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Abstract

Barrett’s esophagus (BE) is defined as any metaplastic columnar epithelium in the distal

esophagus, which predisposes to esophageal adenocarcinoma (EAC). Yet, the mechanism

through which BE develops to EAC still remain unclear. Moreover, the miRNA-mRNA regu-

latory network in distinguishing BE from EAC still remains poorly understood. To identify dif-

ferentially expressed miRNAs (DEMs) and genes (DEGs) between EAC and BE from tissue

samples, gene expression microarray datasets GSE13898, GSE26886, GSE1420 and

miRNA microarray datasets GSE16456, GSE20099 were downloaded from Gene Expres-

sion Omnibus (GEO) database. GEO2R was used to screen the DEMs and DEGs. Pathway

and functional enrichment analysis were performed by DAVID database. The protein–

protein interaction (PPI) network was constructed by STRING and been visualized by

Cytoscape software. Finnal, survival analysis was performed basing TCGA database. A

total of 21 DEMs were identified. The enriched functions and pathways analysis inclued

Epstein-Barr virus infection, herpesvirus infection and TRP channels. GART, TNFSF11,

GTSE1, NEK2, ICAM1, PSMD12, CTNNB1, CDH1, PSEN1, IL1B, CTNND1, JAG1,

CDH17, ITCH, CALM1 and ITGA6 were considered as the hub-genes. Hsa-miR-143 and

hsa-miR-133b were the highest connectivity target gene. JAG1 was predicted as the largest

number of target miRNAs. The expression of hsa-miR-181d, hsa-miR-185, hsa-miR-15b,

hsa-miR-214 and hsa-miR-496 was significantly different between normal tissue and EAC.

CDH1, GART, GTSE1, NEK2 and hsa-miR-496, hsa-miR-214, hsa-miR-15b were found to

be correlated with survival.
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1. Introduction

Esophageal carcinoma (EC) is the eighth most common cancer in the world. A total of 17650

new cases and 16080 deaths have been reported in 2019 [1]. The mortality rate is significantly

higher in males than in females, and the overall five-year survival rate is only 19% [1]. EC is

usually classified into esophageal squamous cell carcinoma (ESCC) and esophageal adenocar-

cinoma (EAC). There are several accepted hypotheses concerning which cells give rise to EAC

in adults. The most plausible one is that EAC develops according to the following process: nor-

mal esophageal epithelium! hyperplasia of proper esophageal gland! dentate line Migra-

tion! Barrett’s esophagus (BE)! EAC [2]. From the conversional process, BE is the only

recognized precursor of EAC. Patients with BE are almost 30–120 times more likely to develop

EAC [3]. However, the mechanism through which BE develops to EAC and relevant driving

factors still remain unclear. Therefore, the identification of key molecular biomarkers for pre-

dicting BE, implementing the strategy of clinical risk stratification, and focusing on the higher

risk patient may be critical in preventing EAC.

Over recent years, a number of studies examined specific patterns of gene transcript levels

in EAC. So far, many significant genes have been associated with the pathogenesis of EAC. For

example, a tumor suppressor gene TP53 is one of the first genes that was examined in Bar-

rett’s-associated neoplasms. Studies have found that patients with loss of TP53 are almost 16

times more likely to develop EAC compared to those with normal expression of TP53 [4].

Moreover, a decreased expression of p14ARF has been suggested as a biomarker for disease

progression, from normal epithelium to non-dysplastic BE and even to EAC [4]. MMP1 gene,

which participates in numerous inflammatory processes of cancer, has shown to be up-regu-

lated in EAC and BE samples [5]. COL1A1 has shown to be a potential biomarker for distin-

guishing EAC from BE [3].

MicroRNAs (miRNAs) are a group of small non-coding RNA molecules that contain

approxinately 18 to 25 nucleotides. It has been described that miRMAs participate in a series

of biological processes as a post-transcriptional regulators. Aberrant expression of miRNAs

has been associated with the development of BE. For instance, miR-215, which acts as a tumor

suppressor by promoting apoptosis, is low in the normal squamous epithelium and high in BE

[6]. In BE, miR-196a which targets KRT5 and SPRR2C, has been suggested to be a potential

biomarker for the disease progression into EAC [7]. Still, the miRNA-mRNA regulatory net-

work remains poorly understood in distinguishing BE from EAC.

