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Chromatin accessibility analysis reveals regulatory
dynamics and therapeutic relevance of Vogt-
Koyanagi-Harada disease
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The barrier to curing Vogt–Koyanagi–Harada disease (VKH) is thought to reside in a lack of

understanding in the roles and regulations of peripheral inflammatory immune cells. Here we

perform a single-cell multi-omic study of 166,149 cells in peripheral blood mononuclear cells

from patients with VKH, profile the chromatin accessibility and gene expression in the same

blood samples, and uncover prominent cellular heterogeneity. Immune cells in VKH blood are

highly activated and pro-inflammatory. Notably, we describe an enrichment of transcription

targets for nuclear factor kappa B in conventional dendritic cells (cDCs) that governed

inflammation. Integrative analysis of transcriptomic and chromatin maps shows that the

RELA in cDCs is related to disease complications and poor prognosis. Ligand-receptor

interaction pairs also identify cDC as an important predictor that regulated multiple immune

subsets. Our results reveal epigenetic and transcriptional dynamics in auto-inflammation,

especially the cDC subtype that might lead to therapeutic strategies in VKH.
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Vogt–Koyanagi–Harada disease (VKH) is a systemic auto-
immune disorder characterized by bilateral granuloma-
tous uveitis with meningeal, auditory, and dermal

manifestations1. It is one of the major sight-threatening uveitis
entities in Asia and South America2–4. Aggressive systemic cor-
ticosteroids in combination with immunosuppressive agents
remain the mainstay of treatment5,6, but a large proportion of
patients progress and have a poor prognosis, leading to visual
impairment, reduced quality of life, and even blindness. In
addition, the undesirable side effects (e.g., hyperglycemia, osteo-
porosis, and obesity) related to the prolonged use of corticos-
teroids and immunosuppressive agents highlight the need to
develop new therapeutic strategies with fewer complications and
less risk of treatment failures7–9.

A better understanding of how pathogenic networks in
immune cells influence inflammation is a prerequisite for the
treatment success of VKH. Previous studies have shown the
involvement of T cells (especially, T helper 17 [Th17] and T
helper 1 [Th1] cells) as a part of the systemic inflammatory
process in animal experimental autoimmune uveitis (EAU)
models and in blood samples of patients with VKH10–12.
Th1 cells were the first T cell subsets considered to be the etio-
logic agent of VKH because of the cytotoxicity against
melanocytes13,14. Several reports have implicated Th17 cells in
the pathogenesis of VKH disease via IL-23/IL-17 pathway15,16.
Recent single-cell RNA study has provided insight into the atlas
of peripheral monocytes in VKH patients and how interferon-
stimulated gene changes within monocytes reflects disease
activity17. However, the role of other immune cell subtypes and
their underlying epigenetic dysregulation in the pathogenesis of
VKH has not been previously documented.

Single-cell assays for transposase-accessible chromatin
sequencing (scATAC-seq) has emerged as a novel approach to
delineate single-cell-specific epigenomic regulatory landscapes18.
This technology enables genome-wide identification of cell-type-
specific cis-elements, mapping of disease-associated enhancer
activity, and inference of transcription factor (TF) binding and
activity at a single-cell resolution19. In the current study, we
aimed to delineate a multiomic landscape in peripheral blood
mononuclear cells (PBMCs) derived from healthy individuals and
patients with VKH based on an integrative analysis of single-cell
RNA sequencing (scRNA-seq) and scATAC-seq datasets. We
revealed a wide range of epigenomic and transcriptomic changes
in healthy subjects and patients with VKH disease. Notably, we
identified conventional dendritic cells (cDCs) as an important
regulator of the pro-inflammatory state and revealed that RELA
might be a key transcription factor in cDCs that is associated with
highly inflammatory states and with poor prognosis. This study
offers insights into therapeutic options for VKH and similar
autoimmune diseases.

Results
Single-cell chromatin accessibility and transcription sequen-
cing workflow. We isolated the nuclei and RNA from sex, age-
matched individual PBMC samples from healthy individuals and
VKH patients. In the first cohort, the PBMCs were obtained from
patients diagnosed with acute VKH disease (n= 12) and the same
healthy control (HC) group (n= 12) (Fig. 1a and Supplementary
Table 1). Both nuclei and RNA were processed through the 10×
Genomics platform using the standardized scATAC-seq and
scRNA protocols, respectively. The scATAC-seq libraries were
sequenced, the reads were de-multiplexed, and the fragments
were aligned to the human reference genomes and de-duplicated
using Cell Ranger ATAC. The scRNA-seq libraries were
sequenced, demultiplexed and aligned to the human reference

genomes and de-duplicated using Cell Ranger. The scATAC-seq
data were analyzed using ArchR20, whereas the scRNA-seq
datasets were processed using Seurat21. All these data were fur-
ther analyzed after stringent quality control filtration, the
thresholds of the scATAC-seq and scRNA-seq are described in
the Methods (Supplementary Fig. 1a–c). For both scATAC-seq
and scRNA-seq dataset, we conducted a harmony-based batch
correction22 on each dataset. This allowed for meaningful
downstream integrated analyses (Supplementary Fig. 2a-h and
Methods). After quality-control filtering, we retained 133,140
cells for the scATAC-seq and 195,948 cells for the scRNA-seq
analysis.

Identification of cell types in healthy blood using scATAC-seq.
To establish a baseline peripheral immune cell normal chromatin
profile, we first identified 74,510 cells from healthy individuals,
with an average of 9,047 uniquely accessible fragments per cell
(Fig. 2a). We performed latent semantic indexing (LSI) for
dimensionality reduction and harmony-based batch correction
and applied Seurat to identify clusters21. Using these approaches,
we identified 25 major scATAC-seq clusters, which were then
visualized using uniform manifold approximation and projection
(UMAP) (Fig. 2a). We first compared the differentially accessible
chromatin regions (DARs) for each cell subset and applied
ChIPseeker23 to annotate the distribution of the DARs in the
genome. As expected, the distribution of the peak regions was
relatively conserved across the different cell types, and the
majority of the peaks were located in a promoter region within
3 kb of the nearest transcriptional start site (Fig. 2b).

To comprehensively describe the heterogeneity of the immune
cell subsets in the PBMCs, we created a workflow to identify cell
type and cell state signatures from scATAC-seq profiles, with
reference to the gene expression/ATAC profiles for the cell types/
subpopulations identified previously. We identified 75,654 cis-
regulatory elements (CREs) across all the clusters and revealed
cell type-specific cis-elements. By applying peak annotation
analysis from ChIPseeker23 to identify the nearest genes to a
peak, we could identify the cis-elements within a single gene
locus. For example, Fig. 2c shows some of the known gene
signatures for cDC (e.g., HLA-DRA24, CLEC4C24, and CD1C24),
monocytes (e.g., S100A1225, S100A826, VCAN27, MS4A1428,
LYN29, and CEBPA24), progenitors (e.g, GATA119 and GATA219),
plasmacytoid DCs (pDC) (IRF824), CD4+ T cells (CD4T)
(LEF130 and IL7R30), CD8+ T cells (CD8T)/natural killer cells
(NK) (NKG731 and KLRD131), plasma B cells (PB) (XBP132), and
B cells (MS4A133 and PAX519).

