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Abstract: Geometric phases are used to construct quantum gates since it naturally resists local noises,
acting as the modularized units of geometric quantum computing. Meanwhile, fast nonadiabatic
geometric gates are required for reducing the information loss induced by decoherence. Here,
we propose a digital simulation of nonadiabatic geometric quantum gates in terms of shortcuts
to adiabaticity (STA). More specifically, we combine the invariant-based inverse engineering with
optimal control theory for designing the fast and robust Abelian geometric gates against systematic
error, in the context of two-level qubit systems. We exemplify X and T gates, in which the fidelities
and robustness are evaluated by simulations in ideal quantum circuits. Our results can also be
extended to constructing two-qubit gates, for example, a controlled-PHASE gate, which shares the
equivalent effective Hamiltonian with rotation around the Z-axis of a single qubit. These STA-inspired
nonadiabatic geometric gates can realize quantum error correction physically, leading to fault-tolerant
quantum computing in the Noisy Intermediate-Scale Quantum (NISQ) era.
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1. Introduction

A quantum computer based on a quantum gate and quantum circuits is one of the most promising
solutions to the arising demand for computational resources, which is so-called digital quantum
computing [1]. Quantum gate, as the basic operation, is modularized to evolve unknown quantum
states by a time-dependent Hamiltonian, the design of which is highly related to quantum control.
Specifically, there are two main difficulties in experimental technologies: (i) the manipulation of
the quantum system is realized by external fields, where their imperfection introduces systematic
errors; (ii) the quantum system is coupled to the noisy environment, which causes the decoherence.
Among the theoretical frameworks, geometric quantum computation suggests that the geometric
phase [2–6], as a property of fundamental quantum theory, can be employed to construct quantum
gates, being naturally robust against noises [7–10]. The geometric phase can be a real number known
as the Berry phase [2], or a non-Abelian matrix [3] that induces holonomy in the quantum theory.
Therefore, quantum error correction and fault-tolerant quantum computers [11–13] can also be achieved
by this protocol, boosting the development from NISQ gate-based quantum computers to the next
level. Geometric quantum computation has been originally proposed to accumulate a geometric phase
adiabatically, requiring long operation time so that the quantum information can be destructed by
decoherence. Thus, nonadiabatic geometric quantum computation aims at shortening the operation
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time without loss of fidelity, which is experimentally demonstrated [8,14–19] in both Abelian [20–23]
and non-Abelian cases [24,25]. However, the systematic errors induced by inaccurate driving fields
harm the performance of geometric gates [26,27], which should be further optimized by quantum
control techniques. Recently, both theoretical [28–31] and experimental researches [32,33] have been
devoted to improving the robustness of (non-)Abelian gates against systematic errors. A typical
framework NHQC+ [29] constructs a single-looped nonadiabatic geometric gate in an extensible way,
being compatible with most optimal control methods for a balance between flexibility and robustness.

In a slightly different but relevant topic, “shortcuts to Adiabaticity” (STA), has been developed
in the past decade [34,35], sharing the merits of adiabatic passages and resonant pulses for
accelerating state evolution, but keeping the high-fidelity. Among all the techniques of STA,
counter-diabatic (CD) (or equivalently quantum transitionless algorithm) [36,37] and invariant-based
inverse engineering [38] are most popular from the viewpoint of theory and experiment. Regarding CD
driving, the supplementary interaction is required to suppress the diabatic transition, thus following
the adiabatic evolution of the previous reference Hamiltonian [36,37]. In addition, inverse engineering
can be employed for designing nonadiabatic evolution along one of the dynamical modes
of Lewis–Riesenfeld dynamical invariant [39] with boundary conditions [38]. As an extension,
the freedom left provides the flexibility, allowing the suppression of undesired errors by incorporating
with the optimal control [40,41], dynamical decoupling [42], and machine learning [29,43,44].
Though both methods are mathematically equivalent, the physical implementations are totally
different [45]. In the context of geometric phase, CD driving helps mimic the adiabatic Berry geometric
phase within shorter time, but inverse engineering provides the nonadiabatic Aharonov–Anandan
geometric phase, relevant to the Lewis–Riesenfeld phase.

