the genes. Then, the expressed
genes enable differentiation of hematopoietic cells to both
erythroid and megakaryocytic cells [20]. Moreover, several
studies reported that the deregulation of ZFPM1 and its
pathway contributes to the initiation of hematologic malig-
nancies. Therefore, GATAL is considered a potential target
for cancer therapy [21].

In this study, we investigated the cytotoxic activity of
triptolide in tumor cell lines. Moreover, we carried out
COMPARE and hierarchical cluster analyses for 60 cell lines
of the National Cancer Institute (NCI, United States) that
represent 9 different types of tumors. Then, we were inter-
ested to perform pathway and motif analyses using the 40
genes identified by the microarray. Later, we examined the
inhibitory effect of triptolide towards NF-kB using in silico
molecular docking and NF-xB reporter cell assay, since
our bioinformatics analysis showed that triptolide affects
NF-kB. Besides, we also studied the effect of triptolide to
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GATA proteins, because GATA proteins were predicted to
bind triptolide by our motif binding analyses in this study.

Materials and methods
Cell lines

Drug-sensitive CCRF-CEM and multidrug-resistant P-
glycoprotein-overexpressing CEM/ADRS5000 leukemic cells
were kindly given by Prof. Axel Sauerbrey (Department of
Pediatrics, University of Jena, Germany). Cells were cul-
tured in RPMI1640 medium supplemented with 10% fetal
bovine serum (FBS) and 1% penicillin (1,000 U/mL)/strep-
tomycin (100 pg/mL) (P/S) (Life Technologies, Darmstadt,
Germany). Doxorubicin (5,000 ng/mL) was supplied to
retain overexpression of P-gp (MDRI, ABCB]) in resistant
CEM/ADRS5000 leukemic cells [26]. Human brain glio-
blastoma cell line U87.MG and the U87.MGAEGFR that
is transfected with a plasmid carrying an EGFR gene with a
deletion of exons 2—7 were obtained from Dr. W. K. Cave-
nee (Ludwig Institute for Cancer Research, San Diego, CA,
United States). The cell lines were cultured with 800 ng/mL
geneticin [22, 23].

The panel of 60 human tumor cell lines of the Develop-
ment of Therapeutics Program of the National Cancer Insti-
tute (NCI, USA) included leukemia, melanoma, non-small
cell lung cancer, colon cancer, renal cancer, ovarian cancer,
breast cancer, prostate carcinoma cells, and tumor cells of
the central nervous system [24].

Cell viability assay

The cytotoxic activities of triptolide (Sigma Aldrich,
Taufkirchen, Germany; Fig. 1 A) were evaluated by the resa-
zurin assay [25]. This assay is based on reduction of the indi-
cator dye, resazurin, to the highly fluorescent resorufin by
viable cells. Aliquots of 5,000 cells/100 uL. of U87.MG and
U87.MGAEGFR were placed in 96-well plates and incu-
bated for one day before treatment. However, for leukemic
cells, 10,000 cells/100 pL cells were seeded into 96-well
plates and immediately treated. Twenty microliters of resa-
zurin 0.01% w/v solution were added to each well after 72 h
at 37 °C incubation, and the plates were incubated at 37 °C
for 4 h. Fluorescence was detected by an Infinite M2000
Proplate reader (Tecan, Crailsheim, Germany) with an exci-
tation wavelength of 544 nm and an emission wavelength of
590 nm. Each experiment was carried out at least three times
with six replicates each. The viability was analyzed based
on a comparison with untreated cells. Fifty percent inhibi-
tion (ICs,) values imply the drug concentrations needed to
inhibit 50% of cell proliferation and were calculated from a
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Fig. 1 Cytotoxicity of triptolide against cancer cells. Chemical structure of triptolide A. Cytotoxic effect of triptolide against CEM/ADRS5000

and CCRF-CEM B, and U87.MG and U87. MGAEGFR C

calibration curve by linear regression using Microsoft Excel
[26, 27].