The sparsity of single-cell cis-element information prompted
us to use gene activity scores (GAS) for cell type annotations in
the scATAC-seq profiles. We utilized this analytical approach to
confirm the cis-element-defined cluster identities and further
classify the immune cell subpopulations20. In agreement with
the surface phenotypes identified using the CRE approach, the
progenitor cells showed a high GAS in the GATA219 and naïve
T cells in IL7R30 (Supplementary Fig. 3c, S4a, b). The high GAS
on the surface markers CD8 and granzyme B (GZMB) further
identified cytotoxic immune subsets31, including CD8T and NKs.
The high GAS of TCL1A identified naïve B cells (Fig. 2d,
Supplementary Fig. d, S4c, d)33. The GAS analysis across all
clusters enabled the identification of phenotypically distinct cell
subsets for dividing NK cells into three subsets. NCAM1highFC-
GR3AlowB3GAT1low NK cells were defined as early NKs (NK1),
NCAM1lowFCGR3AhighB3GAT1low NK cells were intermediate
NKs (NK2), and NCAM1lowFCGR3AhighB3GAT1high NK cells
were late NKs (NK3)34 (Supplementary Fig. 3e, S4e, f). We were
also able to identify myeloid subsets into monocytes (including
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classical monocytes [CM], intermediate monocytes [IntM], and
non-classical monocytes [NCM]) and dendritic cells (including
pDC and cDC) (Supplementary Fig. 3f, S4g, h). CM cells were
CD14+FCGR3A-, IntM were CD14+FCGR3A+ while NCM
were CD14-FCGR3A+35. 12 T cell subsets were also identified
based on the GAS analysis: CD4+ naive T cells (CD4 Naive),
CD4+ central memory T cells (CD4 TCM), T regulatory cells
(Treg), T helper 2 cells, Th17 cells, cytotoxicity CD4+ T cells
(CD4 CTL), CD8+ naive T cells (CD8 Naive), CD8+ central
memory T cells (CD8 TCM), CD8+ effector memory T cells
(CD8 TEM), CD8+ mucosal-associated invariant T (MAIT)
cells and double-negative T cells (Supplementary Fig. 3c, S4a,
b)36,37. In B cells, we identified TCL1A+ naive B cells (naive B),

CD19+ITGAX+TBX21+PDCD1+CXCR5lowCR2-double-negative 2
B cells (DN2B), memory B cells, and XBP1+ CD38+ PB33,38,39

(Supplementary Fig. 3d, S4c, d).
In addition to assessing the CREs and GAS for key lineage

identification, we also measured chromatin accessibility at cis-
elements sharing a TF binding motif using chromVAR40. In this
approach, we incorporated both the TF footprints and TF
deviation scores to further annotate and/or validate the rare cell
subsets. For example, we identified the pDCs based on the
enriched TF deviation scores of the IRF8 factor motif (Fig. 2e)24.
The naïve T cells showed the activity of the T cell lineage-
determining factor LEF1, consistent with the results from the TF
footprint analysis (Fig. 2f)19. Surprisingly, we noticed that

a

Healthy Controls 
     (HC n=12)

Vogt-Koyanagi-Harada Disease
         Patients (VKH n=12)

Blood

Single Cell ATAC-seqPBMCs

AAAAAA

AAAAAA

AAAAAA

Single Cell RNA-seq

Downstream analysis

Differential analysis

Multi-omic integration

Trajectory analysis

TF network analysis Paired ligand-receptor analysis

TF

TF

TF

Sequencing experiments

Bioinformatic analysis

Human tissue (eye, skin)
peakset enriment analysis

Pronogsis analysis

++

+++

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Time

Su
rv

iv
al

 p
ro

ba
bi

lit
y

TF footprint analysis

Fig. 1 The single-cell multiomic experimental design. a Schematic representation of the single-cell profiling of PBMCs from healthy controls (n= 12) and
VKH disease patients (n= 12) in this study, sequencing experiments and downstream bioinformatic analyses. All data are aligned and annotated to hg38
reference genome.
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Fig. 2 Single-cell chromatin landscape of health human peripheral immune cell subsets. a UMAP projection of 74,510 scATAC-seq profiles of peripheral
blood immune cell types from 12 healthy controls. Dots represent individual cells, and colors indicate immune cell types (labeled on the right). Bar plot
indicates the number of scATAC-seq profiles in each cell types. b Bar plot of annotated DAR locations for each cell type. c Heatmap of Z-scores of 75,654
cis-regulatory elements in scATAC-seq peripheral blood cell types derived from Fig. 2a. Gene labels indicate the nearest gene to each regulatory element.
d UMAP projection colored by gene activity scores for the annotated lineage-defining genes in HC group of scATAC-seq dataset. The minimum and
maximum gene activity scores are shown in each panel. e Heatmap representation of chromVAR bias-corrected deviations in the most variable TFs across
all healthy immune cell types. f TF footprints with motifs in the indicated scATAC-seq healthy immune cell types. The Tn5 insertion bias track is shown
below. g UMAP projection of scATAC-seq peripheral blood profiles colored by chromVAR TF motif bias-corrected deviations for the indicated factors. All
data are aligned and annotated to hg38 reference genome.
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MAIT cells shared and even had a higher activity on the RAR-
related orphan receptor (ROR) family than that of the Th17 cells,
which are known to be key regulators in autoimmune diseases37

(Fig. 2f, Supplementary Fig. 3g). As expected, the TF deviation
scores for PAX5, a lineage-determining factor for B cells41, were
increased in all the B cell subsets. It is also important to note that
DN2B showed the unique activity of TBX21, whereas IRF4 was
active in the remaining B cell subsets (Fig. 2g). DN2B cells have
been previously documented as an exhausted memory B cell
subset39. In myeloid cells, we found that cDC showed higher
activity for SPI124, whereas CM showed higher activity for
CEBPA24 (Supplementary Fig. 4i). Collectively, our approach
allows for the analysis of chromatin accessibility in both common
and rare cell types from human peripheral blood.

Multi-omics analysis of the peripheral immune-cell profiling.
To study the PBMCs of VKH patients, we first integrated the
VKH and the HC dataset and performed unbiased iterative
clustering followed by Harmony-based batch correction on each
sample in HC groups and VKH groups (Supplementary Fig. 2a-
d). We then used the above-mentioned cell type identification
pipeline to identify 25 immune subsets in 195,948 cells (Fig. 3a).
Next, we processed the scRNA-seq data of VKH and HC groups
and corrected the batch effect for each sample using Harmony-
based batch correction (Fig. 3a). We manually annotated the 25
cell types in scRNA-seq dataset based on gene expression of the
marker genes, which were consistent with the ones for our
scATAC-seq data, to minimize the differences in cell-type com-
position between the two sequencing methods (Fig. 3a, Supple-
mentary Fig. 5a–c). Next, we sought to illustrate the epigenetic
regulation in the VKH patients. We utilized the recently devel-
oped method21 that identifies pairwise correspondences (called
“anchors”) between single cells across two different types of
datasets and projects their transformation into a shared space
(Supplementary Fig. 6a–e)42. The whole procedure was paralle-
lized and separately aligned using ArchR20 and Seurat21 by
dividing each cell into smaller groups (see Method). This
approach allowed us to integrate the gene expression data from
the scRNA-seq data to the scATAC-seq data by mapping the gene
score and gene expression to generate an integration matrix with
gene expression in the scATAC-seq dataset (Supplementary
Fig. 6a–e). As expected, the GAS and gene expression were highly
consistent and could distinguish the cell types identified (Fig. 3b).
The frequencies of the immune cell subsets between the HC and
VKH groups were comparable (Supplementary Fig. 6f).

Our datasets also allowed us to dissect the mechanisms behind
causal risk variants previously identified from genome-wide
association studies (GWAS) and to identify disease-relevant cell
types related to these loci. It was previously proposed that some of
the disease-causing loci, while residing in noncoding regions43,
could exert their effects by altering gene expression via
perturbation of the TF binding sites and regulatory element
function44. We collected known VKH GWAS loci reported in
previous publications and mapped the disease-related single-
nucleotide polymorphisms (SNPs) in the cis-elements for each
cell45. Two variants, rs78377598 and rs3032304, were located
within the IL23R and HLA-DQA1 loci, respectively (Fig. 3c). The
IL23R locus is highly accessible in MAIT cells, while HLA-DQA1
is highly accessible in cDCs. These results may be informative for
inferring the cellular impact of disease variants in these loci.