In this research, we identified differentially expressed genes (DEGs) and differentially

expressed miRNAs (DEMs) between EAC and BE from biopsies. The aim of this study was to

seek possible potential biomarkers and molecular mechanisms for clinical risk stratification

strategies for EAC.

2. Materials and methods

2.1. Microarray data collection

First, “Barrett’s esophagus” or “BE” or “Esophagus adenocarcinoma” or “Esophagus cancer”

were searched in GEO (www.ncbi.nlm.nih.gov/geo) database [8]. Then followed by the includ-

ing criteria of selected datasets: (a) The used tissue should obtain from Barrett’s esophagus and

Esophageal adenocarcinoma; (b) the microarray or RNA-sequencing data should include

mRNA or miRNA; (c) at least 5 pair of samples were included.

The GSE16454 and GSE20099 miRNA expression profile data and three gene expression

profiles (GSE13898, GSE26886, and GSE1420) were downloaded from the GEO database. The

miRNA microarrays GSE16456 which was based on GPL16436 Human miRNA Microarray 1.0
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platform was submitted by Yang et al. (2009), including 8 EAC and 10 BE [9]. The miRNA

expression microarrays GSE20099 which was based on GPL8871OSU_CCC v4.0 platform was

submitted by Fassan et al.(2010), including 11 EAC and 14 BE [10]. The mRNA expression

microarrays GSE13898 which was based on GPL6102 Illumina human-6expressionbeadchip

platform was submitted by Kim et al.(2011), including 64 EAC and 15 BE [11]. The mRNA

expression microarrays GSE26886 which was based on GPL570Affymetrix Human Genome

U133 Array platform was submitted by Wang et al.(2013), including 21 EAC and 20 BE [12].

The mRNA expression microarrays GSE1420 which was based on GPL96 Affymetrix Human

Genome U133A Array platform was submitted by Khodarew et al.(2004), including 8 EAC and

8 BE [13]. For these datasets, only BE and EAC tissue samples were selected for further analysis.

2.2. miRNA and mRNA expression profiles

The online analysis tool GEO2R (www.ncbi.nlm.nih.gov/geo/geo2r/) was used to screen the

differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs) from the

raw data. When the P value<0.05 and |logFC|�1.5, the difference was regarded as statistically

significant. The miRWalk 2.0 database (http://zmf.umm.uni-heidelberg.de/apps/zmf/

mirwalk2/index.html) is a comprehensive and freely available database that provides a large

number of predicted and experimentally verified miRNA-target interactions in a variety of

novel ways, which provides great help for the study of miRNA [14]. Targetscan(http://www.

targetscan.org/) [15] is a database for searching miRNA target genes of animals based on the

evolutionary conservative characteristics of target gene sequences. We submitted the signifi-

cant DEMs to Targetscan and miRWalk 2.0 database respectively to predict the target mRNAs.

We selected the intersection of the target mRNAs predicted by the two databases, and then we

extracted the significant DEGs by crossing the overlapping genes of target mRNA and signifi-

cant DEMs (Fig 1).

2.3. Gene ontology and KEGG pathway analysis

The Database for Annotation, Visualization, and Integrated Discovery (DAVID, https://david-

d.ncifcrf.gov/) provides a comprehensive set of functional annotation tools for investigators to

understand biological meaning behind large list of genes [16]. Gene ontology (GO) and the

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for DEGs

used DAVID database. FDR<0.05 and gene count>2 were regarded as statistically significant

[17].

2.4. Construction of the regulatory network

Search Tool for the Retrieval of Interacting Genes/Proteins (STRING, https://string-db.org/) is

a database for online retireval of known protein-protein interactions (PPI) [18]. We submitted

the DEGs to STRING data base and set the combined score>0.40 as the cut-off criteria which

were based on experimental literature reports. Furthermore, we take the intersection of hub

genes and significant DEGs (Intersection of predictions from miRWalk 2.0 and Targetscan).

As the DEMs shared a common target mRNA with the hub genes of DEGs, we speculated they

might exist in a similar regulatory pathway. Finally, we visualized the regulatory network

describing miRNA and mRNA interaction using Cytoscape 3.7.0 [19].

2.5. Expression of significant DEGs and DEMs

The expression of significant DEGs was performed using GEPIA (http://gepia.cancer-pku.cn/

index.html) [20]. The expression of significant DEMs was performed using UALCAN (http://
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ualcan.path.uab.edu/). Data analysis was performed using the TCGA database (https://

cancergenome.nih.gov/) [21].

