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Abstract

Background: Observed levels of gene expression strongly depend on both activity of DNA binding transcription
factors (TFs) and chromatin state through different histone modifications (HMs). In order to recover the functional
relationship between local chromatin state, TF binding and observed levels of gene expression, regression methods
have proven to be useful tools. They have been successfully applied to predict mRNA levels from genome-wide
experimental data and they provide insight into context-dependent gene regulatory mechanisms. However,
heterogeneity arising from gene-set specific regulatory interactions is often overlooked.

Results: We show that regression models that predict gene expression by using experimentally derived ChiIP-seq
profiles of TFs can be significantly improved by mixture modelling. In order to find biologically relevant gene clusters,
we employ a Bayesian allocation procedure which allows us to integrate additional biological information such as
three-dimensional nuclear organization of chromosomes and gene function. The data integration procedure involves
transforming the additional data into gene similarity values. We propose a generic similarity measure that is especially

suitable for situations where the additional data are of both continuous and discrete type, and compare its
performance with similar measures in the context of mixture modelling.

Conclusions: We applied the proposed method on a data from mouse embryonic stem cells (ESC). We find that
including additional data results in mixture components that exhibit biologically meaningful gene clusters, and
provides valuable insight into the heterogeneity of the regulatory interactions.

Keywords: Transcription regulation, Pluripotency, Mixture regression, Data integration, Bayesian analysis

Background

Cell-type- and condition-specific interactions between
DNA binding transcription factors (TFs) and their tar-
get genes, and modification of chromatin-associated
proteins are two primary molecular mechanisms
that influence rates of transcription [1, 2]. Uncover-
ing the complex network of regulatory interactions
that control spatio-temporal levels of gene expres-
sion is crucial for understanding the coordination
of biological processes that take place in cells. An
important first step is to obtain accurate experimen-
tal data. Chromatin immunoprecipitation combined
with  massively parallel DNA sequencing (ChIP-
seq) is now routinely used to determine TF-DNA
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interactions and genome-wide patterns of histone
modifications (HMs) at high resolution. The next step is
to infer the relationships between the relevant variables by
building plausible and interpretable models. In this paper
we propose to infer the functional relationship between
gene expression levels and TF binding as well as local
chromatin state, via a Bayesian mixture regression anal-
ysis that takes into account i) heterogeneity arising from
gene-set specific regulatory interaction, ii) the integration
of additional biological information such as 3D chromatin
interactions or gene function. For this integration the
additional data that provide the biological information,
need to be transformed into a similarity measure. We
study several similarity measures and illustrate the merits
of our method to data from mouse embryonic stem cells
(ESC).

In a pioneering work [3], Bussemaker and co-authors
demonstrated the effectiveness of regression models to
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study the effect of in silico predicted TF binding on
observed gene expression of potential target genes. They
proposed multiple linear regression models where dis-
crete counts of TF motifs occurring in gene promoter
sequences are used as predictors. Their models describe
gene expression as a function of many predictors simul-
taneously and have been successfully applied to discover
binding sites of yeast TFs controlling cell cycle gene
expression. Extending this approach to model mammalian
gene expression has not been as successful. Complicat-
ing factors include the much less compact genomes in
higher organisms which include vast stretches of non-
coding DNA within and around genes that are rich in
regulatory elements and that enable more complex and
dynamic regulatory mechanisms. Consequently, the pres-
ence of any particular motif in a non-coding region near
a gene of interest is a poor predictor of occupancy by a
DNA binding protein under a given condition, let alone of
any functional relationship. However, several studies have
shown that experimentally derived genome-wide ChIP-
seq profiles of transcription factors and also HMs, such as
H3K4me3, which often marks regions of active transcrip-
tion, and H3K27me3, a mark of transcriptionally silent
chromatin, do correlate strongly with observed levels of
gene expression. For instance, Ouyang et al. [4] show that
by using a PCA-regression model that includes profiles of
12 different mouse TFs, roughly 65% of gene expression
in embryonic stem cells can be explained. This work was
extended by integrating HMs and DNA methylation pro-
files in a later study by Park and Nakai [5]. Karli¢ et al.
[6] employed a regression model to show that patterns of
histone modifications are predictive for gene expression.
These approaches are similar in the sense that they are
built on the premise that a given regulatory signal exerts a
universal regulatory effect on all its target genes.