We also explored the potential mechanisms explaining how
immune dysregulation results in organ damage in human ocular
tissues and human skin. We used previously published ATAC-seq
and CHIP-seq datasets of human eye tissues, including retina,
macula, and retinal pigment epithelium (RPE)/choroid46, and

human skin47 for cell-type-specific peak enrichment in our
scATAC dataset (Fig. 3d, Supplementary Fig. 6g). We found that
cDCs and monocytes subsets were mainly enriched in the RPE/
choroid and skin. This might have implications in the pathogen-
esis of VKH, as the autoimmune attack is known to affect
pigmented tissues, which results in vitiligo and ocular
depigmentation48. In addition, we also revealed an enrichment
of the CD4+ T cells in the retina and macular region as well as
MAIT cells in the skin, retina, and macular regions (Fig. 3d).

Next, we analyzed the differential gene expression (DEG) on
scRNA-seq dataset between the six main cell types by comparing
the HC with VKH (Fig. 3e). We noticed that the T cells were
activated in the VKH patients, with CD6949, JUNB50, and CXCR451

being highly expressed (Fig. 3e). TNFAIP3 was both highly
upregulated in the T cells, which has been reported to be a
common predisposing gene for autoimmune diseases, including
VKH52. The NKs in VKH showed a higher cytotoxic capacity and
higher chemokine levels, with upregulation of ISG2049, DUPS249,
CCL453, and CCL353, as compared to that in the HC (Fig. 3e).
Moreover, the B cells also had an enhanced antigen-present
function with an increased expression of HLA-DQA254and CD83 55

with upregulation of genes of the nuclear factor kappa B (NF-κB)
family and of the activator protein (AP-1) family (Fig. 3e)55.
Myeloid cells in VKH were also identified as the main pro-
inflammatory factor in patients with VKH disease. In the monocyte
population, we found that the genes (e.g., IL1B17, TNF17, CCL317,
CCL417, and ICAM156) related to cytokines, chemokines, and
adhesion were upregulated (Fig. 3e)17. Notably, HIF1A encodes the
hypoxia-inducible factor (HIF) protein, which is also highly
expressed in monocytes in VKH. Finally, for the DC subset, which
is known as the key antigen presenter in immunity, they were more
mature, with a higher capacity for antigen presentation by CD8355,
as compared to the other subsets, and HLA-DQA2 was upregulated
in the patients (Fig. 3e). In addition, DCs acted as pro-inflammatory
players, with high expression levels of cytokine and chemokine
genes (e.g., TNF57, CXCL857, JUN56, JUNB56, CCL357, CCL457,
IL1B57, and DUSP256). In summary, our results demonstrate that
immune cells in VKH patients are generally activated and
proinflammatory.

T cell subsets and response in VKH. To dissect the role of T cell
subsets in VKH, we first compared the differences between T cell
subsets among the HC and VKH patients in scATAC-seq. We
first re-clustered the T regulatory (Treg) cells. This led to the
identification of two subsets of Tregs with imbalanced frequencies
between the VKH patients and HCs (Fig. 4a–c, Supplementary
Fig. 5a). In cluster 1 (effector Treg [eTreg]), the effector genes
such as RORC, CCR8, and CCR6 were highly expressed. In cluster
2 (resting Treg [rTreg]), the remaining and naïve phenotype gene,
such as LEF1, TCF7, and CCR7 were expressed (Fig. 4b, Sup-
plementary Fig. 5b)58,59. Although these gene differences were
not observed between VKH and HC cells among the full Treg
population in RNA expression, the rTreg demonstrated a sig-
nificantly greater frequency, while eTreg showed a reduced fre-
quency (of borderline statistical significance) in VKH in our
scATAC-seq dataset60 (Fig. 4c).

We further compared the DARs in the five main T cell subsets
(Th1, Th17, Treg, CD8+T effector memory (TEM), and MAIT)
between the HC and VKH patients. The MAIT cells exhibited the
largest number of peak changes among the T cell subtypes
(Fig. 4d). In the VKH patients, CD6937, JUNB61, CXCR461, and
PDRM162 were upregulated in the MAIT cells in our scRNA-seq
dataset, suggesting the involvement of MAIT cell activation
(Supplementary Fig. 7c). A Gene Ontology (GO) analysis of the
nearest peak annotation of VKH-upregulated DARs showed that
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Th1 cells were involved in the interferon (IFN) and transforming
growth factor (TGF)-beta signaling and T cell receptor signaling
pathways, with higher accessibility to the IFNG locus (Fig. 4e,
Supplementary Fig. 7d). In the Th17 cells, the AP-1 pathway,
Janus kinase (JAK)-signal transducer and activator of transcrip-
tion (STAT) signaling, and IFN-gamma production were

activated, while Treg cells in the VKH were involved in IFN
type I signaling pathway, CD28 family costimulation, interleukin
(IL) 3 signaling, Th17 differentiation, and T cell activation, with
higher accessibility to the IL10 locus (Fig. 4e, Supplementary
Fig. 7e). Among the CD8 T cells, the GO analysis of the CD8
TEM illustrated the regulation of cell–cell adhesion, enhanced
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CD8 T cell receptor (TCR) pathway and immune effector process,
and enhanced cytotoxicity and MAPK cascade in VKH (Fig. 4e).
The MAIT subset was involved in the MAPK signaling and CD8
TCR pathway and was positively related to cellular adhesion.
Thus, MAIT cells may play an important role in adhesion
molecules and integrins and in the migration of inflamed tissues
(Fig. 4e). As expected, the MAIT cells were also associated with
the activation of the cytokine pathway of the IL12 pathway, NF-
κB signaling, and TNF pathway, consistent with their activated
phenotype status. We further employed TF footprint analysis on
the T cells to reveal the distinct TF footprints on the genomic
DNA directly from VKH versus that in the HCs. Notably, the
runt-related TF family members RUNX1 and TBX21 (also known
as T-bet) were enriched in the Th17 cells, which are known to be
involved in the production of pathogenic IFN-gamma
production63 (Supplementary Fig. 7f). In the VKH patients, there
was a more pronounced DNA occupancy of RELA and NFKB1 in
the MAIT cells (Fig. 4f). The DNA occupancy was also identified
higher activity of eomesodermin (EOMES) and TBX21 in the
CD8 TEM cells as compared to that in the HCs (Supplementary
Fig. 7g), indicating the enhanced effector states of CD8+ T cells.
Overall, the T cells in the VKH patients exhibited activation
phenotypes, with compositional and epigenomic alterations.

CD14+ monocyte subsets and response in VKH blood. The
CD14+ monocytes have previously been recognized as pro-
inflammatory players in VKH17. To investigate the enhanced
inflammation epigenetic reprogramming in CD14+ monocytes,
we reclustered the CM and observed three sub-clusters in the CM
(Fig. 5a). Based on the peak accessibility, GAS and gene expres-
sion of IL1B and HLA-DQA117, the proinflammatory CM char-
acterized by the highest expression on IL1B and the HLA CM
showed high expression on human leukocyte antigen (HLA)-
related gene, and the remaining CM showed high expression on
the S100A8 and VCAN loci (Fig. 5b, Supplementary Fig. 8a-c)64.
We further compared the DARs between each cell state and
noticed that the marker peaks of each state were different (Sup-
plementary Fig. 8d). We used the differential ATAC-seq peaks as
an input to conduct TF motif enrichment analysis65 and identify
the TFs associated with their differentiation programs (Fig. 5c).
We noticed that pro-inflammatory CM relied on the AP-1 family
and Krüppel-like family (KLF) motifs, which are essential for
monocyte activation and maturation66,67. As for the HLA CMs,
we identified increased accessibility of the IRF1 and ETS family
TFs, SPI1 (also known as PU.1), which are related to IFN sti-
mulation and major histocompatibility complex (MHC) class II
gene expression (Fig. 5c)68–70. The rest of the CM was enriched in
CCAAT/enhancer-binding protein (CEBP) family members and
basic leucine zipper ATF-like TF (BATF) (Fig. 5c).