Compare and cluster analyses of microarray-based
mRNA transcriptome-wide expression data

The mRNA microarray hybridization of the NCI cell lines
has been published at the NCI Web site (http://dtp.nci.nih.
gov) [28, 29]. COMPARE analyses were used to obtain rank-
ordered lists of genes expressed in the NCI cell lines. The
detailed method as a tool to determine candidate genes for
drug resistance and sensitivity has been previously published
[30-33]. In order to identify COMPARE rankings, a scale
index of correlation coefficients (R-values) was generated
from Iog,;(,ICs, values of test compounds and microarray-
based mRNA expression values. Greater mRNA expression
correlated with enhanced drug resistance in the standard
COMPARE, whereas greater mRNA expression in cell lines
indicated drug sensitivity in reverse COMPARE analyses.
Pearson’s correlation test was used to calculate significance
values and rank correlation coefficients as relative measure
for the linear dependency of two variables.

For hierarchical cluster analyses, objects were classi-
fied by calculation of distances according to the closeness
of between individual distances. All objects were displayed
into cluster trees (dendrograms). Merging of objects with
similar features leads to cluster formation, where the length
of the branch implies the degree of relation. Distances of sub-
ordinate cluster branches to superior cluster branches serve
as criteria for the closeness of clusters. Therefore, objects
with tightly related features were clustered closely together,
if separation of objects in the dendrogram increased with pro-
gressive dissimilarity. Hierarchical clustering and heat map
analyses were carried out using clustered image map (CIM)
miner software by the one matrix CIM (https://discover.nci.
nih.gov/cimminer/oneMatrix.d) [34].

Transcription factor gene promoter binding motif
analysis

The top 40 genes, which directly or inversely correlated
with log,(ICs, values of the NCI cell lines in COMPARE
analysis, were submitted to binding motif analysis. Promoter
sequences 25 kb upstream of exon 1 of the corresponding
genes were retrieved from UCSC Genome Browser Gene
Sorter (http://genome.ucsc.edu). Promoter sequences were
checked using the SeqPos tool implemented in the Galaxy
Cistrome software [35].

Molecular docking

The interaction energy of triptolide with NF-kB pathway
proteins was predicted using molecular docking: I-xB
kinase f, I-xB kinase p-NEMO (NF-kB essential modula-
tor) complex, NF-kB, and NF-kB-DNA complex. The pro-
tocol for molecular docking was reported by us [36]. Protein
structures using X-ray crystallography were obtained from
PDB database (http://www.rcsb.org/). I-kB kinase  (PDB
ID:3RZF), I-kB kinase f-NEMO complex (PDB ID:3BRT),
NF-kB (p52/RelB heterodimer, PDB ID:3DO7), and NF-
KkB-DNA complex (p50/p65 heterodimer bound to DNA, PDB
ID: IVKX) were used in our study.

A grid box was defined for docking spaces in each pro-
tein according to its pharmacophores. Docking parameters
were set to 250 runs and 2,500,000 energy evaluations for
each docking. Dockings were performed three times inde-
pendently. Lamarckian Genetic Algorithm was chosen
for docking calculations. For the visualization of docking
results, AutodockTools-1.5.7rcl was used. The surface rep-
resentation image showing the binding pocket of proteins
was made with Visual Molecular Dynamics (VMD) soft-
ware developed with NIH support by the Theoretical and
Computational Biophysics group at the Beckman Institute,
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University of Illinois at Urbana-Champaign (http://www.ks.
uiuc.edu/Research/vmd/).

Ingenuity pathway analysis

Deregulated genes identified by COMPARE analysis as fac-
tors determining cellular responsiveness to triptolide were
subjected to pathway analysis, in order to determine the bio-
logical function of these genes. Forty genes were imported
into the Ingenuity Pathway Analysis (IPA) software (Qiagen
Bioinformatics, Redwood City, CA, U.S.A) in Excel format
[37].