We reckon that the Abelian geometric gate is more feasible for experimental implementation,
which can be applied in the superconducting circuit, which indeed consists of two-level subsystems,
as a state-of-the-art quantum computing platform for its balance between scaling-up and experimental
control. Thus, we model a qubit by Jaynes–Cummings Hamiltonian, which can be simplified by
rotation wave approximation that neglects high-order oscillations. With time-dependent perturbation
theory and Lewis–Riesenfeld theory, we inversely design the protocols for fast and robust Abelian
geometric gates. Different from the theoretical proposals in References [28–31], we further apply the
quantum circuit as an ideal simulator for implementing the digital quantum gates and thus evaluating
their performances. For completeness, we also compare the counter-diabatic (CD) driving for the
same proposal. Moreover, we introduce the extension to two-qubit geometric gates for generating
the universal gate set. We hope our results can be useful to speed up digitalized adiabatic quantum
computing, emerged with the digital-analog concept.

The paper is organized as follows. In Section 2, we introduce the model, Hamiltonian and
STA designed from the Lewis–Riesenfeld invariant theory, by repeating the necessary results in
References [28–31] for consistency. Later in Section 3, we implement the quantum gates in the digital
simulator of superconducting circuits, and illustrate the improved performance of nonadiabatic
geometric gates designed from STA. We compare the results with the method of CD driving in
Section 4, claiming that all results can be extended to two-qubits. Finally, the paper is briefly concluded
in Section 5.

2. Model, Hamiltonian, and Method

Digital quantum computing with a superconducting circuit can be modeled by Jaynes–Cummings
(JC) Hamiltonian,

HJC = h̄ωa†a +
h̄
2

ω0σz + h̄g(a + a†)(σ+ + σ−), (1)

where a and a† are the annihilation and creation operators of a harmonic oscillator with frequency
ω, σz and σ± are Pauli operators corresponding to the two-level system with ground state |0〉,
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the excited state |1〉, as well as the transition frequency ω0. With rotation-wave approximation
(RWA), the dynamics of the JC model become solvable, remaining feasible for experiments at the
same time. Specifically, by assuming |ω−ω0| � ω + ω0, counter-rotating terms, a†σ+ + aσ−, can be
ignored, which the solvable Hamiltonian reads

HJC = h̄ωa†a +
h̄
2

ω0σz + h̄g(aσ+ + a†σ−). (2)

For the construction of a geometric single-qubit gate by time-dependent external field, we choose the
two lowest levels, |0〉 and |1〉, as the computational bases, with the dynamics governed by

H(t) =
h̄
2

(
0 Ω(t) exp [iφ(t)]

Ω(t) exp [−iφ(t)] 0

)
, (3)

which is the simplified Hamiltonian in subspace {(|0〉 and |1〉}. According to the Lewis–Riesenfeld
theory [39], the dynamical invariant with units of energy,

I(t) =
h̄
2

Ω0

(
cos θ sin θ cos β− sin θ sin β

sin θ cos β + sin θ sin β − cos θ

)
, (4)

should satisfy the condition:

dI(t)
dt

=
∂I(t)

∂t
+

1
ih̄

[I(t), H(t)] = 0, (5)

giving the following coupled auxiliary equations:

θ̇ = −Ω(t) sin(β + φ), (6)

β̇ = −Ω(t) cot θ cos(β + φ). (7)

The eigenstates of the invariant are |ψ+(t)〉 = (cos θ
2 e−i β

2 , sin θ
2 ei β

2 )T, and |ψ−(t)〉 =

(sin θ
2 e−i β

2 ,− cos θ
2 ei β

2 )T, which describe the wave function by Ψ(t) = ∑± c± exp(iγ±)|ψ±〉, with γ±
being the Lewis–Riesenfeld phases. For simplicity, one can choose the state evolution along one of the
dynamical modes. We denote the Lewis–Riesenfeld phase of one of two dynamical modes, |ψ+(t)〉,
by γ+(t) = γG(t) + γD(t), which consists of geometric and dynamical phases, that is,

γG(t) =
1
h̄

∫ t

0
〈ψ+|i

∂

∂t′
|ψ+〉dt′ =

1
2

∫ t

0
β̇ cos θdt′, (8)

γD(t) = −1
h̄

∫ t

0
〈ψ+|H(t)|ψ+〉dt =

1
2

∫ t

0
β̇ sin θ tan θdt′. (9)

By rephrasing Equation (6) and dividing Equation (6) by Equation (7), we get the equations for inverse
engineering of the driving Hamiltonian

Ω(t) = − θ̇

sin(β + φ)
, (10)