To understand the developmental dynamics of pro-
inflammatory monocytes, we constructed a cellular lineage
trajectory of CD14+ monocytes based on their differentiation
states, which progressed from rest to a pro-inflammatory state.
We generated ordered single cells (termed as ‘pesudotime’) based

on our multi-omic dataset (Fig. 5d, Supplementary Fig. 9a-b). The
dynamic TF motif activities across the trajectories were consistent
with their differentiation states (Fig. 5e). For instance, IRF1
activity was observed in the HLA CM, consistent with the result
of our motif enrichment analysis, followed by the sequential
activity of CEBPA, SPI1, and FOS, recapitulating the known
order of their functions in rest CM, HLA CM, and pro-
inflammatory CM, respectively (Fig. 5e, f). In addition, HIF1A
and KLF TFs are also activated in the pro-inflammatory CM71.
Moreover, the TF footprint analysis showed changes surrounding
the HIF1A binding sites in the pro-inflammatory CM but not in
the other CM subsets, suggesting the possibility of the role of
HIF1A as a key transcription factor driving monocyte maturation
and inflammation (Fig. 5f, g). Together, our results revealed
epigenetic reprogramming in the development of monocytes.

Next, we analyzed the differential peaks and genes of CM
between the HC and VKH patients. Although we did not observe
changes in the frequency of CMs, the difference in chromatin
accessibility and gene expression was notable between HC and
VKH, which was consistently shown in each dataset (Fig. 5h, i,
Supplementary Fig. 4b, S9c). In scRNA-seq dataset, we analyzed
the upregulated DEGs and showed that CMs in VKH were
characterized by various cytokine and chemokine genes (CCL3L1,
CCL4, CCL3, IL1B, TNF, CXCL8, and CXCR4)17, with enhanced
cellular adhesion capacity (ICAM1)56. The high expression of
HIF1A in CM suggesting the importance of HIF control in the
inflammatory activity of monocytes. The TF footprints also
showed an increase in chromatin accessibility in the footprint
depth of the NF-κB family (e.g., RELA and NFKB1) in VKH,
representing the highly inflammatory state of CMs (Fig. 5j).
Collectively, our results shed light on the interdependence of
innate immunity inflammation and hypoxic responses in VKH
patients, showing that CD14+ monocytes might maintain a rapid
inflammatory response through HIF1A-driven chromatin repro-
gramming immunity.

Disease-specific TF regulatory patterns in the cDCs. To further
describe the potential function of cDCs in VKH, we conducted a
differential analysis at the epigenomic and transcriptional levels
(Fig. 6a, Supplementary Fig. 9d). In accordance with our
scATAC-seq data, the cytokine and chemokine genes (IL1B,
CCL3L1, CXCR4) were upregulated and were more accessible in
VKH than in the HCs, representing the activated states of DCs
(Fig. 6a). In addition, we observed an increased expression of the
HLA genes (HLA-DQA2) and increased accessibility of LAMP3
and CCR7, indicating a mature and enhanced antigen-presenting
capacity of cDCs (Fig. 6a, b).

To assess the pro-inflammatory state of cDCs in VKH, we
utilized the marker genes of inflammatory CD1C+ DCs
documented in a published study72 (Supplementary Table 2) to
estimate the inflammation scores across all cDCs. By comparing
VKH with HC, we identified higher inflammation scores in VKH,
which exhibited a strong potential to secrete immune mediators
and lead to autoimmune disease (Fig. 6c).

Fig. 3 Overview of the immune-cell epigenetic and transcriptional landscape of PBMCs from VKH patients and healthy human. a Schematic for Multi-
omics integration strategy for processing the scATAC-seq dataset and scRNA-seq dataset. b Dot plots of gene activity scores (left) and gene expression
(right) of the marker genes in scATAC-seq and scRNA-seq dataset. The dot size indicates the percentage of the cells in each cluster in which the gene of
interest. The standardized gene activity score level (left) and gene expression level (right) were indicated by color intensity. c Cis-regulatory architecture at
the following GWAS loci and cell types in PBMCs: IL23R and HLA-DQA1. Only connections originating in the loci with peak-to-gene accessibility above 0.2
are shown. d ChromVAR deviation enrichment of the peakset of human tissues (including eyes and skins) from ATAC-seq and CHIP-seq dataset from HCs
against the scATAC-seq dataset from healthy peripheral blood cell populations. e Dot plots of the expression level of the differential genes between normal
and VKH CD4+T cells, CD8+T cells, nature killer cells, B cells, monocytes and dendritic cells in scRNA-seq dataset. All data are aligned and annotated to
hg38 reference genome.
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To further elucidate the pathogenic pathways and regulators
involved in VKH, we next utilized the nearest DAR genes for our
GO and motif enrichment analysis (Fig. 6d, e). The top signaling
pathways of cDCs in VKH included T cell activation and the IL12-
STAT4 pathway, indicating the capacity to activate adaptive
immunity (Fig. 6d). We also identified pathways involved in DC

activation, maturation pathways (involving MAPK cascade, NF-κB
signaling, and TNF signaling), mammalian target of rapamycin
(mTOR) signaling pathway, and pathways for cell adhesion
(Fig. 6d). Interestingly, we also revealed a pro-angiogenic
VEGFA-VEGFAR2 signaling pathway and IL18 signaling that are
implicated in the angiogenesis process were also enriched in cDCs
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(Fig. 6d). By employing the motif analysis of the DARs, we
identified a significantly enriched NF-κB family (NFKB1, NFKB2,
RELA, REL, and RELB) in VKH (Fig. 6e). The chromatin
accessibility of the AP-1 family motifs (JUNB, FOSL1, JUND,
and FOS) and BTB and CNC homology (BACH) family motifs
(BACH1 and BACH2) were also upregulated (Fig. 6e). In
accordance with the motif-enriched data, the cDCs in VKH
showed notably higher occupancy in RELA and NFKB1 in our
footprint analysis (Fig. 6f).

To illustrate the NF-κB-family-centered regulatory program
network in the cDCs in VKH, we employed a recently established
method to identify putative TF target genes based on the
scATAC-seq and scRNA-seq data73 (see Methods, Supplementary
Fig. 6d). First, we identified differentially linked peaks and genes.
Next, the NF-κB family motifs were selected and assembled to
identify the linked differential accessibility regions (Supplemen-
tary Fig. 10a). Finally, all the linked genes were combined to
create a linkage score and the genes needed to exhibit differential
expression and accessibility in the groups. Using this approach,
we found 1372 genes regulated by the NF-κB family, containing
distal elements in VKH (Supplementary Data 1). We further
constructed an NF-κB family regulatory network based on the
TFs and TF-targeted genes (Fig. 6g). For instance, one of the
NFKB1 targeted genes in VKH, SIGLEC1, was previously
reported to have genetic associations with autoimmune disease74.
In summary, this approach provides a comprehensive regulatory
network to unveil the role of the NF-κB family in cDCs.

To validate the role of activation of RELA in cDCs among the
VKH patients, we included the RNA-seq data from Cohort 2, in
which 89 VKH patients were recruited and had their peripheral
blood drawn at baseline and at the three-month follow-up
(Supplementary Data 2). We used the identified RELA target
genes in VKH to stratify patients with different prognoses. We
observed significantly decreased survival (p < 0.0001) in patients
with a high RELA-target-gene signature (Fig. 6h). The NFKB1
target genes also showed a potential for stratifying VKH patients
with different prognoses (p < 0.00012) (Supplementary Fig. 10b).
Altogether, RELA is an important TF and acts as a prognostic
predictor in VKH.

cDC-centric cellular communication network. To identify the
reciprocal communication between cDCs and other immune
effector cell subsets, we surveyed the accumulated ligand/receptor
interaction database CellPhoneDB75. VKHs had a stronger cell-
cell interaction in cDCs than in HCs (Fig. 7a, b). Myeloid lineage
clusters showed the highest capacity for cell–cell interactions
(Fig. 7a, b). The cDCs shared the highest number of predicted
interactions with monocyte subsets and even increased in patients
with VKH disease. In line with the essential roles of cDCs and
T cells as immune regulators in VKH, cDCs harbored ligand
numbers 51, 45, 49, 56, and 49, with Th17, Th1, Treg, MAIT,
and CD8TEM, respectively (Fig. 7b).