2.6. Survival analysis of DEGs and DEMs

A Kaplan–Meier analysis that based on data from the TCGA database (https://cancergenome.

nih.gov/) was performed using Kaplan-Meier Plotter (https://kmplot.com/analysis/) [22]. In

normal tissues, the expression levels of all genes were correlated with prognosis compared

with EAC. There was a data included 184 EAC patients(157 males and 27 females) in the

TCGA database. The P-value <0.05 was considered to be statistically significant. In view of the

large differences in gender in the data set from TCGA, we combined the expression of mRNA

or miRNA with gender to analyze the significant difference in survival rate.

3. Results

3.1. Identification of DEMs and DEGs

A total of 21 DEMs were screened out from the GSE16456 and GSE20099 datasets as shown in

Fig 2C. These significant miRNAs obtained have been listed in Table 1. Because miRNA may

regulate mRNA in a positive or negative way, so we took the up-regulated and down-regulated

DEMs together. As shown in Fig 2B and 2A, 667 up-regulated and 1047 down-regulated DEGs

were found in EAC samples compared with BE samples. A total of 21 significant DEMs target

Fig 1. Flowchart of bioinformatics analysis.

https://doi.org/10.1371/journal.pone.0260353.g001
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genes of 12,413 and 13,693 were obtained from the miRWalk 2.0 database and Targetscan

respectively. The intercrossed number of these candidate genes was 306 and 565 with up-regu-

lated and down-regulated DEGs from miRWalk 2.0 database, and 360 and 585 with up-regu-

lated and down-regulated DEGs from Targetscan respectively. Take the intersection of these

candidate genes from miRWalk 2.0 database and Targetscan as the significant DEGs. Finally,

256 up-regulated and 467 down-regulated genes were regarded as the group of significant

DEGs.

3.2. Functional annotation analysis

GO ontology contains three categories: molecular cellular component (CC), biological process

(BP) and function (MF). The most significant GO terms in MF ontology for up-regulated

DEGs were the 3’-5’-exoribonuclease activity, ribonuclease activity, prenylated protein tyro-

sine phosphatase activity, signaling receptor binding, and protein binding, while for the down-

regulated DEGs were alcohol dehydrogenase activity, cell adhesion molecule binding, cytoskel-

etal protein binding, oxidoreductase activity, alcohol dehydrogenase activity, zinc-dependent,

and myosin V binding.

In CC ontology, the cell part was significantly enriched GO terms for up-regulated genes.

In contrast, the GO terms of down-regulated genes were significantly enriched in membrane,

plasma membrane, cell periphery, membrane part and plasma membrane region.

In BP ontology, the up-regulated genes were mainly enriched in positive regulation of the

biological process, positive regulation of the cellular process, positive regulation of signal trans-

duction, positive regulation of cell communication and positive regulation of signaling. The

down-regulated genes were mainly enriched in regulation of biological quality, response to an

Fig 2. Identification of differentially expressed miRNAs (DEMs) and genes (DEGs). (A)Identification of

downregulated DEGs; (B)Identification of upregulated DEGs; (C)Identification of DEMs.

https://doi.org/10.1371/journal.pone.0260353.g002
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organic substance, epithelial cell differentiation, regulation of protein localization and positive

regulation of transport.

Six main KEGG pathways were represented in the up-regulated genes, including protea-

some, RNA degradation, epstein-barr virus infection, glycosaminoglycan biosynthesis-chon-

droitin sulfate, osteoclast differentiation and kaposi’s sarcoma-associated herpesvirus

infection; Downregulated genes included fatty acid degradation, oocyte meiosis, metabolic

pathways, inflammatory mediator regulation of TRP channels, gastric acid secretion and

amphetamine addiction which were presented in Table 2.

3.3. PPI network

The PPI network of DEGs was based on STRING. A total of 176 nodes and 220 edges were

mapped in the PPI network of significantly up-regulated DEGs (Fig 3). While, 290 nodes and

463 edges constituted the network of significantly down-regulated DEGs (Fig 4). In PPI net-

work, the edge was essential when detecting the hub genes. The parameter “degree” was used

to calculate the edge count of each gene in PPI network. Table 3 showed the top 5% degree

genes evaluated as hub genes. Sixteen genes were selected from PPI network as hub genes of

EAC. These hub genes might play a key role in EAC.