φ(t) = arctan
(

θ̇ cot θ

β̇

)
− β, (11)

where the angular parameters θ(t) and β(t) are designed for canceling the dynamical phase (9) at the
end of a cyclic evolution of gate time T. Here, we clarify that the angular parameter β(t) is obtained
from solving another auxiliary equation η̇(t) = −β̇/ cos θ:

β(t) = −
∫

η̇ [θ(t), t] cos [θ(t)] dt, (12)
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where η(t) = −2γ+(t) is the global phase, being expanded by a series of θ(t). Accordingly,
a single-loop evolution accumulates a geometric phase, resulting in the gate operator, U(T) =

∑± exp(iγ±)|ψ±(0)〉〈ψ±(0)|, yielding

U(T) =

(
cos γ + i cos θ0 sin γ i sin γ sin θ0e−iβ0

i sin γ sin θ0eiβ0 cos γ− i cos θ0 sin γ

)
, (13)

where γ = γ+ when the single dynamical model |ψ+〉 is used here. As a consequence, U(T) finally
gives a universal single-qubit gate.

3. STA Design and Digital Simulation

The universal gate performs a rotation of−2γ around the axis of (sin θ0 cos β0, sin θ0 sin β0, cos θ0)

after a single-loop geometric evolution. Now we introduce the protocols for Z rotation and X rotation,
as two cases for illustrative reasons. Firstly, we consider a rotation around the Z axis, in which the
angular parameter should satisfy the boundary conditions: cos θ(0) = 1 and cos θ(T) = 1. We split the
single-loop evolution into two parts, which cancel the dynamical phase at the end. We set the angle
parameter θ(t) by

θ(t) = π sin2
(

πt
T

)
, (14)

which determines the approximated expansion of the global phase [40,46]:

η(t) = 2θ(t)− sin 2θ(t). (15)

This choice of global phase is capable of suppressing the systematic error in the Rabi frequency, see the
discussion below. Boundary conditions on β(t) give a sudden jump of −γ at t = T/2, i.e., β(0) = 0
and β(T+/2) = β(T−/2)− γ, leading to β(t) by integrating Equation (7), nullifying the dynamical
phase as well. Eventually, the control pulses Ω(t) and φ(t) can be inversely designed by solving
Equations (10) and (11). The rotation around the X axis is more complicated since the single-loop
evolution consists of four parts. For accumulating the geometric phase and canceling the dynamical
one, we have

θ(t) =

{
π
2
[
1 + sin2 ( 2πt

T
)]

, 0 ≤ t < T
2 ,

π
2
[
1− sin2 ( 2πt

T
)]

, T
2 ≤ t ≤ T,

(16)

and the boundary conditions of β(t) being

β(0) = 0, β(T+/4) = β(T−/4)− γ,

β(T+/2) = β(T−/2), β(3T+/4) = β(3T−/4) + γ, (17)

where the expansion of the global phase (15) and derivation of β(t), Ω(t), and φ(t) remain the same.
Now we implement two typical quantum gates as X gate and T gate by single-loop geometric

evolution, which are realized by θ(0) = π/2, γ = π/2, and θ(0) = 0, γ = −π/8, respectively,
with β(0) = 0 for both of them. For the experimental implementation, we bound the maximum Rabi
frequency by Ωmax = 2π × 20 MHz, resulting in gate time T be 226 ns for X gate, and 324 ns for T
gate. The pulses that construct nonadiabatic geometric gates are shown in Figure 1a,b. We evaluate the
performance of them by choosing arbitrary inputs as (cos Θ, sin Θe−iΦ)T, with figure-of-merit being
fidelity, i.e., the overlap between the ideal target state and real final state. We simulate the dynamics of
X and T gate operations in quantum circuits with 50 Trotter steps by ideal Rx and Ry gates, resulting in
average fidelity F̄X = 0.991 and F̄T = 0.997 and minimal fidelity Fmin

X = 0.988, Fmin
T = 0.996, with the

fidelities of arbitrary inputs shown in Figure 1c,d, where the Suzuki–Trotter expansion and other
detailed techniques are given in Appendix A.
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Figure 1. (a,b) Shapes of Ω(t) and φ(t) that characterize the time-dependent driving fields for
constructing X gate (red line) and T gate (blue line). (c,d) Gate performance defined by − log10(1− F),
where F denotes the squared overlap between the ideal output and real output evolved by 50 Trotter
steps, in which the fidelity is calculated for 21× 21 = 441 inputs.