After examining the differentially expressed receptor–ligand
pairs, we further identified enhanced immunomodulation in the
cDCs in VKH (Fig. 7c). In terms of immunomodulation, we
identified an increased interaction of cDCs with CD4T and CD8T

through the prediction of ligand/receptor pairs of the TNF
superfamily in VKH. In our dataset, the Th17 and Th1 cells
shared increased TNF–FAS and TNFSF13 (BAFF) –FAS interac-
tion with cDCs in VKH. Increased TNF and BAFF signaling are
important factors orchestrating sustained inflammation in Th1
and Th17 cells76. The TNF–FAS signaling was also predicted to
be activated in the interaction between cDCs and MAIT and in
CD8TEM cells (Fig. 7c). The increased TNF signaling in CD8+

T cells resulted in the activation of NF-κB and MAPK cascades,
which is in agreement with our previous findings (Fig. 4e). The
TNF–ICOS interaction was only increased in the Treg cells,
regulating Treg cell function. We noticed that CD40L/CD40
interactions were predicted to be increased in Th1, Th17, Treg,
and MAIT cells. This has been reported to be a key regulatory
interaction in autoimmune diseases that engages antigen-
presenting cells and enhances proinflammatory cytokine
production77. In our analysis, the cDCs were predicted to
increase the chemokine pairs such as CCL3L1–DPP4,
CCL3–CCR1, CCL3L1–CCR1, and CCL4L2–VSIR. These inter-
actions, which limit the myeloid cell lineage and T helper cells,
promote immune cell chemotaxis and migration (Fig. 7c).
Altogether, our data suggest the potential of cDCs in regulating
multiple immune cell subsets via cellular interactions, including
TNF superfamily and chemokines. Further experiments are
required to investigate whether cDCs are responsible for the
regulation that might lead to the initiation of the inflammatory
response in T cells and myeloid cell activation.

Discussion
Our integrated single-cell multiomic analysis of PBMCs provides
a comprehensive understanding of the cellular heterogeneity and
cellular phenotypes underlying the pathogenesis of VKH. This
analysis enabled us to (1) map the single-cell atlas of PBMCs in
VKH and identify rare cell-specific TFs in human peripheral
blood; (2) illustrate the pro-inflammatory role of NF-κB in VKH;
(3) investigate the chromatin and transcriptional reprogramming
in cDCs by integrative analysis of scRNA-seq and scATAC-seq
datasets; (4) dissect the pathogenic activation of RELA in cDCs
and reveal the link with prognosis in VKH; and (5) study the
paired ligand-receptor between cDCs and lymphocytes, sup-
porting the key role of cDCs in immune regulation in VKH
patients.

Hu et al.17 have previously performed a single-cell RNA study
on the VKH patients’ peripheral monocytes. Consistently, we also
identified a group of pro-inflammatory monocytes (Supplemen-
tary Fig. 8c) that may be responsible for the induction of
cytokine17. Further animal studies are needed to evaluate whether
these proinflammatory monocytes are regulated by the TF activity
of NF-κB family.

Epigenetic reprogramming is known to play an important role
in the pathogenesis of autoimmune disease44. Imbalance of
immune responses and overproduction of inflammatory cyto-
kines in VKH disease has been associated with aberrant epige-
netic changes78–80. Our profiling of patients with VKH disease
allows us to demonstrate that T effector cell subsets have a highly
activated phenotype, supports these findings14–16. For example,

Fig. 4 Epigenomic and transcriptional signatures of T cell subsets in VKH patients. a Subclustering UMAP of 3,182 CD4+ Treg. Dots represent individual
cells, and colors indicate immune cell types (labeled on the below). b UMAP projection of CD4+ Treg colored by gene activity scores to the indicated gene.
c Differences in the proportions of rTreg and eTreg among HC (n= 12) and VKH groups (n= 12). The adjusted p values were calculated using two-sided
pairwise Wilcoxon test. d Heatmap of Z-scores of DARs in Th1, Th17, Treg, CD8TEM, and MAIT from HC and VKH. e Representative GO terms and KEGG
pathways enriched in the nearest genes of upregulated DARs of Th1, Th17, Treg, CD8 TEM, and MAIT cells in the VKH/HC comparison group.
f Comparison of aggregate TF footprints for RELA and NFKB1 in MAIT cells from HC and VKH. All data are aligned and annotated to hg38 reference
genome.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03430-9 ARTICLE

COMMUNICATIONS BIOLOGY |           (2022) 5:506 | https://doi.org/10.1038/s42003-022-03430-9 | www.nature.com/commsbio 9

www.nature.com/commsbio
www.nature.com/commsbio


the activation of Th17 cells in VKH disease might lead to
pathogenicity which might be driven by the activation of tran-
scription factor T-bet.

Much attention has been focused on the role of cDCs in
autoimmune diseases47,81. We identified distinct TF regulatory
characteristics in cDCs in the VKH. Further analysis of the

putative TF regulated network showed that high RELA activity in
the cDCs was associated with poor prognosis. Intriguingly,
CCR7+ LAMP3+ cDCs have been recently reported in cancer and
have been characterized as mature DCs with a high potential for
migration82,83. Lysosomal-associated membrane protein 3
(LAMP3)+ cDCs are also involved in the pathogenic cellular

CD14+ monocytes subset
1−pro-inflammatory CM
2−HLA CM
3−rest CM

a

IL1B

b
Motif TF

FOS

KLF4

p value

1e-18

1e-14

SPI1 (PU.1) 1e-224

IRF1 1e-61

CEBP 1e-101

BATF 1e-95

c

UMAP Dimension 1

U
M

AP
 D

im
en

si
on

 2

25 50 75 100

pesudotime
d

NRF1
YY2
YY1

EGR2
ELF1
KLF6

HIF1A
SP1

KLF5
KLF11

KLF4

IRF8

REL

IRF2

NFKB1
RELB

IRF1
BCL11A

RELA
NFKB2

EBF1
TCF12

TCF4
TCF3

CEBPE

CEBPB
CEBPA

−1
.5

1.
5

123

pesudotime

e

−0.1

0.0

0.1

0.2

0 25 50 75 100

H
IF

1A
_2

4

25 50 75 100

−0.25

0.00

0.25

0 25 50 75 100

IR
F1

_6
29

−0.5

0.0

0.5

1.0

0 25 50 75 100
PseudoTime

KL
F4

_2
08

f

g

112800000 112820000 112840000 112860000 112880000

chr2:112786902−112886903

31550000 31575000 31600000 31625000

chr6:31525566−31625567

IL1B

TNF

HC

VKH

HC

VKH

h

i

0.00

0.25

0.50

0.75

1.00

−200 −100 0 100 200
Distance to motif center (bp)

Tn
5 

Bi
as

 S
ub

tra
ct

ed
N

or
m

al
iz

ed
 In

se
rti

on
s

NFKB1_719

0.00

0.25

0.50

0.75

1.00

−200 −100 0 100 200
Distance to motif center (bp)

Tn
5 

Bi
as

 S
ub

tra
ct

ed
N

or
m

al
iz

ed
 In

se
r ti

on
s

RELA_722

j

HC

VKH

HC

VKH

1

2

31

2

31

2

31

2

31

2

31

2

31

2

31

2

31

2

31

2

31

2

31

2

31

2

31

2

31

2

31

2

31

2

3

UMAP Dimension 1

U
M

AP
 D

im
en

si
on

 2

112800000 112820000 112840000 112860000 112880000

chr2:112786902−112886903

pro-inflammatory CM

HLA CM

rest CM

32600000 32620000 32640000 32660000 32680000

chr6:32587356−32687357

pro-inflammatory CM

HLA CM

rest CM

HLA-DQA1

0.0

0.2

0.4

0.6

−200 −100 0 100 200
Distance to motif center (bp)