An important point of attention is that individual lev-
els of gene expression do not depend in a simple way on
the activity of a single transcription factor. Combinatorial
action of multiple transcription factors, local chromatin
state and other mechanisms of regulation result in more
complex modes of regulation and the contribution of each
single transcription factor may therefore be different for
different sets of genes. Ordinary least squares (OLS) mod-
els are not suitable to identify such divergent effects of
regulatory signals, as their output is computed as a sin-
gle linear combination of regulatory predictors. Ouyang et
al. [4] addressed this issue by applying a principle compo-
nent regression (PCR) analysis which instead of original
regulatory signals uses the orthogonal principle compo-
nent vectors as new predictor variables. Costa et al. [7]
took a different approach by fitting mixture regression
models, which inherently cluster the data and allow the
same regulatory elements to assert different effects on
gene expression in distinct clusters of genes. Later, do

Page 2 0f 13

Rego et al. [8] considered possible correlation of the reg-
ulatory elements and used a variable selection approach
to detect the most important regulatory signals within
each cluster. In spite of the ability of this method to cap-
ture data heterogeneity, efficient algorithms are required
to optimize the number of mixture components and the
tuning parameters. Most importantly, the approach does
not accommodate integration of additional data into the
model.

Apart from data on genome-wide presence of HMs
and TFs, due to recent advances in molecular techniques
such as chromosome conformation capture (3C based
Hi-C), additional relevant information on a genome-wide
scale can be obtained that can be leveraged in a flexi-
ble data modelling approach. Hi-C is a proximity-ligation
based assay that allows quantification of contact fre-
quencies between pairs of loci genome-wide and as such
yields three-dimensional (3D) data on spatial organiza-
tion and interaction of genes and regulatory elements,
that is believed to provide important insight into com-
plex relationships between 3D chromatin structure and
gene activity [9]. Another example is functional annota-
tion of genes, that is often used to evaluate clustering
methods from a biological perspective, but can also be
used as an auxiliary attribute to increase the accuracy of
data modelling.

In this study we approach the problem by mixture mod-
eling with a flexible Bayesian estimation procedure. In
addition to enabling variable selection, our method gives
proper account to incorporation of prior biological knowl-
edge from different, but related, data sources with the
aim of enhancing clustering accuracy. The auxiliary gene
attributes in this approach are translated into a single sim-
ilarity matrix which is then incorporated into the prior
for (conditional) component membership. Kirk et al. [10]
proposed a similar data integration method that works
by fitting separate mixture models for each additional
data set and linking them through a conditional prior
on the mixture component memberships. Similar to their
approach we are interested in integration of additional
data at the level of component memberships. However,
firstly, instead of many we fit only one mixture model and,
secondly, we work in a regression setting which allows for
modelling the dependency of an independent variable of
interest on multiple independent variables. Here, we fur-
ther compare several functions that measure similarity of
gene pairs based on various auxiliary attributes and study
their influence on the accuracy of our models.

Results

External data and similarity measure selection

We first determined which set of additional data
can help predicting gene expression levels the best.
This was done by a search over different similarity
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matrices that were obtained from one single or from
a combination of additional data (i.e. the auxiliary
attributes). The similarity values were calculated using
the three functions (7), (10), (12) that were introduced in
“Similarity measures” section. The resulting similarity
matrices were separately plugged in into our DIMR algo-
rithm. To quantify the differences between the result-
ing models, the mean squared errors (MSEs) between
observed and predicted gene expression values were com-
puted (see “Model evaluation” section for details). We
first considered the auxiliary variables separately, as the
only source of the additional information about similarity.
Figure 1 illustrates the performance of the three similar-
ity functions. In most cases the DIMR-S measure per-
formed far out best, while the performance of Gower’s and
Wilson’s measures was comparable; over all conditions
DIMR-S performed best.

Having established that DIMR-S vyield better predic-
tions in comparison to the other two similarity functions,
we continued with the rest of the analysis using DIMR-S.
Apart from the eight models with one of the auxiliary vari-
ables separately as the additional data set, we considered
two models in which the calculation of the similarity val-
ues was based on a combination of auxiliary attributes.
The first model included a combination of the auxiliary
attributes that concerns clustering attributes that repre-
sent specific gene functions (Maintain, Plurip, Rep-
plurip, Self, Esc_sp (Setl), while the second model
included the combination of all eight auxiliary attributes
(Set2).