We emphasize that the protocols are robust against the systematic error of Ω-type, i.e., Ω(t)→
(1 + δΩ)Ω(t), since the expansion of the global phase is previously suggested. To be more specific,
one can write down the first-order term of transition probability, following the time-dependent
perturbation theory [40,46]:

P =
1
4

∣∣∣∣∫ T

0
〈Ψ−(t)| (δΩΩσx) |Ψ+(t)〉

∣∣∣∣2 , (18)

where two orthogonal dynamical modes with LR phases included are denoted by |Ψ±(t)〉. Substituting
the auxiliary equations into Equation (18), we obtain the error cancellation condition∣∣∣∣∫ T

0
dteiη(t) θ̇ sin2 θ

∣∣∣∣ = 0. (19)

Here we emphasize that the optimal solution in Equation (15) can be obtained numerically [46] and
analytically from the Euler–Lagrange equation using a variational approach [40]. In this way, we
verify that both the rotations around X and Z axes are robust against Ω-error since Equation (19) is
satisfied. In Figure 2, we show the average fidelity of X and T gate against Ω-error, which also proves
the robustness of geometric gates.

Concerning the digital quantum simulation, we assume that the Rx gate and Ry gate for simulating
Ω(t) cos φ(t) on σx and −Ω(t) sin φ(t) on σy are perfect, which are physically realized by digitized
external driving field. Accordingly, the performance of the digitized geometric gate depends on
the number of Trotter steps. In Figure 3, we test the average fidelity of X and T gates digitized by
different Trotter steps, being driven by external fields under randomized Ω-errors, as more evidence
for verifying the robustness of STA inspired nonadiabatic geometric gates. In order to simulate the
dynamics more precisely, one needs a larger gate number for reducing the Trotter error, treating Rx
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and Ry gates as the basic building blocks at the same time. For constructing the gates themselves, one
has to modularize them by digital pulses (see Figure 1a,b) instead of directly implementing the circuits
for simulation (see Appendix A), since Rx and Ry gates are not perfect in real devices. This suggests
that the realistic architecture of a superconducting circuit for implementing the quantum gates with
shortcut pulses will be very interesting for further investigation elsewhere. Another issue is that one
will meet a scalability problem if a quantum algorithm is executed by geometric gates, which are
substituted by circuit blocks that simulate the according dynamics.

−1 −0.5 0 0.5 1
δΩ

0.2

0.4

0.6

0.8

1.0

F̄

Figure 2. Average fidelity of X gate (red line) and T gate (blue line) versus Ω-error defined by
Ω(t)→ (1 + δΩ)Ω(t). The average fidelity is approximated by averaging 441 values of fidelity instead
of integrating Θ and Φ. Other parameters are the same as those in Figure 1.

10 20 30 40 50
N

0.2

0.4

0.6

0.8

1.0

F̄

30 40 50
N

0.96

0.98

1.0

F̄

Figure 3. Digital quantum simulation of X (red line) and T gate (blue line) with different Trotter steps.
A random systematic error δΩ is generated by a Gaussian distribution of N(0, 0.03), which verifies
the robustness of nonadiabatic geometric quantum gates. We take 20 random configurations for each
Trotter step, where the error bars denote the confidence intervals of 95%.

4. Discussion

We have shown that one can construct nonadiabatic geometric gates via invariant-based STA.
Here we analyze another approach, which employs CD terms to speed up and stabilize the evolution.
A general two-level driving Hamiltonian is given by

Hd(t) = h(t) · σ, (20)
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where σ denotes Pauli matrices, which the CD term that cancels diabatic transition reads

HCD(t) =
1

2|h(t)|2
[
h(t)× ḣ(t)

]
· σ, (21)

yielding the trivial expression as,

HCD(t) = −
1
8

φ̇(t)σz, (22)

by using Equation (3) that gives h(t) = (Ω(t) cos φ(t),−Ω(t) sin φ(t), 0). The total Hamiltonian
becomes

Htotal(t) = Ω(t) cos φ(t)σx −Ω(t) sin φ(t)σy −
1
8

φ̇(t)σz, (23)

which introduces new boundary conditions φ̇(0) = φ̇(T) = 0 since the CD term should not affect
the system at the beginning and the end. In this way, one directly design Ω(t) and φ(t), evolving
the total Hamiltonian with detuning for canceling the diabatic transition instead of designing θ(t)
and β(t) based on invariant theory. However, we clarify that the application of a CD term for
constructing nonadiabatic geometric gates is not as straightforward as invariant-based STA since
nullifying dynamical phases by analytically designed control pulses is much harder. The digital
quantum simulation of its dynamics in superconducting circuits is feasible, where similar shortcuts
for digitized adiabatic quantum computing in single and multiple spin systems are experimentally
implemented [47].