Tn
5 

Bi
as

 S
ub

t ra
ct

ed
N

or
m

al
iz

ed
 In

se
rti

on
s

HIF1A_24
pro-inflammatory CM

HLA CM
rest CM

C
T
A
G
T
C
G
A

ACGTACT
G

CG TAATGCACGTG TA
C

CG TAAGCTGATCGTAC

G
A
T
C
T
C
G
A
A
G
T
C
CG
A
T
C
G
A
T
AG
T
C

ATG
C

AC
T
G
A
T
C
G
G
A
C
T

CG
T
A

TA
C
G

TC
G
A

AC TGAC TGCG TACGTATA
C
G

AGCTTACG
T
C
A
G

C TG
A

CG TACG TATACGGCATC TA
G

C TG
A

CG TACG TATACGGACT

T
G
C
A

AGCTACG
T

CT
A
G
G
A
T
C
C
T
A
G

GA
T
C

G TC
A

C TGAAGTC
C
A
G
T
T
G
C
A

ACGTACT
G

CGT
AATCGCGATTGA

C
CG TAACGT3

2

1

CCL4
CCL3

CCL4L2
IL1B

CXCL8
TNF

CXCL2
JUN

CXCR4
FOSB

MAP3K8
ICAM1
HIF1A
JUNB

FOS

HC VKH

-2

0

2

Average 
Expression

Percent 
Expressed

20
40
60
80

DEGs in scRNA-seq

chromVAR TF motif devation
chromVAR TF motif devation

N
or

m
al

iz
ed

 A
TA

C
 S

ig
na

l

0

0.25

N
or

m
al

iz
ed

 A
TA

C
 S

ig
na

l

0

0.26

N
or

m
al

iz
ed

 A
TA

C
 S

ig
na

l

0

0.33

N
or

m
al

iz
ed

 A
TA

C
 S

ig
na

l

0

0.45

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03430-9

10 COMMUNICATIONS BIOLOGY |           (2022) 5:506 | https://doi.org/10.1038/s42003-022-03430-9 | www.nature.com/commsbio

www.nature.com/commsbio


microenvironment, with resistance to anti-TNF therapy in
Crohn’s disease84. A recent study utilized scRNA-seq with flow
cytometry and low-input proteomics to identify cDCs as an
important player in ocular cell infiltration in HLA-B27+ uveitis85.
Our study suggests that NF-κB and its subunit might be impor-
tant regulators of cDC activation and maturation. Further animal
experiments are needed to confirm their regulatory effects on the
antigen-presenting capacity of cDCs86. Consistently, enhanced
NF-κB signaling in the cDCs has recently been described as a
baseline predictive factor for patients non-responsive to anti-TNF
therapy in psoriasis87. Importantly, we found that patients with
higher RELA activity had a poorer prognosis than those with
lower RELA activity. Further studies with long-term observations
are required to confirm this finding.

In summary, cDCs might work as a key pro-inflammatory
player and lymphocyte activator in VKH. Our single-cell mul-
tiomic atlas of human peripheral immune cells offers insights into
the pathogenesis of VKH and its therapeutic options.

Materials and methods
Human subjects. This study was approved by The Ethics Committee of Zhong-
shan Ophthalmic Center (Guangzhou, China, 2019KYPJ114). All the participating
individuals provided Written informed consent in the study. The relevant ethical
regulations regarding human research participants were followed in accordance
with the Declaration of Helsinki. All healthy individuals and patients were
recruited from Zhongshan Ophthalmic Center. Individuals with comorbid condi-
tions including cancer, immunocompromising disorders, hypertension, diabetes,
and steroid use were excluded. The 12 healthy subjects (HC) consisted of 6 men
and 6 women, with an average age of 39.9 years old. In the first VKH patient cohort
(Supplementary Table 1), there were seven men and five women aged between 16
and 65 years. No significant differences in gender or age was detected between the
HC and VKH groups. The diagnosis of VKH disease was based on the revised
diagnostic criteria established by the First International Workshop on VKH
Disease88. In the second VKH patient cohort, 89 VKH patients (38 men and 51
women) were recruited and followed up to determine whether they developed
complications such as cataract, glaucoma, choroidal neovascularization, and sub-
retinal fibrosis. During the 3-month follow-up, 35 patients (39.3%) developed at
least one complication (Supplementary Data 2), and they were classified as those
with a poor prognosis5,7,8.

Cell isolation. To isolate PBMCs, all the peripheral venous blood samples were
collected from healthy donors or patients using Ficoll-Hypaque density solution,
heparinized, and then centrifuged for 30 min. Trypan blue staining was used to
determine the viability and quantity of PBMCs in single-cell suspensions. For each
sample, we ensured the cell viability exceeded 90% for the following experiment.
For each sample with more than 1 × 107 viable cells, a fraction of PBMCs was
extracted for scRNA-seq analysis, and a fraction of PBMCs was allocated for single-
cell assays for transposase-accessible chromatin sequencing (scATAC-seq).

scATAC-seq processing. The nuclei isolation, washing and counting of nuclei
suspensions were performed according to the manufacturer’s protocol. Based on
the number of cells and desired final nuclei concentration, an appropriate volume
of chilled Diluted Nuclei Buffer (10x Genomics; PN-2000153) was used to resus-
pend nuclei. The resulting nuclei concentration was determined using a Countess II
FL Automated Cell Counter. Nuclei were then immediately used to generate 10×
single cell ATAC libraries in Berry Genomics Co., Ltd. (Beijing, China). Libraries
were uniquely barcoded and quantified using RT-qPCR. Each sample library was
loaded on an Illumina Novaseq 6000 with 3.5 pmol/L loading concentration after

pooling in pair-end mode. Next, Libraries were sequenced to either 90% saturation
or 30,000 unique reads per cell on average. We followed the protocols for sample
processing, library preparation, and instrument and sequencing settings on the 10×
Chromium platform at https://support.10xgenomics.com/single-cell-atac. Raw
sequencing data were converted to fastq format using Cellranger atac mkfastq (10×
Genomics, v.1.0.0). scATAC-seq data reads were aligned to the GRCh38 (hg38)
reference genome and quantified using the Cellranger count function (10x Geno-
mics, v.1.0.0).

scATAC-seq quality control. Arrow files were generated using ArchR v0.9.520 by
reading in accessible read fragments for each sample, following the default aug-
ments, unless otherwise indicated. To make sure that each cell had a high signal
and well-sequenced, we filtered cells with less than 2500 unique fragments and
enrichment at TSSs below 9. Doublets were inferred and filtered using ArchR20. We
also removed the cells that mapped into blacklist regions based on the ENCODE
project reference.

scATAC-seq dimensionality reduction and clustering. We performed a layered
dimensionality reduction approach using latent semantic indexing (LSI) and sin-
gular value decomposition (SVD), followed by Harmony22 batch correction based
on each sample. Subsequently, single-cell accessibility profiles were clustered using
Seurat’s shared nearest neighbor (SNN)21 graph clustering with ‘FindClusters’ at a
default resolution of 0.8 on the harmonized LSI dimensions. During the reclus-
tering step, clustering with ‘FindClusters’ at a default resolution of 0.3–1.5 to better
identify small clusters. All data were visualized using uniform manifold approx-
imation and projection (UMAP) in two-dimensional space.

scATAC–seq gene activity scores. Gene activity scores were calculated based on
the accessibility within the gene body, at the promoter and at distal regulatory
elements was correlated with gene expression using ArchR v.0.9.527 with default
parameters20. We also used additionally imputed weight method MAGIC 89on the
resulting gene activity scores for reducing noise of the scATAC-seq data sparsity.

scATAC–seq pseudobulk replicate generation and peak calling. For differential
comparisons of clusters, cell types, and clinical states, non-overlapping pseudobulk
replicates were generated from groups of cells using the ‘addGroupCoverages’
function with different arguments. These pseudobulk replicates were then used to
generate the peak matrix (using ‘addReproduciblePeakSet’). We further used
MACS290 to perform peak calling. The pseudobulk peak set was used for down-
stream analysis.

scATAC motif enrichment and motif deviation analysis. We performed motif
enrichment and motif deviation analyses on the pseudobulk peak set. We used the
Catalog of Inferred Sequence Binding Preferences (CIS-BP) motif (from
ChromVAR)40, JASPAR2020 motif91 and HOMER65 to perform peak annotation.
Additionally, the chromVAR deviation scores for these motifs were computed
using ArchR implementation.

scATAC–seq differential analysis. The pseudobulked peak set was used for dif-
ferential analysis between different cell types and different clinical states using the
‘getMarkerFeatures’ function. We defined peak intensity as log2 of the normalized
read counts. We used Wilcoxon test and Benjamini-Hochberg multiple test to
calculate the p value and FDR between any pair of samples. Differentially accessible
distal peaks were defined as FDR ≤ 0.1 and log2-fold change ≥0.592.

scATAC–seq Gene Ontology annotation and genomic regions annotation. In
the differential analysis, we used the “annotatePeak” function in the ChIPseeker
package23 to annotate the nearest genes in the peak region with default arguments.
Subsequently, we used the nearest genes as in the Metascape webtool (www.
metascape.org)93 which allows visualization of functional patterns of gene clusters.