We further validated the informativeness of the auxil-
iary attribute sets by comparing the results of the corre-
sponding models with those of a model, denoted by Nul1l,
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Fig. 1 Performance of different similarity measures for the additional
data sources. The bars present the MSE of the mixture models that
were fitted with DIMR using different similarity matrices that were
obtained from the same auxiliary attributes
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in which all similarity values were set to zero. More impor-
tantly, for the last model that we considered, we drew
random samples (size=50) from all attribute values and
constructed random similarity matrices (Set3).

For the in total twelve models, we utilized the simi-
larities in the DIMR algorithm according to (3)—(5), per-
formed the mixture regression analysis as described in
“Mouse embryonic stem cell expression” section, and
computed the MSE as indicated in Model validation. To
illustrate the benefit of mixture regression, ordinary least
squares (OLS) regression was also performed.

As depicted in Fig. 2, except for Chr nr, all auxiliary
variables separately yield improved predictions, with sim-
ilar MSEs, compared to the random model Set3 and the
NULL model. However, the MSE drops significantly (t-
test, p-value < 0.05) when the gene function attributes
are combined (Setl); the best result was obtained when
all external attributes were combined (Set2). The ran-
domized additional data (Set3) does not show impres-
sive improvement in predictions, as was expected. OLS
showed relatively poor performance.

Since the component-wise mixture parameters were
estimated in the same manner, the improved results when
all auxiliary attributes are used, is due to the clustering
stage of the underlying mixture model. As was illustrated
by Aflakparast and de Gunst [11], whenever the additional
data set is more informative, a better mixture clustering
can be expected. Our results show that each additional
source of information when utilized individually, has a
positive effect ion the predictions. The reason why this
effect becomes larger, especially when all additional data
are combined, is most likely due to the complementary
role of the biological information contained in the auxil-
iary variables in effective clustering of the genes.

Mouse embryonic stem cell expression

We now demonstrate that we can recover many cru-
cial regulatory interactions using predictors that represent
TF affinities and HM levels derived in silico, allowing
us to accurately predict observed gene expression from
sequence data. We examined the relationship between
gene expression and three groups of regulatory sig-
nals TFs, HMs, and a combination of TFs and HMs as
explanatory variables. To discover the relationships, we
trained three different models using the mixture mod-
elling approach DIMR with a similarity matrix extracted
from combining all auxiliary attributes and calculating
the similarity of genes using the DIMR-S measure. In
addition, we fitted an ordinary multiple linear regression
model for comparison. See Fig. 3. The results were com-
pared through 5-fold cross-validated prediction errors.
Comparing the proportion of variation of the gene expres-
sion levels that has been explained by the models, i.e. the
determination coefficient R?, a slight increase can be seen
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Cross validated MSE for similarity measures
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Fig. 2 Performance of DIMR using different sources of additional data. The DIMR-S measure is used to calculate similarities, and the cross
validated MSEs are presented in ascending order. Set1 and Set2 represent the combination of the functional gene attributes and the combination
of all auxiliary attributes, respectively. The results are compared with the mean of the MSE of 50 models whose additional data (Set3) are 50 random
surrogates of Set2. The lower and upper values of the error bar for the randomized Set3 represent the first and third quantiles of the resulting MSEs
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Fig. 3 Plots of observed versus predicted mouse ESC gene expression comparing fitted models with DIMR and an OLS methods using different
groups of regulatory signals
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when both groups of predictors (TFs+HMs) are used as
compared to only TFs or only HMs as predictors. How-
ever, this increase is reasonably large (13% to 15%) for the
DIMR method in relation to that of OLS (4% to 8%). Note
that compared to the OLS regression models), the reduc-
tion in prediction error for DIMR is considerable (R*> =
0.91).

After it was established that the mixture model with
both TFs and HMHs as predictors resulted in the small-
est prediction errors, we investigated the results of this
model. We first checked whether the final model pre-
sented any signals of over-fitting. To this end, we consid-
ered the average MSEs corresponding to cross-validated
folds separately. As shown in Fig. 4, the prediction errors
corresponding to the cv-folds are more or less on the same
level, concentrating around 0.2.