For the universal geometric quantum computation, we need a two-qubit geometric gate, which can
also be accelerated by STA in a similar way. We assume that the two-qubit gate physically operates
two coupled transmon qubits A and B with frequency ωA,B, frequency difference ∆ = ωA − ωB,
and anharmonicity αA,B. The recent experiment [18] suggests that a time-dependent coupling g(t) can
be realized by the longitudinal driving field with a fixed frequency ν, tunable phase φ(t), and amplitude
λ(t). Hence, the effective Hamiltonian that describes the coupled transmon qubits is

Htrans(t) = g[|10〉AB〈01|ei∆t +
√

2|11〉AB〈02|ei(∆+αB)t +
√

2|20〉AB〈11|ei(∆−αA)t]e−iλ(t) sin[νt+φ(t)]. (24)

By letting ν = ∆− αA under a weak coupling regime, a reduced two-level Hamiltonian in subspace
{|11〉AB and |20〉AB} can be derived as

Hreduced(t) =
1
2

(
0 2

√
2gJ1[λ(t)]eiφ(t)

2
√

2gJ1[λ(t)]e−iφ(t) 0

)
, (25)

where J1[λ(t)] denotes the Bessel function of the first kind. The reduced Hamiltonian has the same
form of Equation (3), which can also be inversely engineered for constructing two-qubit geometric
gates. With computational bases be |00〉AB, |01〉AB, |10〉AB, and |1〉AB, one can accumulate a geometric
phase eiγ on |11〉AB if the same protocol for rotation around the Z axis is applied, resulting in a
control-PHASE gate as CU1(γ) = diag(1, 1, 1, eiγ). In this way, one has the universal gate set for
geometric quantum computing, realizing quantum error correction physically, which could be an
alternative approach to fault-tolerant quantum computation.

5. Conclusions

In summary, we have developed the STA protocols for designing the fast and robust geometric
quantum gates, by focusing on digital simulation in superconducting circuits for improving gate
performance. Derived from the JC model with RWA, we obtain an effective two-level Hamiltonian
describing a qubit driven by controllable pulses in the σx and σy direction. Invariant-based inverse
engineering is employed to design the STA protocols, being simulated by quantum circuits,
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outputting high fidelity by canceling the transition induced from the systematic errors. Furthermore,
we discuss the application of CD driving as another generally practiced STA, and extend the
STA-inspired geometric gate to two qubits, which leads to a universal gate set as well.

Author Contributions: Formal analysis, Y.W., Y.D. and J.W.; investigation, Y.W., Y.D. and J.W.; methodology,
Y.W., Y.D. and X.C.; supervision, X.C.; writing—original draft, Y.W. and Y.D.; writing—review and editing, X.C.;
funding acquisition, X.C. All authors have read and agreed to the published version of the manuscript.

Funding: We acknowledge the financial support from the National Natural Science Foundation of China
(12075145, 11474193), STCSM (2019SHZDZX01-ZX04, 18010500400 and 18ZR1415500), Program for Eastern
Scholar, HiQ funding for developing STA (YBN2019115204), QMiCS (820505) and OpenSuperQ (820363) of the
EU Flagship on Quantum Technologies, Spanish Government PGC2018-095113-B-I00 (MCIU/AEI/FEDER, UE),
Basque Government IT986-16, EU FET Open Grant Quromorphic (828826) as well as EPIQUS (899368).

Acknowledgments: The discussions from Narendra N. Hegade are appreciated. X.C. acknowledges Ramón y
Cajal program of the Spanish MCIU (RYC-2017-22482).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Digital Simulation by Suzuki-Trotter Expansion

Here we describe the details on the digitized process by using Suzuki–Trotter expansion, and its
digital simulation in the quantum circuits. We use the asymptotic approximation theorem, i.e.,
Suzuki–Trotter formula [48]

lim
N→∞

(eiAt/NeiBt/N)N = ei(A+B)t, (A1)

which is true even if A and B do not commute. Now we only consider the case of A and B being
the Hermitian matrices. Modifications to Trotter’s formula provide a way to derive the higher-order
approximations for performing quantum simulation

ei(A+B)∆t = eiA∆teiB∆t + O(∆t2). (A2)