Core analyses were carried out with general settings:
“human” as species and “cell line” as type of biological
sample. Canonical pathways, diseases and functions, and
upstream regulators were determined by Fisher’s exact test at
a significance value of p <0.05. IPA core analyses identifies
key regulators and networks in human cell lines [37, 38].

NF-kB reporter cell assay

HEK?293 cells stably expressing HEK-Blue-Nulll vector and
SEAP on a NF-kB promoter were obtained from Invivogen
(San Diego, CA, USA). The cells were maintained accord-
ing to manufacturer’s protocol and treated with various con-
centrations of triptolide (0 uM, 1.6 uM, 3.1 uM, 6.3 uM,
12.5 uM, 25 uM and 50 pM) for 1 h and triptolide was not
removed. Afterwards, NF-kB activity was induced with
100 ng/mL of TNF-a for 24 h. The activation was evaluated
by detecting SEAP spectrophotometrically at 630 nm with
addition of Quanti Blue (Invivogen). The procedure has been
published by us [39—41].

Electrophoretic mobility shift assay (EMSA)

Electrophoretic mobility shift assays were carried out as pre-
viously demonstrated [42]. And the sequence of the bioti-
nylated probes (sequence from a regulatory region in ABO
intron 1 [GenBank KC841429]) used for testing are shown
in Table 1. Gel shifts were performed using LightShift™
Chemiluminescent EMSA Kit (Thermo-Fisher, Waltham,
MA, USA) and nuclear extracts were prepared from K562
cells (ATCC CCL -243™) [43]. Triptolide was dissolved
in DMSO to a 20 mM stock solution which was then fur-
ther diluted. Nuclear extracts were pre-incubated with three

different dilutions of triptolide (5 nM, 10 nM, and 20 nM) for
5 min and three concentrations (2.5 nM, 5 nM, and 100 nM)
for 10 min to test if triptolide would inhibit GATA1 protein
binding to the probes. The final dilution of DMSO was 0.1%.
As a vehicle control, pre-incubation was performed with
0.1% DMSO only and as a negative binding control a probe
with a disrupted GATAL site was used. Supershift assay
was performed with polyclonal anti-GATA-1 IgG (1 pg/uL;
Active Motif, Waterloo, Belgium).

Results

Cytotoxicity of triptolide towards ABC-transporter
expressing tumor cell lines

The cell viability of drug-sensitive (CCRF-CEM, U87.
MG) and drug-resistant cell lines (CEM/ADRS5000, U87.
MGAEGFR) by triptolide was tested by resazurin assay.
Triptolide inhibited the growth of all four cell lines after
72 h. The ICy, values of triptolide against CCRF-CEM
and CEM/ADRS5000 were 10.21 and 7.72 nM, respec-
tively (Fig. 1B). Fifty percentages of U87MG and US7MG.
AEGFR were inhibited with 0.025 and 0.021 uM triptolide,
respectively (Fig. 1C).

Compare and hierarchical cluster analysis of mRNA
microarray data

We studied the transcriptome-wide mRNA expression in
60 NCI cell lines of diverse tumor types using COMPARE
analysis and correlated the mRNA expression data with the
log,ICs, values for triptolide, in order to identify novel
molecular determinants for this compound. The scale rank-
ing of genes, which were identified by COMPARE analysis,
were applied to Pearson’s rank correlation tests. Table 2
shows the top 20 genes with direct and the top 20 genes
with inverse correlation coefficients.

Hierarchical cluster analysis and cluster image mapping
were performed with the mRNA expression of these genes
(Fig. 2). The dendrogram of the heat map can be separated
into six major clusters (Fig. 2). Cluster 1 and 5 included
mainly sensitive, cluster 2, 3 and 4 contained mostly resist-
ant cell lines. Cluster 6 has only resistant cell lines. The

Table 1 EMSA probe
designations and sequences

Name

Sequence 5’ to 3’

(wildtype and mutated GATA1-
binding motif highlighted in
bold)