The resulting model encompasses the genes in five com-
ponents, with the number of components being automati-
cally estimated. Figure 5 displays boxplots of the observed
gene expression levels for the five estimated mixture com-
ponents along with the estimated mixture proportions.
Comparing the boxplots, we can see different expression
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behaviour between the genes of different components,
especially for the last two components (ANOVA test:
F(4,8294) = 165.1, p-value < 2e — 16).

Observed versus predicted gene expression levels for the
5-component mixture model are depicted in Fig. 6. Notice
the distinctive behaviour of component 4 with the smallest
prediction accuracy as compared to the other compo-
nents which can be due to a number of genes with very
small expression levels assigned to this component (com-
pare with the boxplot corresponding to component 4 in
Fig. 5). This may indicate that this cluster of genes is still
somewhat inhomogeneous.

We further investigated the regression coefficients to
see how the regulatory signals explain gene expression lev-
els across the mixture components. Figure 7 displays the
estimated regression coefficients and their correspond-
ing 95% Bayesian credible intervals per component. The
credible intervals are then used to sparsify the estimated
regression coefficients per component to select the frac-
tion of regulatory signals for which the effects are signif-
icantly different from zero. A heatmap of the sparsified
regression coefficients is presented in Fig. 8.
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Fig. 4 Barplot representing prediction MSEs corresponding to cv-folds of the final model




Aflakparast et al. BMC Bioinformatics (2020) 21:3

Page 6 of 13

Prediction errors per cross-validation fold

0.200 A
0.175 A
0.150 1
0.125 1

MSE

0.100 1
0.075 A1
0.050 A
0.025 A1

0.000

Fold 1 Fold 2

display the proportion of genes corresponding to each component

cross-validation folds

Fig. 5 Boxplots for mouse ESC gene expression levels clustered based on mixture modelling using DIMR. The estimated mixture probabilities
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Note the overall strong positive effect of the tran-
scriptional regulator E2£1. In a model with only tran-
scriptional regulators, Ouyang et al. [4] found a positive
coefficient for E2f1 that dominated the other coeffi-
cients, using their PC-regression model. Although we also
see mostly positive estimates, it is remarkable that in com-
ponent 5, which consists of lowly expressed genes, the
estimated effect is negative. We also observe that the con-
sistently strong and positive correlation of H3K4me3 and
the negative correlation of H3K27me3 are in agreement
with findings by others [12—14]. Some signals while being
effective in regulation of one group of genes, are demon-
strated to play no significant role in regulation in other
group of genes. For instance, being consistent with other
studies (see, for example, [15] and the references therein)

we observe the negative contribution of Oct4 in com-
ponents 3 and 4, whereas for the rest of the genes no
such contribution is present. Perhaps most interesting are
the coefficient estimates of the crucial regulators of ESC
pluripotency such as Sox2 and Zfx [16]. These factors
being significant only in component 1 and 3 (see Fig. 8),
surprisingly show completely opposite regulatory effects
which was not found in previous studies.

From a biological perspective, we would expect that the
clustering into 5 components resulting from our model,
would lead to functionally more homogeneous sets of
genes, since they should be close together in "expression-
regulator” space. To test this hypothesis, we looked at
functional enrichment using an online gene set enrich-
ment platform: Enrichr [17]. We particularly focused on
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Fig. 6 Plots of predicted versus observed mouse ESC gene expression for the 5-component mixture model fitted with DIMR
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GO biological process and GO molecular function terms
belonging to GOslim. In each of the components, the
genes in all gene sets were tested for significant enrich-
ment using Fisher’s test and a conservative Bonferroni
correction was used to correct for multiple testing. The
results are shown in the tables provided in the Additional
file 1.