Colored nodes: query proteins and first shell of interactors; white nodes: second shell of

interactors; Blue-green line: known interactions from curated databases; purple line: known

interactions from experimentally determined; green line: predicted interactions from gene

neighborhood; red line: predicted interactions from gene fusions; dark blue: predicted

Table 1. The P value and |logFC|�1.5 of significant DEMs.

DEMs GSE16454 GSE26099

P value |logFC|�1.5 P value |logFC|�1.5

hsa-miR-520f 0.0384184 2.351701 9.41E-05 1.536217

hsa-miR-147 0.0479059 2.081228 1.33E-03 1.545722

hsa-miR-18b 0.0115893 2.182704 4.50E-04 1.506087

hsa-miR-518e 0.0218604 2.926247 2.27E-06 1.881674

hsa-miR-181d 0.0005164 1.584864 6.41E-03 1.598469

hsa-miR-214 0.029153 1.640488 1.58E-03 1.50794

hsa-miR-612 0.0391628 3.331992 4.23E-03 1.524565

hsa-miR-9� 0.0494411 2.768059 2.29E-03 1.536797

hsa-miR-496 0.0410621 3.287839 2.39E-07 1.713264

hsa-miR-133b 0.015027 2.586753 2.50E-04 1.906789

hsa-miR-143 0.0274212 1.995434 6.50E-03 1.576561

hsa-miR-185 0.0099928 1.557057 5.25E-04 1.509349

hsa-miR-20b 0.0184024 1.520991 4.76E-04 1.735738

hsa-miR-100 0.0041751 2.31764 4.30E-03 1.595422

hsa-miR-627 0.0369296 2.406204 8.29E-05 1.556626

hsa-miR-126� 0.0115968 2.586943 2.04E-03 1.537629

hsa-miR-145 0.0193225 2.043886 3.62E-02 1.54336

hsa-miR-517c 0.0453688 3.184864 1.70E-04 1.645947

hsa-miR-15b 0.0160865 1.537395 9.92E-05 1.715495

hsa-miR-635 0.0074216 4.902887 2.19E-02 1.57625

hsa-miR-605 0.0430913 1.593943 1.47E-03 1.697192

The � in hsa-miR-9� and hsa-miR-126� is part of the name of miRNAs, it has no statistical meaning.

https://doi.org/10.1371/journal.pone.0260353.t001
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Table 2. Significantly enriched GO terms and KEGG pathways.