For the N trotter steps, we can decompose Equation (3) into N parts, which has the following form,
H = ∑N

k=1 Hk, with

Hk =
h̄
2

(
0 Ωk eiφk

Ωk e−iφk 0

)
, (A3)

where Ωk = Ω(k t
N ) and φk = φ(k t

N ). In this manner, the time evolution of the whole Hamiltonian, H,
can be rewritten as

e−iHt ≈
N

∏
1

e−iHk
t
N . (A4)

Then we finally decompose Hk in the form of Pauli matrices, by setting M = Ωk eiφk . With the help of
Hk = Re(M)σx + Im(M)σy, we can obtain

Rx(θ) =

(
cos θ

2
−isin θ

2

−isin θ
2

cos θ
2

)
≡ e−i θ

2 σx , Ry(θ) =

(
cos θ

2
sin θ

2

−sin θ
2

cos θ
2

)
≡ e−i θ

2 σy . (A5)

In the main text, the time evolution of Hamiltonian H can be digitized by using such Rx(θ) and Ry(θ)

gates. Accordingly, we implement the circuit on the platform of IBM Qiskit [49]. More details with
error analysis are discussed, see recent work [47] as well.
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Rosenband, T.; et al. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase
gate. Nature 2003, 422, 412. [CrossRef]

16. Cui, J.-M.; Ai, M.-Z.; He, R.; Qian, Z.-H.; Qin, X.-K.; Huang, Y.-F.; Zhou, Z.-W.; Li, C.-F.; Tu, T.; Guo, G.-C.
Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Sci. Bull. 2019, 64,
1757. [CrossRef]

17. Zhao, P.-Z.; Dong, Z.; Zhang, Z.; Guo, G.; Tong, D.-M.; Yin, Y. Experimental realization of nonadiabatic
geometric gates with a superconducting Xmon qubit. arXiv 2019, arXiv:1909.09970.

18. Chu, J.; Li, D.; Yang, X.; Song, S.; Han, Z.; Yang, Z.; Dong, Y.; Zheng, W.; Wang, Z.; Yu, X.; et al. Realization of
Superadiabatic Two-Qubit Gates Using Parametric Modulation in Superconducting Circuits. Phys. Rev. Appl.
2020, 13, 064012. [CrossRef]

19. Xu, Y.; Hua, Z.; Chen, T.; Pan, X.; Li, X.; Han, J.; Cai, W.; Ma, Y.; Wang, H.; Song, Y.-P.; et al.
Experimental implementation of universal nonadiabatic geometric quantum gates in a superconducting
circuit. Phys. Rev. Lett. 2020, 124, 230503. [CrossRef] [PubMed]

20. Wang, X.-B.; Keiji, M. Nonadiabatic conditional geometric phase shift with NMR. Phys. Rev. Lett. 2001, 87,
097901. [CrossRef]

21. Zhu, S.-L.; Wang, Z.-D. Implementation of universal quantum gates based on nonadiabatic geometric phases.
Phys. Rev. Lett. 2002, 89, 097902. [CrossRef]

22. Chen, T.; Xue, Z.-Y. Nonadiabatic geometric quantum computation with parametrically tunable coupling.
Phys. Rev. Appl. 2018, 10, 054051. [CrossRef]

23. Chen, X.-Y.; Li, T.; Yin, Z.-Q. Nonadiabatic dynamics and geometric phase of an ultrafast rotating electron
spin. Sci. Bull. 2019, 64, 380. [CrossRef]

24. Sjöqvist, E.; Tong, D.M.; Andersson, L.M.; Hessmo, B.; Johansson, M.; Singh, K. Non-adiabatic holonomic
quantum computation. New J. Phys. 2012, 14, 103035. [CrossRef]

25. Xu, G.-F.; Zhang, J.; Tong, D.M.; Sjöqvist, E.; Kwek, L.-C. Nonadiabatic holonomic quantum computation in
decoherence-free subspaces. Phys. Rev. Lett. 2012, 109, 170501. [CrossRef]

26. Zheng, S.-B.; Yang, C.-P.; Nori, F. Comparison of the sensitivity to systematic errors between nonadiabatic
non-Abelian geometric gates and their dynamical counterparts. Phys. Rev. A 2016, 93, 032313. [CrossRef]