Discussion

Efficient reprogramming of somatic cells to pluripotent
cells and subsequent directed differentiation into a lineage
of choice holds great potential for regenerative medicine
and treatment of human disease. It requires a detailed
understanding of the function of the crucial Yamanaka
factors Oct4, Sox2, Klf4 and Myc, among others. Identi-
fication of their (direct) targets, both in embryonic stem
cells and during reprogramming and in iPS cells, remains
challenging. Methods that are capable of describing the
quantitative regulatory effect of a TF on the activity of
a gene in a cell under a certain condition can provide
insight into TF-target gene relationships. Given the com-
plex nature of gene regulation in mammals, the different
mechanisms of regulation and the multitude of factors
involved, methods are needed that can identify and group
together genes that share regulatory interactions by inte-
grating different sources of relevant experimental data.
It was shown by Ouyang et al. [4] that roughly 65% of
the variation in RNA-Seq measured ESC gene expres-
sion can be explained using a PC-regression model where
ChIP-Seq derived TF affinity scores of 12 TFs are used as
predictors. Here, we extended the analysis of ESC gene
expression in order to incorporate additional relevant data
sets into the model in the following way. To account for
differences in chromatin context, which is a reflection of,
but also influences, transcriptional activity of a particular
locus, we included histone modifications (HMs) as pre-
dictors. We used a novel Bayesian mixture approach that
simultaneously clusters the genes and fits cluster-specific
regression models [11], effectively taking into account the
heterogeneity observed when fitting a single model for the
entire set of genes. Furthermore, we investigated several
similarity functions for extracting information from other
types of experiments, most notably chromatin conforma-
tion capture assays, which give 3D spatial information.
This allows genes to be clustered that share 3D regula-
tory interactions in addition to the more standard gene
functional clusterings often based on Gene Ontology. We
compared the different strategies through extensive data
analysis.

We showed that our approach explains 91% of the
variation in the gene expression levels, as compared to
61% of simple OLS models that were used in previous
approaches. We also found that incorporation of both TFs
and HMs as predictors results in additional accuracy when
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compared to models with either set of predictors alone.
This is in agreement with the cooperative role of HMs
and TFs in determining expression levels [18, 19]. We next
showed that including additional relevant biological data
in the model resulted in higher predictive accuracy than
compared to a model based solely on random additional
data, or no additional data at all. Particularly, when com-
bining all additional data the resulting model achieved
surprisingly high prediction accuracy, which indicates the
substantial benefit of complementary information for the
clustering stage of our mixture modelling

We found 5 clusters of genes that are all well explained
(component-wise R? ranging from 0.81 to 0.94) with dis-
tinctive characteristics, which suggests that the clusters
are likely to be under the control of different regulatory
mechanisms. A challenging but very interesting direction
of future work may be to develop rigorous techniques to
investigate the dynamic effects of regulatory signals on the
changes of gene expressions over time or in different states
of related systems. For instance, trying to identify both
shared characteristics and differences between embryonic
stem cells and induced pluripotent cells from different
founder lineages may provide important insights into the
regulatory mechanisms that underlie reprogramming and
differentiation.

Conclusion

The proposed method is shown to have higher accuracy
compare to the state-of-art methods, and suffer less from
prediction errors. The advantage to facilitate data inte-
gration makes this method applicable in a wide range of
domains where modelling of the main data can be sup-
ported by the numerous related additional data sources.
Our application on the mouse ESC data results in new
insights regarding genetic regulations. Our method iden-
tifies clusters which are more homogeneous in terms of
their TF regulation and identifies cluster specific variable
importance for crucial transcriptional regulators. Here,
this allows us to start to disentangle different cellular ES
phenotypes, such as cell cycle regulation (for which activ-
ity of E2F is crucial) and pluripotency, which is known to
be controlled by Sox2, Oct4, KLF4 and c-Myc.

Methods

Data

Main data

The results in Ouyang et al. [4] suggest that microarrays
are less sensitive to detect lowly expressed genes than
deep RNA-Seq. Therefore, we use gene expression data
measured by RNA-Seq in mouse embryonic stem cells
(ESC) as reported in [4]. The expression levels were cal-
culated according to the RPKM definition [20]. These
data are available online at http://www.pnas.org/content/
106/51/21521%tab=ds. In a regression setting, they are
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represented by the response variable. On the expression
levels of the 15512 genes we examined the regulatory
effects of 15 genetic markers (12 TFs and 3 HMs).