Category Term Description Gene counts FDR

Upregulated

GO:0000175 MF 3’-5’-exoribonuclease activity 5 0.0045

GO:0004540 MF Ribonuclease activity 6 0.0233

GO:0004727 MF Prenylated protein tyrosine phosphatase activity 2 0.0341

GO:0005102 MF Signaling receptor binding 27 0.0344

GO:0005515 MF Protein binding 80 0.0454

GO:0044464 CC Cell part 155 0.0297

GO:0048518 BP Positive regulation of biological process 80 9.80E-05

GO:0048522 BP Positive regulation of cellular process 74 9.80E-05

GO:0009967 BP Positive regulation of signal transduction 34 0.0001

GO:0010647 BP Positive regulation of cell communication 36 0.0001

GO:0023056 BP Positive regulation of signaling 36 0.0001

hsa03050 KEGG Proteasome 6 0.00083

hsa03018 KEGG RNA degradation 7 0.0009

hsa05169 KEGG Epstein-Barr virus infection 8 0.0278

hsa00532 KEGG Glycosaminoglycan biosynthesis—chondroitin sulfate 3 0.0481

hsa04380 KEGG Osteoclast differentiation 6 0.0481

hsa05167 KEGG Herpesvirus infection 7 0.0481

Downregulated

GO:0004022 MF Alcohol dehydrogenase (NAD) activity 4 0.0189

GO:0050839 MF Cell adhesion molecule binding 12 0.019

GO:0008092 MF Cytoskeletal protein binding 28 0.0203

GO:0016616 MF Oxidoreductase activity 9 0.0203

GO:0004024 MF Alcohol dehydrogenase activity, zinc-dependent 3 0.0289

GO:0031489 MF Myosin V binding 4 0.0289

GO:0016020 CC Membrane 165 4.28E-05

GO:0005886 CC Plasma membrane 112 0.00015

GO:0071944 CC Cell periphery 113 0.00015

GO:0044425 CC Membrane part 132 0.00018

GO:0098590 CC Plasma membrane region 36 0.00023

GO:0065008 BP Regulation of biological quality 94 3.35E-06

GO:0010033 BP Response to organic substance 77 2.62E-05

GO:0030855 BP Epithelial cell differentiation 29 0.00017

GO:0032880 BP Regulation of protein localization 34 0.00046

GO:0051050 BP Positive regulation of transport 33 0.00084

hsa00071 KEGG Fatty acid degradation 6 0.0173

hsa04114 KEGG Oocyte meiosis 9 0.0173

hsa01100 KEGG Metabolic pathways 33 0.0406

hsa04750 KEGG Inflammatory mediator regulation of TRP channels 7 0.0406

hsa04971 KEGG Gastric acid secretion 6 0.0406

hsa05031 KEGG Amphetamine addiction 6 0.0406

BP = biological process, CC = cellular component, FDR = false discovery rate, GO = gene ontology, KEGG = Kyoto Encyclopedia of Genes and Genomes,

MF = molecular function

https://doi.org/10.1371/journal.pone.0260353.t002
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interactions from gene co-occurrence; yellow line: interactions from textmining; black line:

interactions from co-expression; light blue: interactions from protein homology.

Colored nodes: query proteins and first shell of interactors; white nodes: second shell of

interactors; Blue-green line: known interactions from curated databases; purple line: known

interactions from experimentally determined; green line: predicted interactions from gene

neighborhood; red line: predicted interactions from gene fusions; dark blue: predicted interac-

tions from gene co-occurrence; yellow line: interactions from textmining; black line: interac-

tions from co-expression; light blue: interactions from protein homology.

Fig 3. PPI networks of significantly upregulated DEGs.

https://doi.org/10.1371/journal.pone.0260353.g003
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3.4. miRNA–mRNA interaction network

In order to further investigate the mutual regulatory relationship among 21 significant DEMs

and hub genes, we built the miRNA-mRNA regulatory network (Fig 5). On the one hand, hsa-

miR-143 and hsa-miR-133b was the highest connectivity target genes. On the other hand,

some of the hub genes were calculated to be common targets for different miRNAs. For exam-

ple, JAG1 might be the common target of hsa-miR-214, hsa-miR-143 and hsa-miR-145. No

hub genes could be used as a target gene for hsa-miR-520f, hsa-miR-147, hsa-miR-181d, hsa-

miR-9�, hsa-miR-627, hsa-miR-126, hsa-miR-635 and hsa-miR-517c.

Fig 4. PPI networks of significantly downregulated DEGs.

https://doi.org/10.1371/journal.pone.0260353.g004
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3.5. Expression of significant DEGs and DEMs

We investigated the DEGs expression level in the TCGA dataset and found that 9 mRNAs in

EAC were significantly different from normal tissue (Fig 6). We examined the 21 significant

DEMs in the TCGA dataset, and compared their expression trends with the GEO databases.

Table 3. Top 5% hub genes in the PPI networks.

Ensenmbl gene ID Gene symbol Full gene name degree

Upregulated

ENSG00000159131 GART Phosphoribosylglycinamide formyltransferase 14

ENSG00000120659 TNFSF11 TNF superfamily member 11 13

ENSG00000075218 GTSE1 G2 and S-phase expressed 1 12

ENSG00000117650 NEK2 NIMA related kinase 2 11

ENSG00000090339 ICAM1 Intercellular adhesion molecule 1 11

ENSG00000197170 PSMD12 Proteasome 26S subunit, non-ATPase 12 10

Downregulated

ENSG00000168036 CTNNB1 Catenin beta 1 32

ENSG00000039068 CDH1 Cadherin 1 28

ENSG00000080815 PSEN1 Presenilin 1 18

ENSG00000125538 IL1B Interleukin 1 beta 16

ENSG00000198561 CTNND1 Catenin delta 1 14

ENSG00000101384 JAG1 Jagged canonical Notch ligand 1 14

ENSG00000079112 CDH17 Cadherin 17 13

ENSG00000078747 ITCH Itchy E3 ubiquitin protein ligase 13

ENSG00000198668 CALM1 Calmodulin 1 12

ENSG00000091409 ITGA6 Integrin subunit alpha 6 12

https://doi.org/10.1371/journal.pone.0260353.t003

Fig 5. The miRNA-mRNA regulatory network. White nodes, miRNA; Red nodes, mRNA.