27. Jing, J.; Lam, C.H.; Wu, L.A. Non-Abelian holonomic transformation in the presence of classical noise.
Phys. Rev. A 2017, 95, 012334. [CrossRef]

http://dx.doi.org/10.1103/PhysRevLett.52.2111
http://dx.doi.org/10.1103/PhysRevLett.58.1593
http://dx.doi.org/10.1016/S0375-9601(99)00803-8
http://dx.doi.org/10.1103/Physics.1.35
http://dx.doi.org/10.1103/PhysRevA.72.020301
http://dx.doi.org/10.1126/science.1149858
http://dx.doi.org/10.1103/PhysRevLett.102.030404
http://dx.doi.org/10.1088/1367-2630/14/9/093006
http://dx.doi.org/10.1038/nature14270
http://dx.doi.org/10.1103/PhysRevLett.119.180501
http://dx.doi.org/10.1126/science.aat3996
http://www.ncbi.nlm.nih.gov/pubmed/30026224
http://dx.doi.org/10.1038/35030052
http://www.ncbi.nlm.nih.gov/pubmed/11014186
http://dx.doi.org/10.1038/nature01492
http://dx.doi.org/10.1016/j.scib.2019.09.007
http://dx.doi.org/10.1103/PhysRevApplied.13.064012
http://dx.doi.org/10.1103/PhysRevLett.124.230503
http://www.ncbi.nlm.nih.gov/pubmed/32603172
http://dx.doi.org/10.1103/PhysRevLett.87.097901
http://dx.doi.org/10.1103/PhysRevLett.89.097902
http://dx.doi.org/10.1103/PhysRevApplied.10.054051
http://dx.doi.org/10.1016/j.scib.2019.02.018
http://dx.doi.org/10.1088/1367-2630/14/10/103035
http://dx.doi.org/10.1103/PhysRevLett.109.170501
http://dx.doi.org/10.1103/PhysRevA.93.032313
http://dx.doi.org/10.1103/PhysRevA.95.012334


Entropy 2020, 22, 1175 10 of 10

28. Santos, A.C. Quantum gates by inverse engineering of a Hamiltonian. J. Phys. B At. Mol. Opt. Phys. 2018, 51,
015501. [CrossRef]

29. Liu, B.-J.; Song, X.-K.; Xue, Z.-Y.; Wang, X.; Yung, M.-H. Plug-and-Play Approach to Nonadiabatic Geometric
Quantum Gates. Phys. Rev. Lett. 2019, 123, 100501. [CrossRef]

30. Li, S.; Chen, T.; Xue, Z.-Y. Fast holonomic quantum computation on superconducting circuits with optimal
control. Adv. Quantum Technol. 2020, 3, 2000001. [CrossRef]

31. Xu, J.; Li, S.; Chen, T.; Xue, Z.-Y. Nonadiabatic geometric quantum computation with optimal control on
superconducting circuits. Front. Phys. 2020, 15, 41503. [CrossRef]

32. Yan, T.; Liu, B.-J.; Xu, K.; Song, C.; Liu, S.; Zhang, Z.; Deng, H.; Yan, Z.; Rong, H.; Huang, K.; et al.
Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates. Phys. Rev. Lett. 2019, 122,
080501. [CrossRef] [PubMed]

33. Ai, M.-Z.; Li, S.; Hou, Z.; He, R.; Qian, Z.-H.; Xue, Z.-Y.; Cui, J.-M.; Huang, Y.-F.; Li, C.-F.; Guo, G.-C.
Experimental Realization of Nonadiabatic Holonomic Single-qubit Quantum Gates with Optimal Control in a
Trapped Ion. arXiv 2020, arXiv:2006.04609.

34. Torrontegui, E.; Ibánez, S.; Martínez-Garaot, S.; Modugno, M.; del Campo, A.; Guéry-Odelin, D.; Ruschhaupt, A.;
Chen, X.; Muga, J.G. Shortcuts to adiabaticity. Adv. Atom. Mol. Opt. Phys. 2013, 62, 117–169. [CrossRef]

35. Guéry-Odelin, D.; Ruschhaupt, A.; Kiely, A.; Torrontegui, E.; Martínez-Garaot, S.; Muga, J.G. Shortcuts to
adiabaticity: Concepts, methods, and applications. Rev. Mod. Phys. 2019, 91, 045001. [CrossRef]