As primary set of regulatory predictors we consider the
ChIP-Seq data of 12 mouse TFs in ESCs namely E2f1,
Mycn, Zfx, Myc, Klf4, Tcfcp2ll, Esrrb,
Nanog, Oct4, Sox2, Stat3, Smadl, which
were downloaded from NCBI GEO under the accession
designation GSE11431 [21]. Mikkelson et al. published
genome-wide maps of chromatin state in mouse ESCs
based on ChIP-Sequencing of several HMs [22]. From
GEO, we obtained the densities (at 25 bp resolution) of
H3K4me3, H3K27me3 and H3K36me3 and mapped these
to promoter regions (2000 bp up- and down-stream of
TSS) of RefSeq genes. In a regression setting we refer to
the TF and HM data as explanatory variables or predic-
tors. Whereas Ouyang et al. [4] applied regression on PCA
variables, our approach uses the ChIP-Seq signals in the
regression model directly. The reason for this lies in the
fact that the number of regulatory markers was not too
large and PCA analysis often suffers from interpretability
issues. Moreover, instead of a separate feature selection
step, the presented approach enables shrinkage estima-
tion, where the estimated regression coefficients of less
important features automatically tend to be close to zero.

Additional data

Throughout this article the following data are used as
additional data to improve the accuracy of the model
that we use to explain gene-TF or gene-HM relationships.
We use eight data sources in the form of auxiliary vari-
ables. These data include i) a set of 3D chromatin inter-
actions from Capture-Hi-C linking promoters of mouse
genes based on 3D proximity, denoted by 3D_clust [23].
ii) five Boolean attributes, four of which represent the
gene functions maintenance (Maintain), pluripotency
(Plurip), repression of pluripotency (Repplurip), self
renewal (Self), and one, called Esc_sp, which indicates
whether or not a gene is critical to specific mouse embry-
onic stem cell phenotypes, i.e. "mouse ES cell specific
genes', iii) gene expression RNA-Seq profiles of embryoid
body (EB) [4], denoted by EB_exp, and iv) gene chromo-
some numbers denoted by Chr nr.

Mixture regression model

Let the response vector Y = (Y7,. .., ¥,)T be the n-vector
that represents the (log) gene expression for a set of n
genes, X; the p-vector containing the values of p explana-
tory variables for the i-th gene, and X = (Xj,... X7
the n x p -matrix of all explanatory values. We will always
work conditionally on X; = x;. We assume that the set
of response variables comprises K unknown clusters (or
components), that Y7 |xi,. .., Y,|x, are independent, and
that Y;|x; follows a finite mixture of Gaussians given by
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K
Yi|xj,ﬂ,02,7t ~ anN(x;Tﬂk,U]?), 1= 11 1”)
k=1
(1)
where
_ T _ T
B=0Bn...B8" Bx=Bk--Bip)’,
2 2 0T T
o’ =(of,...,08) , w=(@m1,..,7K)",

Zle 7 = 1,and NV (xiT B (rkz) stands for the univariate
normal distribution with mean xlT Br and variance O’k2. This
means that B denotes the p-vector of regression coeffi-
cients corresponding to component k, k = 1,...,K. The
number of components K is assumed to be unknown.

Throughout the paper we use capital letters to denote
random variables, random vectors or random matrices,
and small letters for their realizations; bold type is used
for quantities belonging to the full model, and subscript or
superscript k for quantities belonging to the kth cluster.

To estimate the unknown values of the parameters B,
o2, m, and the number of components K, we take a
Bayesian approach and approximate the posterior distri-
butions by means of the DIMR algorithm that was pro-
posed in [11]. Estimation with this algorithm is based on
a vector of latent variables Z = (Z1,...,Z,) T, where Z;
represents the component membership of data point i, so
that

Yilai 2z, B,0% ~ N (&) B,02), i=1,...,n. @)

This means that as soon as component memberships
become known, the gene expression level of gene i in
component k is explained by its corresponding vector of
predictors x; through component-specific parameters
and a,? .

One important aspect of DIMR is its ability to leverage
additional similarity information about the data points,
summarized by an n x n symmetric similarity matrix S,
to improve clustering. The similarity values S;7 in S are
used to form a non-exchangeable prior distribution for the
component memberships

n* . hij(k)/c, if kisan existing component,
p(Zi = klz—i,5,0) =i —uhi0/ g comp

a/c, if kis a new component.