https://doi.org/10.1371/journal.pone.0260353.g005

PLOS ONE Key biomarker for esophageal adenocarcinoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0260353 November 24, 2021 10 / 22

http://www.ensembl.org/id/ENSG00000159131
http://www.ensembl.org/id/ENSG00000120659
http://www.ensembl.org/id/ENSG00000075218
http://www.ensembl.org/id/ENSG00000117650
http://www.ensembl.org/id/ENSG00000090339
http://www.ensembl.org/id/ENSG00000197170
http://www.ensembl.org/id/ENSG00000168036
http://www.ensembl.org/id/ENSG00000039068
http://www.ensembl.org/id/ENSG00000080815
http://www.ensembl.org/id/ENSG00000125538
http://www.ensembl.org/id/ENSG00000198561
http://www.ensembl.org/id/ENSG00000101384
http://www.ensembl.org/id/ENSG00000079112
http://www.ensembl.org/id/ENSG00000078747
http://www.ensembl.org/id/ENSG00000198668
http://www.ensembl.org/id/ENSG00000091409
https://doi.org/10.1371/journal.pone.0260353.t003
https://doi.org/10.1371/journal.pone.0260353.g005
https://doi.org/10.1371/journal.pone.0260353


Of which, 17 miRNAs were consistent between the two databases. Five of the 17 miRNAs were

significantly different between the normal tissue and the ESCA tissue (Fig 7). Next, we

explored the different expressions of the five miRNAs in normal tissue, EAC and ESCC (Fig

8). The expression level of hsa-miR-181d, hsa-miR-185 and hsa-miR-15b were remarkable dif-

ferent between normal tissue and EAC, normal tissue and ESCC, but not between ESCC and

EAC. Moreover, there was obvious difference in the expression of hsa-miR-214 and hsa-miR-

496 between normal tissue, EAC, and ESCC. However, the expression trends of hsa-miR-520f,

hsa-miR-9�, hsa-miR-517c, and hsa-miR-627 were not consistent with the GEO data.

Fig 6. Expression of significant DEGs in the TCGA dataset. Expression of significant DEGs between EAC and

normal tissue in the TCGA dataset. Red column represents the expression of EAC, gray column represents the

expression of normal tissue. � respresents the P value<0.05.

https://doi.org/10.1371/journal.pone.0260353.g006
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3.6. Survival analysis of miRNA/mRNA in EAC

Based on the TCGA, survival analysis was conducted among the 9 mRNAs and 5 miRNAs, as

mentioned above. Results from the Kaplan-Meier method [23] and the log-rank test showed

that CDH1, GART, GTSE1, NEK2 and hsa-miR-496, hsa-miR-214, hsa-miR-15b were corre-

lated to overall survival (OS) in EAC patients (Fig 9 and Table 4). When combined the expres-

sion of mRNA or miRNA with gender, only GART was correlated to overall survival (OS) in

EAC patients (Fig 10).

4. Discussion

Globally, squamous cell carcinoma is the most common type that accounts for the vast major-

ity of EC cases. Yet, over recent years, the proportion of EAC has been dramatically increasing

in affluent nations, including China [24]. It is believed that most of EAC develop from BE that

is a long-term and poorly understood process. Once the dysplasia breaks through the base-

ment membrane, tumor cells infiltrate, and the disease rapidly progresses. The 5-year survival

rate of patients with EAC is less than 20% [25].

Fig 7. Expression of significant DEMs in the TCGA datasets. Expression of significant DEMs between EAC and

normal tissue in the TCGA dataset. Red column represents the expression of EAC, blue column represents the

expression of normal tissue. The horizontal axis represents different specimens, the vertical axis represents the number

of reads from a gene per kilobase length per million reads. � respresents the P value<0.05, �� respresents the P value

<0.01, ��� respresents the P value<0.001.

https://doi.org/10.1371/journal.pone.0260353.g007
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Despite great progress in diagnosis, the molecular mechanisms involved in the BE progress-

ing into EAC have not been clarified [26]. Therefore, to identifying the molecular targets for

diagnosis and treatment have become of essential and urgent importance. In this study, we

found that the DEGs were mainly concentrated in specific pathways, including Epstein-Barr

virus infection, herpesvirus infection, fatty acid degradation, gastric acid secretion and TRP

channels. The relationship between pathogen infection and tumorigenesis has always been a

focus of interest in oncology. It is estimated that more than 200,000 cancer patients and 2% of

cancer-related deaths worldwide are associated with viral infection each year [27]. The main

virus that can directly affect the formation of a malignant epithelial tumor is Epstein Barr virus