ABOil GATA F
ABOil GATAR
ABOil GAGA F
ABOil GAGAR

AGAGTCTTCGCAATGCCTGGGAAAGGGAGAGATAAGGCTCACTAGCCA
TGGCTAGTGAGCCTTATCTCTCCCTTTCCCAGGCATTGCGAAGACTCT
AGAGTCTTCGCAATGCCTGGGAAAGGGAGAGAGAAGGCTCACTAGCCA
TGGCTAGTGAGCCTTCTCTCTCCCTTTCCCAGGCATTGCGAAGACTCT
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Fig. 2 Hierarchical cluster
analysis and heatmap of genes
expressions involved in cancer
cell sensitivity to triptolide
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distribution of sensitive and resistant cell lines showed sta-
tistically significant (p =0.65 X 1072) (Table 3).

Transcription factor binding motif analysis in gene
promoters

Forty genes were identified by COMPARE analysis and
the promoters of these genes contained transcription
factor binding motifs for NF-kB and GATA proteins
(GATAL, 2 and 3) (Figs. 3 and 4). The NF-xB DNA binding
motif (Rel) was significantly enriched (with a log p-value
of -3.6) in regions of 25 kb upstream promoter of all
genes, with 254 hits and a Z-score of -1.94 (Fig. 3). This
analysis demonstrated that NF-kB plays a crucial role
in the regulation of genes related to triptolide, as it was

@ Springer
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reported before [11, 12]. Furthermore, the binding motifs
of GATA proteins 1, 2 and 3 were widely distributed in

Table 3 Separation of clusters of NCI cell lines obtained by hierar-
chical cluster analyses for triptolide shown in Fig. 2

Sensitive Resistant
Partition <-7.948 >-7.948
Cluster 1 6 2
Cluster 2 3 7
Cluster 3 5 8
Cluster 4 2 8
Cluster 5 13 3
Cluster 6 0 2
Chi-square test p=0.65x10"2




Investigational New Drugs (2021) 39:1523-1537 1531
Fig.3 Binding motif analysis 2
of 25 kb upstream regions of 40 g
genes identified by COMPARE gL
analysis revealing the significant % 14 2
presence of NF-xB binding 3 i -
o | A ITC id: M00208
mham Ealeests factors: NF-kappaB|NFKB1
te 34 s 678 s wun e  DBD: RHR (Rel homology region)
R . e
= hits: 254
cutoft: 1.996

BACE TSRO DO

the promoter regions of all genes, with 112 hits, a Z-score
of -3.5, with 219 hits, a Z-score of -3.7 and with 135 hits,
a Z-score of -5.7, respectively (Fig. 4).

Molecular docking

In order to study the interaction of triptolide with the
NF-xB pathway in more detail, molecular docking anal-
yses were carried out using IkB kinase , IkB kinase
B-NEMO, NF-kB, NF-kB DNA complex in silico. Trip-
tolide strongly bound to the pharmacophores of IxkB
kinase B and NF-kB DNA complex. Triptolide bound to
IxkB kinase p with a binding energy of -7.85 kcal/mol
and to NF-kB DNA complex with a binding energy of
-7.68 kcal/mol (Table 4).

DBD: diverse Cys4 zinc fingers ! 2 3 4
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Ingenuity pathway analysis

Deregulated genes identified by COMPARE analysis were
subjected to IPA. Interestingly, pathways regulating cell
death and survival, cellular development, cellular growth,
cancer, post translation modification and humoral immune
response, etc. appeared as top affected cellular functions
and diseases (Fig. 5).