Fig. 5 Epigenomic and transcriptional signatures of CD14+ monocytes subsets in VKH patients. a Subclustering UMAP of 20,054 CM cells. Dots
represent individual cells, and colors indicate immune cell types (labeled on the below). b Genome browser tracks showing single-cell chromatin
accessibility in the IL1B and HLA-DQA1 locus. c TF motif enrichment analysis of cluster-specific sequences. d UMAP showing the lineage trajectory of CM
ordered based on pro-inflammatory, HLA+ and rest states. Pseudotime values were overlaid on the UMAP embedding; the smoothed line and arrow
represent the visualization of the trajectory path from the spline fit. e Heatmaps of the ordered TF motif accessibility across pseudotime in the CM (see Fig.
5d). The TF motif accessibilities are indicated by chromVAR TF-motif bias-corrected deviation. f chromVAR bias-corrected deviation scores for the
indicated TFs across CM pseudotime. Each dot represents the deviation score in an individual pseudotime-ordered scATAC-seq profile. The line represents
the smoothed fit across pseudotime and chromVAR deviation scores. g Comparison of aggregate TF footprints for HIF1A in CM subsets. h Genome
browser tracks showing single-cell chromatin accessibility in the IL1B and TNF locus. i Dot plots of the expression level of the differential genes between
normal and VKH in CM in RNA-seq dataset. j Comparison of aggregate TF footprints for NFKB1 and RELA in CM from HC and VKH. All data are aligned
and annotated to hg38 reference genome.
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Statistical analyses were performed to conduct DEG gene ontology and pathway
enrichment. A p value of less than 0.05 was considered statistically significant.

scATAC–seq TF Foot-print analysis. Motif footprint analysis was performed by
measuring Tn5 insertions in genome-wide motifs and normalized by subtracting
the Tn5 bias from the footprinting signal. For each peak set, we used CIS-BP motifs
(from chromVAR motifs human_pwms_v1)40 or JASPAR2020 motifs40 to

calculate motif positions. We normalized these footprints using mean values
±200–250 from the motif center. We then plotted the mean and standard deviation
for each footprint pseudo-replicate.

scATAC–seq ChromVAR deviation enrichment of human eye and skin tissues.
In ChromVAR deviation enrichment40, we downloaded the bulk ATAC-seq and
CHIP-seq data of the healthy human retina, macular, retina pigment epithelial, and
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skin46,47. The.bw files were read and processed using the Rtracklayer package94. We
identified the cis-elements in each tissue and extended them ±2.5 kb. A ‘GRan-
gesList’ object was created with a feature set of peaks for downstream analysis.
Next, we used the pipeline designed by Satpathy et al.19 to calculate the co-
accessibility in our scATAC-seq dataset for each single-cell group using Cicero95

and created a connection matrix (Supplementary Fig. 6f). To identify co-accessible
peaks in each tissue within our scATAC-seq data, we then overlapped the peaks
with the connection matrix. We kept the matrix with peaks that over 3 co-
accessibility (Supplementary Fig. 6f). To computed the GC bias-corrected devia-
tions, we used the chromVAR “computeDeviations” and “computeVariability”
function with default parameters (Supplementary Fig. 6f).

scATAC-seq peak to gene linkage analysis. To identify peak-to-gene links
prediction, we used the ArchR ‘addPeak2GeneLinks’ function and set the para-
meter ‘corCutOff’ as 0.2, ‘reducedDims’ as the dimensionality reduction results
after batch corrected. The returned ‘GRanges’ object were used for visualization.

scATAC–seq GWAS SNPs liftover and DARs mapping. We downloaded the
GWAS data from GWAS Catalog (https://www.ebi.ac.uk/gwas/) using the
searching term ‘Vogt- Koyanagi-Harada disease’. The collected GWAS data was
identified by Hou et al.45. All the gene locus of the SNPs was chosen for inferring
peak-to-gene linkages. To pinpoint the GWAS SNPs to our datasets, we used the
UCSC utility liftOver (https://genome.ucsc.edu/cgi-bin/hgLiftOver) to lift the
GWAS SNPs from hg19 to hg38. We then took the set of differentially accessible
peaks (in the positive direction) for each cell type and annotated each SNP
according to whether it overlapped one of these peaks. Only the locus with over 0.2
correlations between SNPs and genes were kept.

scRNA-seq processing. The scRNA-seq libraries were barcoded and converted
using The Chromium Single Cell 5 Library (the 10× Genomics chromium plat-
form), Gel Bead and Multiplex Kit, and Chip Kit (10× Genomics). According to the
manufacturer’s protocols, we prepared the Single-cell RNA libraries using the
Chromium Single Cell 5' v2 Reagent (10x Genomics, 120237) kit. The libraries for
scRNA-seq experiments were sequenced on Illumina NovaSeq6000 in pair-end
mode. The quality of the libraries was checked using the FastQC software. The
sequenced data were first processed and aligned to the GRCh38 reference for each
sample using CellRanger software with the default parameter (https://support.
10xgenomics.com, version 3.1.0).

The Cell Ranger-count function in CellRanger Software Suite (10x Genomics)
was used to demultiplex and barcode the sequences derived from the 10x Genomics
single-cell RNA-seq platform. The data were filtered, normalized, and
dimensionality was reduced and clustered. We then used CellRanger-aggr to
aggregate all the samples for downstream analysis.

scRNA-seq quality control. For quality control, cells were filtered out with more
than 11% of mitochondrial genes and fewer than 200 or more than 3000 detected
genes using Seurat V321. We further filtered the cell populations identified as red
blood cells and platelets that expressed HBB, HBA1, PPBP, and PF4 genes.

scRNA-seq dimensionality reduction and clustering. After normalization, scale
data with the top 5000 most variable genes using the ‘FindVariableFeatures’
function in R package Seurat v3. We performed principal component analysis
using variable genes, and the first 30 principal components (PCs) were further used
to deal with batch effect issues using the Harmony package based on each sample.
We then performed Seurat clustering on the Harmony to batch-correct dimensions
at the resolution of 0.8. We further performed the UMAP analysis, a
dimensionality-reducing visualization tool, was used to embed the dataset into two
dimensions.

scRNA–seq differential analysis. For scRNA-seq differential expression analysis,
we used the “FindAllMarkers” function of the Seurat package with default para-
meters. A p value of less than 0.05 was considered statistically significant96.

scRNA-seq signature score analysis. To assess the inflammatory state in cir-
culating dendritic cells, we collected all marker genes from inflammatory CD1c+

dendritic cells72. Inflammatory signature scores were estimated for all cells as the
average of the scaled Z-normalized expression of the genes in the list. The scores
were calculated as follows: the score of the gene set in the given cell subset (named
as X) was computed as the sum of all UMI for all the genes expressed in X cells,
divided by the sum of all UMI expressed by X cell38,97.