36. Berry, M.V. Transitionless quantum driving. J. Phys. A Math. Theor. 2009, 42, 365303. [CrossRef]
37. Chen, X.; Lizuain, I.; Ruschhaupt, A.; Guéry-Odelin, D.; Muga, J.G. Shortcut to adiabatic passage in two-and

three-level atoms. Phys. Rev. Lett. 2010, 105, 123003. [CrossRef]
38. Chen, X.; Ruschhaupt, A.; Schmidt, S.; del Campo, A.; GuéryOdelin, D.; Muga, J.G. Fast Optimal Frictionless

Atom Cooling in Harmonic Traps: Shortcut to Adiabaticity. Phys. Rev. Lett. 2010, 104, 063002. [CrossRef]
39. Lewis, H.R.; Riesenfeld, W.B. An exact quantum theory of the time-dependent harmonic oscillator and of a

charged particle in a time-dependent electromagnetic field. J. Math. Phys. 1969, 10, 1458. [CrossRef]
40. Ruschhaupt, A.; Chen, X.; Alonso, D.; Muga, J.G. Optimally robust shortcuts to population inversion in

two-level quantum systems. New J. Phys. 2012, 14, 093040. [CrossRef]
41. Lu, X.-J.; Chen, X.; Ruschhaupt, A.; Alonso, D.; Guérin, S.; Muga, J.G. Fast and robust population transfer in

two-level quantum systems with dephasing noise and/or systematic frequency errors. Phys. Rev. A 2013, 88,
033406. [CrossRef]

42. Munuera-Javaloy, C.; Ban, Y.; Chen, X.; Casanova, J. Robust Detection of High-Frequency Signals at the
Nanoscale. arXiv 2020, arXiv:2007.15394.

43. Zahedinejad, E.; Ghosh, J.; Sanders, B.C. Designing High-Fidelity Single-Shot Three-Qubit Gates:
A Machine-Learning Approach. Phys. Rev. Appl. 2016, 6, 054005. [CrossRef]

44. Ding, Y.; Ban, Y.; Martín-Guerrero, J.D.; Solano, E.; Casanova, J.; Chen, X. Breaking Adiabatic Quantum
Control with Deep Learning. arXiv 2020, arXiv:2009.04297.

45. Chen, X.; Torrontegui, E.; Muga, J.G. Lewis-Riesenfeld invariants and transitionless quantum driving.
Phys. Rev. A 2011, 83, 062116. [CrossRef]

46. Daems, D.; Ruschhaupt, A.; Sugny, D.; Guérin, S. Robust quantum control by a single-shot shaped pulse.
Phys. Rev. Lett. 2013, 111, 050404. [CrossRef]

47. Hegade, N.N.; Paul, K.; Ding, Y.; Sanz, M.; Albarrán-Arriagada, F.; Solano, E.; Chen, X. Shortcuts to
Adiabaticity in Digitized Adiabatic Quantum Computing. arXiv 2020, arXiv:2009.03539.

48. Suzuki, M. Generalized Trotter’s formula and systematic approximants of exponential operators and inner
derivations with applications to many-body problems. Commun. Math. Phys. 1976, 51, 183. [CrossRef]

49. IBM Quantum Experience. Available online: https://www.research.ibm.com/ibm-q/ (accessed on 20 September 2020).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1088/1361-6455/aa987c
http://dx.doi.org/10.1103/PhysRevLett.123.100501
http://dx.doi.org/10.1002/qute.202000001
http://dx.doi.org/10.1007/s11467-020-0976-2
http://dx.doi.org/10.1103/PhysRevLett.122.080501
http://www.ncbi.nlm.nih.gov/pubmed/30932607
http://dx.doi.org/10.1016/B978-0-12-408090-4.00002-5
http://dx.doi.org/10.1103/RevModPhys.91.045001
http://dx.doi.org/10.1088/1751-8113/42/36/365303
http://dx.doi.org/10.1103/PhysRevLett.105.123003
http://dx.doi.org/10.1103/PhysRevLett.104.063002
http://dx.doi.org/10.1063/1.1664991
http://dx.doi.org/10.1088/1367-2630/14/9/093040
http://dx.doi.org/10.1103/PhysRevA.88.033406
http://dx.doi.org/10.1103/PhysRevApplied.6.054005
http://dx.doi.org/10.1103/PhysRevA.83.062116
http://dx.doi.org/10.1103/PhysRevLett.111.050404
http://dx.doi.org/10.1007/BF01609348
https://www.research.ibm.com/ibm-q/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Model, Hamiltonian, and Method
	STA Design and Digital Simulation
	Discussion
	Conclusions
	Digital Simulation by Suzuki-Trotter Expansion
	References