The canonical pathways analysis revealed that trip-
tolide affects numerous pathways, such as natural killer
cell signaling, ephrin receptor signaling, crosstalk between
dendritic cells and natural killer cells, integrin signaling,
actin cytoskeleton signaling, etc. (Fig. 6). On the other
hand, the upstream regulators that were identified using
IPA showed ZFPMI1 as the top transcription regulators
with a p-value of 2.85E-04.

|
id: MA0036 M\ Rele

id: M00077
factors: GATA2 o 2 factors: GATA-3|GATA3
DBD: GATA P e gt DBD:
hits: 219 hits: 135
cutoff: 5.029 cutoff: 6.258
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zscore: -3.672
-10log(pval): 90.24

Fig.4 Binding motif analysis of 25 kb upstream regions of 40 genes identified by COMPARE analysis revealing the significant presence of

GATA proteins binding motif
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Table 4 In silico molecular docking of triptolide on NF-kB Pathway proteins. Dockings were performed with 250 runs for each protein

Protein Lowest energy Mean binding  Residues involved hydrogen ~ Residues involved in hydrophobic  pKi (nM)
of docking (kcal/  energy (kcal/ bond interaction with the interaction with ligand
mol) mol) ligand
IxB kinase 3 -7.85+0.26 -7.78+0.32 LYS44, GLU100 LEU21, THR23, VAL29, ALA42, 1.89+0.91
LYS44, VAL74, MET96,
TYR98, CYS99, GLU100,
GLY102, GLU149,
ASN150, VAL152, ILE165,
ASP166, LEU167
IxB kinase f- NEMO  -6.16+0.02 -6.08 +0.01 - MET9%4, PHE97, ALA100, 30.72+0.12
ARG101, VAL104
NF-xB -5.88+0.12 -5.86+0.13 PHE273, PHE276, ARG290  GLN271, ALA272, PHE273, 49.70+10.61
GLY274, ASP275, PHE276,
ARG290, PRO292
NF-xB DNA complex -7.68+ <0.00 -7.66+ <0.00 DAIS8 DT8, DT9, DA18, DG19, DT20, 2.35+ <0.00

ARG124

Experimental verification of binding motif analyses
NF-kB reporter assay

Since molecular dockings and motif analysis showed the
high binding affinities of triptolide to NF-kB and its reg-
ulator, IxB, we carried out NF-kB reporter assay using a
SEAP-driven cell line. Triptolide inhibited NF-kB activity
in a dose-dependent manner (Fig. 7).

EMSA of GATA following triptolide incubation

EMSA testing was performed with probes spanning a
well-characterized GATAL site to evaluate if triptolide
can inhibit binding of transcription factor GATA1. Pre-
incubation of GATA 1-containing nuclear extracts with various

Fig.5 Biological functions
affected by triptolide as deter- 21
mined by mRNA microarray
hybridization and ingenuity = 4
athway analysis >
p y Y § 3.
a2
821
‘ sh
1 4
0 S—

concentrations of triptolide did not influence the binding
pattern of the GATA1 protein to the probes. GATA1 protein
binding was verified by addition of anti-GATA1 giving rise
to a clear supershift in all cases except for the negative con-
trol, for which neither a shift nor a supershift was observed
when a probe with a disrupted GATA site was used (Fig. 8).

Discussion

Triptolide inhibits the proliferation and induces apoptotic
cell death in several cancers. Triptolide increases the nuclear
accumulation of p53 and apoptotic cell death in human pro-
static epithelial cells [44].

Multi-drug resistance (MDR) is an obstacle for cancer
therapy [45]. Triptolide inhibited the expression of MDR

Cell Death and Survival
Cellular Development

Cellular Function and Maintenance
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Cancer

Cellular Growth and Proliferation
Post-Translational Modification
Humoral Immune Response
Cell-mediated Immune Response
Molecular Transport

Immune Cell Trafficking _
Protein Synthesis
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Fig.6 Biological functions affected by triptolide as determined by mRNA microarray hybridization and Ingenuity Pathway Analysis

protein and promoted apoptotic cell death of drug-
sensitive parental KB cells and multidrug-resistant KB-7D and
KB-tax cells [46]. Besides, triptolide changed the activity
of P-glycoprotein drug efflux and mRNA expression of
MDR genes [9]. We have comparable results that triptolide
strongly inhibited the growth not only of drug-sensitive
CCRF-CEM cells but also MDR P-glycoprotein overex-
pressing CEM/ADRS5000 cells in the nanomolar range.