Multiomics data processing. To integrate scRNA-seq and scATAC-seq dataset,
we followed the integration pipeline described in ArchR, Seurat and Signac98

website. First, we implemented the ArchR built-in method to divide the total
dataset into smaller groups of cells and performed separate alignments for saving
computational RAM. We then applied Seurat’s canonical correlation analysis
(CCA) to integrate our epigenetic and transcriptomic data. No further batch
correction method was used. For this purpose, the integration analysis was based
on the log-normalized and scaled scATAC-seq gene score matrix with the scRNA-
seq gene expression matrix. By directly aligning cells from scATAC-seq with cells
from scRNA-seq, the union of the 2000 most variable genes was used in each
modality as input to Seurat’s “FindTransferAnchors” function and Seurat’s
“TransferData” function with “weight.reduction” set to the dimensionality of
scATAC-seq dataset after Harmony batch correction while other parameters were
set to default. For each cell profiled by scRNA-seq and each cell profiled by scA-
TAC-seq, we identified the nearest neighbor cell in the respective other modality by
applying a nearest-neighbor search in the joint space CCA L2 space. These nearest-
neighbor-based cell matches from all gestational time points were concatenated to
obtain dataset wide cell matches across both modalities.

Pseudotime analysis. To order cells in pseudotime, we identified a trajectory and
then aligned single cells across the trajectory in scATAC-seq dataset, scRNA-seq
dataset as well as the merged dataset42. Based on the user-defined trajectory
backbone, cellular trajectories were established in a low-dimensional space using
batch-corrected LSI embeddings. CD14+ monocyte subsets were provided to
ArchR20 using ‘addTrajectory’ function with “preFilterQuantile” and “post-
FilterQuantile” set to 0.95 while other parameters were set to default. Then, a
k-nearest neighbor algorithm was used to order cells based on the Euclidean dis-
tance of each cell to the nearest cluster’s centroid. Cells were then assigned
pseudotime value estimates, and a heatmap was plotted using differential feature
z-scores that were associated with the pseudotime trajectory.

Identifying TF target genes. To identify significantly shared TFs and their directly
regulated target genes in VKH disease, we used the framework designed by Granja
et al.73. We first identified a set of TFs whose hypergeometric enrichment in
differential peaks between VKH patients and healthy subjects, and the enrichment
was identified as being transcriptionally correlated with the accessibility of their
motifs (see above). Next, for a given TF and all identified peak-to-gene links, we
further subset these links by those containing the TF motif. For each peak-to-gene
link, we determined whether both the peak and the gene were upregulated in the
VKH group. In addition, for each gene that has at least one differential peak-to-
gene link, we summed their squared correlation and defined that as the differential
linkage score.

Receptor–ligand pair analysis. Receptor–ligand analysis between cDCs and other
immune cell subpopulations was performed using CellphoneDB statistical analysis,
v.2.075. We extracted the gene matrix from scRNA-seq data between different
clinical state groups to perform this analysis. We selected the ligand/receptor
interactions with more significant (p < 0.05) cell-cell interaction pairs in disease
states than in healthy groups.

RNA-seq library preparation, sequencing, and analysis. Total RNA was
extracted from the blood samples following the manufacturer’s instructions. The
libraries were sequenced using an MGI-2000 sequencing instrument. The quality
control process included adapter trimming and low-quality read removal using Trim
Galore (v0.6.4; https://github.com/FelixKrueger/TrimGalore) with parameters ‘—q
20 –phred 33 –stringency 3 –length 20 –e 0.1’. The clean mRNA data were mapped to
the human genome GRCh38 using Bowtie299 (v2.3.5.1; http://bowtie-bio.sourceforge.

Fig. 6 Epigenomic and transcriptional signatures of cDC subsets in VKH patients. a Dot plots of the expression level of the differential genes between
normal and VKH in cDCs in scRNA-seq dataset. b Genome browser tracks showing single-cell chromatin accessibility in the CCR7 and LAMP3 locus. c Box
plot of inflammatory signature score in all cells of each group. All p values were calculated using Kruskal-Wallis test. d Enrichment of biological processes
associated with nearest genes of DARs in VKH compared to HC regions. e Visualization of TF binding motif enrichment analysis results for DARs in VKH
compared to HC regions by using CIS-BP database from chromVAR. f Comparison of aggregate TF footprints for NFKB1 and RELA in cDC cells from HC and
VKH. g TF regulatory network showing the NF-κB family and its potential target genes in VKH. The width of an edge indicates the peak to gene linkage
correlation. h Kaplan–Meier curve for patients with VKH (n= 89) stratified by putative RELA-target genes (n= 328); average z score log2(expression)
(log-rank test p < 0.001). All data are aligned and annotated to hg38 reference genome.
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net/bowtie2/index.shtml). Bam files were then sorted using SAMtools100 (v1.7; http://
samtools.sourceforge.net/index.shtml). Gene counts and gene FPKM from bam files
were then generated using ‘featureCounts’101.

Survival analysis. For survival analysis, we matched FPKM gene expression to
each sample ID. We computed row-wise z-scores for all genes that were identified
as target genes for NFKB1 (n= 347) and RELA (n= 382). Next, we used the

column means of this matrix to obtain an average z-score across all NKFB1 and
RELA target genes. We further identified donors based on this expression. We
computed p values using R package survival. Kaplan–Meier curve was plotted using
the R package survminer ‘ggsurvplot’ in R.

Statistics and reproducibility. Statistical analysis of the frequencies of immune
cell subpopulations between groups was performed using one-way ANOVA tests

37

60

8141

42

44

48

40
53

46

cDC

CD14

CD16Th17

Th1

Treg

MAIT

BC NK

CD8TEM

51

86

10451

45

49

56

39
53

49

cDC

CD14

CD16Th17

Th1

Treg

MAIT

BC NK

CD8TEM

a b

CD40_TNFSF13B

CD44_HBEGF

TNF_VSIR

CCL4L2_VSIR

TNF_ICOS

TNF_TNFRSF1A

TNFSF13_FAS

TNF_FAS

TNF_TNFRSF1B

CD40_CD40LG

CCL3L1_CCR1

CCL3_CCR1

CCL3L1_DPP4

MIF_TNFRSF14

CD14
Th1

7 Th1 Treg cD
C

CD16

CD8T
EM

MAIT NK BC

-Log(p value)

0

1

2

3

-6

-4

-2

0

Log2 mean 

cDC

CD14
Th1

7 Th1 Treg cD
C

CD16

CD8T
EM

MAIT NK BC

cDC

c

HC VKH

HC VKH

cDCs-immune cell subsets 
Receptor-ligand signaling

Cellular interaction network of DC and immune cell subsets Cellular interaction network of DC and immune cell subsets
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indicated by colors, scales on the right. All data are aligned and annotated to hg38 reference genome.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03430-9

14 COMMUNICATIONS BIOLOGY |           (2022) 5:506 | https://doi.org/10.1038/s42003-022-03430-9 | www.nature.com/commsbio

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://samtools.sourceforge.net/index.shtml
http://samtools.sourceforge.net/index.shtml
www.nature.com/commsbio


with Bonferroni’s post-hoc correction with GraphPad Prism 8.0. Two-sided p
values of less than 0.05, were considered statistically significant. All the statistical
details for the experiments can be found in the figure legends as well as in the
Method Details section. When comparing the gene expression levels between
groups, we estimated the p values using the two-sided Wilcoxon test in R package
ggpubr with default parameters. In estimating the GO biological process and
pathway, p values were derived by a hypergeometric test with the default para-
meters in the Metascape webtool. Each figure legends include the details of the size
of biological replicates and the assays.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The scRNA-seq, scATAC-seq and bulk RNA-seq data analyzed in the article are available
from the corresponding author upon request under the Project Accession No.
PRJCA004696 and GSA Accession No. HRA001643 (Beijing Institute of Genomics).

Code availability
The data analysis pipeline in our study was described on the ArchR websites and Seurat
websites. The code for TF network analysis in this study can be found on Github at
https://github.com/GreenleafLab/MPAL-Single-Cell-2019. The code for plotting in this
study can be found on https://gitlab.com/cvejic-group/integrative-scrnascatac-human-
foetal42.
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