(EBV) and human papillomavirus (HPV) [28]. HPV infection has been strongly associated

with the occurrence of urogenital tumor, such as cervical cancer, the cancer of the penis, oral

cancer as well as anal cancer [29], while EBV infection is closely relatedwith digestive tract

related tumors, nasopharyngeal carcinoma, leiomyosarcoma, Burkitt lymphoma, Hodgkin’s

and non-Hodgkin’s lymphoma [23, 30]. HPV is a virus with double stranded DNA structure.

It is found that HPV can integrate into the host genome, induce DNA damage by changing

cell cycle and telomere protein, block tumor suppressor related signal pathway and apoptosis

Fig 8. Expression of significant DEMs in the TCGA dataset between normal tissue, EAC and ESCC. Expression of

significant DEMs between EAC, ESCC and normal tissue in the TCGA dataset. Blue column represents the expression

of normal tissue, red column represents the expression of EAC and yellow column represents the expression of ESCC.

The horizontal axis represents different specimens, and the vertical axis represents the number of reads from a gene

per kilobase length per million reads. � respresents the P value<0.05, �� respresents the P value<0.01, ��� respresents

the P value<0.001.

https://doi.org/10.1371/journal.pone.0260353.g008
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Fig 9. Prognostic values of DEMs and DEGs for overall survival in EAC patients. EAC patients were divided into

low and high expression groups. Red polylines and text represent high expression groups, and gray polylines and text

represent low expression groups. N represents the number of patients in each group. The horizontal axis represents the

survival time in months, and the vertical axis represents the survival rate of patients in the corresponding time.

Number at risk represents the number of patients who survived at the corresponding time point.

https://doi.org/10.1371/journal.pone.0260353.g009
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process, lead to tissue malignant transformation and eventually develop into cancer [31].

Moreover, a general early integration between the virus and the host gene was found in patient

infected with HPV, the integration degree was significantly related to the severity of the disease

[32]. It is speculated that the micro-environment of HPV persistent infection caused by the

integration of the HPV genome with the host chromosome is one of the key factors for BE pro-

gression to EAC [33]. Yet, the connection between EBV infection and the occurrence of esoph-

ageal cancer still remains debatable. Previous studies have suggested that EBV may appear

through tumor-infiltrating lymphocytes in some advanced lesions. Latest research show that

EBV infection was significantly correlated with ARID1A and PD-L1 expressions and CD8+

TILs in GCs [34]. Infection with EBV can induce the hypermethylation of both host and viral

genomes, which regulate cellular functions to facilitate immune evasion and viral persistence.

So, newest view divides the EBV-associated gastric cancer (EBVaGC) into a distinct subtype of

gastric cancer [35]. Clinically, EBVaGC has a lower frequency of lymph node metastasis and

better prognosis than EBV negative gastric cancer. Moreover, EBV infection has been corre-

lated with gender, lymph node metastasis and tumor location in patients with gastrointestinal

cancer [36]. The research on Epstein Barr virus and lymphoma is also controversial. The tradi-

tional view is that EB virus is one of the pathogenic factors of lymphoma and belongs to “first

hit”. The latest research suggests that EB virus infection is a secondary event of lymphoma, not

the first. According to the above-mentioned EB virus patients have a lower risk of lymphatic

metastasis, the relationship between EB virus infection and lymphatic circulation still needs to

be further studied [37].

We found that CDH1, GART, GTSE1, NEK2, and hsa-miR-496, hsa-miR-214, and hsa-

miR-15b were proved to be associated with survival, which indicates that they might not only

regulate the cellular process but could also have important clinical application value. GERD,

which is induced by a disorder of fatty acid metabolism and an increase of gastric acid secre-

tion, was considered to be the most important risk factor for the progression of BE to EAC.

On the one hand, the long-term, repeated chronic inflammation induced by gastric acid and

fatty acid form can lead to serious DNA damage (base mismatch). On the other hand, the

inflammatory microenvironment inhibits DNA repair in GERD patients [38], which was the

direct cause leading to BE and EAC.