Fig.7 Effect of triptolide on
NF-xB activity
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S
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Collateral sensitivity (hypersensitivity) is occasion-
ally observed in ABC-transporter-expressing cells. This
event has been well known for several years in ABCB1
(P-gp/MDR1) and MRP1 overexpressing tumor cells [47,
48]. Interestingly, P-glycoprotein overexpressing CEM/
ADRS5000 cells revealed collateral sensitivity to triptolide in
comparison with their parental drug-sensitive counterparts.
Collateral sensitivity represents an interesting phenomenon

0 1.5625

*
- :
3.125 6.25 12,5 25 50
Triptolide concentration (nM)
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Fig.8 EMSA Testing was performed with 48-bp biotinylated probes
spanning the GATAL site investigated. A The wild-type probe (GATA)
exhibited a shift (white arrow) upon incubation with nuclear extract
(NE) from K562 cells, mock-treated or pre-incubated with different
concentrations of triptolide (5, 10, and 20 nM), and a further super-
shift (black arrow) with addition of anti-GATAI, detecting binding of
GATAL to the wild-type probe. As a negative control the probe with

from the therapeutic point of view, because it opens the per-
spective that drug-resistant refractory tumors could be suc-
cessfully treated with this kind of drugs [49].

EGFR is a member of the ErbB family of receptors. Upon
binding with its ligands, such as EGF or TGF-a, EGFR
homo- or hetero-dimerizes with other ErbB family mem-
bers to activate downstream signaling cascades after tyrosine
phosphorylation. This signaling controls several cellular pro-
cesses, such as proliferation, survival, and apoptosis. EGFR
mutations leading to EGFR overexpression result in cancer
development, and EGFR mutations affect the poor prognosis
of patients and mediate drug resistance of tumors [50]. The
in-frame deletion of the extracellular EGFR domain causes
ligand-independent receptor activation and represents a
common mutant type in brain tumors, termed AEGFR [51].
Triptolide showed strong inhibitory effects towards both
wtEGFR (sensitive) and AEGFR (resistant) with the same
concentrations. These results demonstrate that AEGFR does
not confer resistance against triptolide, indicating that trip-
tolide might be a suitable candidate to treat drug-resistant
tumors with AEGFR mutation.

The relationship between the gene expression patterns
and the drug responses was investigated using the tumor
cell line panel of the NCI developmental therapeutic pro-
gram. We identified a gene expression profile, which was
significantly related to the log,,ICs, values of the cell lines
to triptolide. COMPARE analysis identified a set of genes
from several functional groups (e.g., cell morphology,

@ Springer

a disrupted GATAL site (GAGA) showed no shift with nuclear extract
and hence no supershift could be detected. B Further testing was per-
formed (controls not shown) with higher and lower concentrations of
triptolide (100 and 2.5 nM) when the incubation time was prolonged
from 5 min to 10. For all concentrations tested there are clear shifts and
supershifts further indicating that triptolide does not inhibit GATA1
protein binding to the probes

transmembrane, ribosomal proteins, protein tyrosine phos-
phatase, and microtubule formation).