®3)

Here z_; is the (n—1)-vector obtained from z by deleting
zi, o > 0, ¢ is a normalizing constant, and

n= Z Lis, > (2 =k} (4)
i i
The function /4;(k) in (3) is of the form
hi(k) =14 siliz,—x ()
il i
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and represents the overall similarity of gene i with all other
genes in component k. In the above, I denotes the indi-
cator function, and T; is a threshold value to ensure that
gene i is more likely to end up in a component where it
has high similarity with the majority of the other genes. In
this study 7; is defined as the third quantile of the similar-
ity values of pairs of the genes in the same cluster as gene
i is assigned to.

Evidently, given the component membership vector
Z = 1z, the estimation problem turns into fitting K inde-
pendent regression models. In order to obtain a bio-
logically plausible and interpretable model, we impose
additional restrictions on the B, vectors by assuming that
in each cluster k only a few explanatory signals con-
tribute to the variability of the response gene expressions.
This is applied by shrinkage estimation of the regression
coefficients as in the Bayesian Lasso procedure of [24].

Although the Bayesian Lasso shrinks the regression
coefficients f; towards zero, it does not yield sparse solu-
tions. In order to achieve sparsity, we apply a post-hoc
selection analysis via (quantile-based) Bayesian credible
intervals. For further details on our mixture modeling
procedure we refer the reader to [11].

Similarity measures

In general, the similarity matrix S does not need to be
directly available, but, as explained by Aflakparast and de
Gunst [11], it can be obtained from a single additional
attribute or combination of several auxiliary attributes
by means of a similarity measure. In this study, we
have access to the eight auxiliary attributes described in
“Additional data” section. Here we introduce and compare
a set of functions that define such measures so that they
are suitable to be used within DIMR.

Since the additional information can appear in the
form of categorical or continuous auxiliary attributes,
we focus on similarity measures that are applicable for
mixed attributes. Numerous similarity (or distance) mea-
sures for either categorical or continuous attributes have
been proposed and studied in different disciplines (see
e.g. the review studies [25] and [26]). However, there
is a limited number of studies that consider a mixed
data situation. The indexes proposed by Wilson and
Martinez [27] and Gower [28] are especially popular in
applications. The behaviour of these measures have been
tested in various multivariate statistical analysis and data
mining contexts ranging from clustering and classifica-
tion problems to (kernel) principal component analysis,
yet not in a mixture model context. In our mixture
regression setting, we study specific similarity functions
that suit our application. We then assess the ability of
these functions, when they are used to produce simi-
larity matrices S within our mixture regression model
framework.
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Similarity functions that only apply to data with cate-
gorical attributes can handle mixed data often through
discretization of continuous valued attributes which may
cause loss of available information, see [29]. A good exam-
ple is Gower’s index as proposed by Gower [28]. There
the similarity ng of two data points i and j measured for
attribute A™, m = 1,... M is given by

1 if A" is a categorical attribute and A}" =A;”; orA}" :A;” =,
G 0 (when double zeros are included in the comparison)
¢ =
o 0 if A™ is a categorical attribute and: A} # A"
A7 A7

L — @ Ay if A™ is a continuous-valued attribute.

(6)

The total similarity between i and j for M attributes is
given by
Yot SimSG,

Z%:l Sijm
where J;,, equals one, unless one or both values are
unknown, or double zeros are excluded from the compar-
ison, in which case 8;;, equals zero.

Gower’s index is widely used and allows for an efficient
treatment of missing data and the inclusion of variable
weights. However, a disadvantage is that the similarity of
data points for categorical variables is simply an overload
measure, which ignores a large amount of information
provided by differences in categorical attribute values.
Wilson et al. proposed three distance measures in clas-
sification contexts where the data come with pre-defined
output classes [27]. Their Heterogeneous Value Difference
Metric (HVDM) is one of the measures that use the orig-
inal form of continuous attributes without discretization.
HVDM calculates the distance djj,;, between data points i
and j for the m-th attribute A” as

Gow-S; = (7)

1 ifA" orA/m are unknown,
c A afle
7 £ A5 3 5
dijm = pBpany ia, A | if A" is a categorical attribute, (8)
|A7 =AM
Z JAW‘} if A™ is a continuous attribute,

where o4m is the standard deviation of the continuous
attribute A", n A and Am are the number of data points
in class ¢, and the total number of data points for which
A" = A", respectively.