Cluster analyses were carried out to predict, whether
the cancer cell lines were sensitive or resistant to a cyto-
toxic drug [52]. The distribution of triptolide-sensitive or
-resistant cell lines differed significantly among the differ-
ent clusters. The portion of sensitive cells in clusters 1 and
5 was much higher than in clusters 2, 3, 4 and 6. Cluster 1
included 75% sensitive cells and 25% resistant cells. Clus-
ter 2 contained 30% sensitive cell lines and 70% resistant
cell lines. Cluster 3 contained 38% sensitive cell lines and
62% resistant cell lines. Cluster 4 had 20% sensitive cells
and 80% resistant cells. Cluster 5 contained 81% sensitive
cell lines and 19% resistant cell lines. Cluster 6 included
100% resistant cell lines. This distribution showed signifi-
cant differences among the clusters as demonstrated by the
chi square test (p =0.65x 1072). The cluster analysis iden-
tified two clusters with predominantly triptolide-sensitive
and four clusters with predominantly triptolide-resistant
cell lines. What does this mean for cancer therapy? By
applying this two-step approach with COMPARE and
cluster analyses, it was possible to predict cellular drug
response by gene expression profiling of cell lines. It is not
beyond the scope of imagination that similar approaches
may be applied to predict the sensitivity of individual
tumors of patients towards standard chemotherapeutic
drugs and also cytotoxic compounds such as triptolide.
In case resistance to standard chemotherapy occurs, the
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oncologist could switch to cytotoxic natural products
which are still active in these otherwise resistant tumors.
Hence, the estimation of sensitivity or resistance to cyto-
toxic drugs by mRNA expression profiles may be applied
for novel strategies of individualized cancer treatment and
precision medicine, because an approach like this could
provide opportunity to determine prior to therapy, whether
or not an individual tumor would react to specific drugs
or natural products.

In addition to the prediction of sensitivity or resistance
to specific anticancer compounds, gene expression profil-
ing coupled with COMPARE and cluster analyses can be
used to identify relevant molecular mechanisms of triptolide
(and other anticancer drugs and natural products) to unravel
underlying molecular modes of action of drugs. In the case
of triptolide, we found that NF-xB plays an important role
for the anticancer activity of triptolide. NF-xB is a ubiqui-
tous transcription factor that controls the expression of genes
involved in inflammation, the immune response, cell prolif-
eration, and apoptosis [53]. Interestingly, the NF-kB binding
motif was identified in the upstream promoter regions of all
genes, which were identified by COMPARE analysis, dem-
onstrating that NF-xB is a crucial transcription regulator of
triptolide’s activity in cancer cells.

NF-kB is cell nuclear factor, which is related to transcrip-
tion regulation in the process of inflammation, stress, cell
growth and proliferation. NF-kB promotes cell prolifera-
tion, cell apoptosis and plays a crucial role for the tumor
development. NF-kB is a heterologous dimer composed of
p50 and p65. Triptolide inhibits the transactivation effect of
the p65 subunit of NF-kB and promotes cell apoptosis [10].
Triptolide also indirectly inhibits NF-kB signaling through
the AKT/GSK3B/mTOR pathway and induces apoptosis in
ovarian cancer by inhibition of NF-kB expression [54, 55].

IPA was carried out to predict molecular mechanism of
triptolide using COMPARE and hierarchical cluster analyses
genes. IPA indeed showed cellular processes revealing the
anti-tumor activity of triptolide. Furthermore, it presented
the ZFPM1 (friend of GATA1) as a top candidate in the
upstream regulators list. These results are in accordance with
the data obtained from the motif analyses. Therefore, we
wanted to investigate the inhibition of GATA1 function by
triptolide. To the best of our knowledge, the effect of trip-
tolide towards GATAL1 is described here for the first time.
EMSA experiments displayed that triptolide has no apparent
effect on GATA1 binding to its motif. One study showed
that GATA1 was up-regulated in Sertoli cells upon treatment
with triptolide for 15 days. Then, the authors concluded that
triptolide has no effect at the level of Gatal and the change
in the expression was probably due to cellular changes lead-
ing to spermatids formation [56].

In conclusion, triptolide showed remarkable cytotoxic
effect in different sensitive and drug-resistant cancer cell

lines. In particular, P-glycoprotein overexpressing CEM/
ADRS5000 cells were collateral sensitive toward triptolide.
Other investigations were performed to understand the
mechanism of action of triptolide. Bioinformatics tools pre-
dicted the sensitivity or resistance of tumor cells to triptolide
using 60 NCI cell lines. Ingenuity Pathway Analysis iden-
tified cellular processes and signaling pathways of genes
involved in the mechanisms of action of PT. Finally, trip-
tolide strongly inhibited the activity of NF-xB, while it did
not show significant effect towards GATAL1.
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