To be consistent with our study we consider a similarity
based version of (8) with si‘])«fn = 1 — djj» and assume no
pre-defined output class information:

0 ifA; or Ajare unknown,
AT . .
s}}fn = 1 1 —|——| ifAis a categorical attribute,
Ai—All . . . .
1 l ‘lUA ! if A is continuous attribute,

)
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and the total similarity between i and j for M attributes is
St SimS i

3=t Bim

To see if these measures are suitable for our application
the frequency of the attribute values for the seven cate-
gorical attributes that are used in this study are presented
in Fig. 9. It is evident that for attributes 3-7 there is a
big gap between the frequency of the two values. These
attributes are Boolean attributes that indicate whether or
not a gene belongs to a specific functional class that relates
to a specific mouse embryonic stem cell phenotype (i.e.
maintenance, pluripotency, repression of pluripotency,
self renewal, and general mouse ES cell specific genes).
Naturally, a good similarity measure should assign higher
similarity to the genes that are classified in the same (rare)
functional class (i.e. TRUE-TRUE) as opposed to the case
that both are not (FALSE-FALSE). To some extent, this
fact is neglected in both Gower’s and Wilson’s measures.
Therefore we propose the following similarity measure,
ng for mixed auxiliary data.

Wilson-S;; = (10)

0 if A; or Aj is unknown, or if A is a categorical
D attribute and: A; # A,
Sijm = ng; (ng;=1) o ) ‘
~ =D if A is a categorical attribute and A; = Aj,
|Ai—4;|

1- if A is a continuous valued attribute,

max(A)—min(A)

(11)

and the total similarity between i and j for M attributes
becomes

M D
Zm:l (Sijmsijm
M
> m=1 dijm
We chose the Manhattan metric for continuous

attributes, like in Gower’s and Wilson’s metrics. For nor-
malization, we followed Gower’s index as the range is easy

DIMR-S;; = (12)
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to calculate. Note that for a categorical attribute when
two data points belong to the same group, rare groups
are assigned higher similarity values compared to the
frequent ones.

Model evaluation

We evaluated fitted mixture models for the three
similarity =~ measures that were introduced in
“Similarity measures” section to investigate which of
them exploits best the auxiliary data.

Model evaluation is an important part of the procedure
for data integration, especially in this specific application
with more than one auxiliary attribute. In principle, the
similarity matrix S can be calculated in different ways
using different similarity functions on different combina-
tion of auxiliary attributes. Let F be the set of functions
to measure the similarity of genes, and A the set of all
combination of auxiliary attributes from which S can be
obtained. The purpose of this procedure is to 1) evaluate
the performance of the similarity functions F and select
an optimal one, and 2) employ the selected function to
evaluate and choose among models whose additional data
are obtained from .A. Here this is done by means of H-
fold cross-validation (CV). The data set is randomly split
into H approximately equal sized groups. Throughout this
study, we use 5-fold cross validation to avoid additional
costs of using higher-fold settings. Each group is left out
once, while the other groups are used to estimate the
model parameters. With the estimates of the parameters
at hand, the predicted expression level for gene i in the test
set /1 is calculated from

K

. —h
yi= Z p(Zi = klyi, %i,S.a) 5] ﬂi :
k=1

(13)

where S 4y is the similarity matrix obtained from the
auxiliary attribute set A using similarity function f, and
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KM and ,B,((_h) the estimated number and vector of
parameter estimates, respectively, corresponding to com-
ponent k obtained from the training set leaving out the
test set /1. We calculated the mean squared error (MSE) for
the test set & with n/Y genes by

o)

1 A
MSEqy (f, 4) = 5 3 0 = 50)°, (14)
i=1

which yielded aggregated cross-validated prediction
error as % Zthl MSE ) (f,A), of which the minimum
over f and A yields the optimal model.

In this study there are situations where we use DIMR
without additional data, or where a non-mixture model is
applied. In these cases th evaluation of the fitted models is
similarly conducted via cross-validation and based on the
MSE defined in (14).
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