The TRP channel transduction pathway is closely related to the taste and pain of the diges-

tive system [39]. The abnormal expression of the TRP channel in esophageal carcinoma can

promote the proliferation, migration, invasion and differentiation of cancer cells. TRPC1, a

vital node molecule in the TRP channel, is related to the stage of EC [40]. It can also be used as

a predictor of the survival time of SC patients. TRPC6 mRNA expression levels are increased

in human EC tissues compared to normal tissues [40]. The knock-down and inhibition of

Table 4. The significant DEMs and DEGs related to overall survival.

Gene symbol High expression P HR

DEGs

GART Tumor 0.012 0.36

CDH1 Tumor 0.014 2.58

NEK2 Tumor 0.029 2.76

GTSE1 Tumor 0.04 0.43

DEMs

hsa-miR-15b Tumor 0.008 2.86

hsa-miR-496 Tumor 0.014 2.11

hsa-miR-214 Tumor 0.026 2.06

https://doi.org/10.1371/journal.pone.0260353.t004
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TRPM8 may decrease the proliferation of EC cells [41]. In addition, a higher expression of

TRPV2 protein has been shown to be correlated with a worse 5-year overall survival rate after

surgery [42].

Increasing evidence has suggested that the deep involvement of miRNAs can function as

tumor suppressors or oncogenes in carcinogenesis. Several studies have focused on miRNAs’

significance in BE and EAC, revealing the potential of miRNA profiles for distinguishing BE

tissue from EAC and identifying BE patients at high risk of progression to EAC [43–45]. How-

ever, they did not deeply report on the effect of the miRNA-mRNA networks. Hence, the iden-

tification of the miRNA-mRNA regulatory network is of great significance to the further study

of EAC. Compared with normal samples, 21 significant DEMs were identified. Among them,

hsa-miR-147e [46], hsa-miR-181d [47], hsa-miR-214 [48, 49], hsa-miR-612 [50], hsa-miR-

133b [51], hsa-miR-143 [52–55], hsa-miR-100 [56], hsa-miR-126� [57], hsa-miR-145 [52, 58–

60], hsa-miR-15b [61] were all reported in EC. Most importantly, hsa-miR-496, hsa-miR-214,

hsa-miR-15b were found to be correlated with patient survival. Hsa-miR-214 has been strongly

associated with carcinogenesis. Previous studies reported that miR-214 targets LZTS1 through

PI3K/AKT/mTOR signaling pathway, promotes ESCC cells proliferation, migration, invasion

and inhibits apoptosis [49]. In breast cancer cells, depletion of miR-214 can inhibit the vascular

endothelial pathway of malignant cells by reducing the expression of the cell adhesion mole-

cules ITGA5 and ALCAM [62]. In colon cancer, miR-214 targeting BCL9L can inhibit prolif-

eration, metastasis, and epithelial-mesenchymal transition by down-regulating Wnt signaling

[63]. Moreover, miR-214 has also been associated with osteoporosis, osteosarcoma, multiple

myeloma, and osteolytic bone metastasis of cancer [64].

Brain-derived neurotrophic factor (BDNF) was suggested as a potential target material of

miR-496 [65]. Inactivating BDNF-mediated PI3K/Akt signaling pathway activation could

increase expression of miR-496 which was regarded as suppress tumor growth [65]. Another

research proved that miR-496 could regulate mTOR expression by directly binding to

LnvRNA-DANCR in lung adenocarcinoma [66]. LncRNA-HCG11 can interact with the miR-

496/CPEB3 axis to inhibit glioma progression [67].

Fig 10. Combined the expression of mRNA or miRNA with gender, GART was correlated to overall survival (OS)

in EAC patients.

https://doi.org/10.1371/journal.pone.0260353.g010

PLOS ONE Key biomarker for esophageal adenocarcinoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0260353 November 24, 2021 16 / 22

https://doi.org/10.1371/journal.pone.0260353.g010
https://doi.org/10.1371/journal.pone.0260353


Hsa-miR-15b can be used as a biomarker to discriminate human ovarian cancer tissues

from normal tissues. The sensitivity and specificity of it were 97% and 92% respectively [68].

The overexpression of hsa-miR-15 can promote cisplatin resistance of lung adenocarcinoma

cells by inhibiting the expression of phosphatidylethanolamine binding protein 4 (PEBP4)

[69]. Through bioinformatic methods, hsa-miR-15b was forecasted to contribute to the patho-

genesis of non-small cell lung cancer [70], breast cancer [71]https://pubmed.ncbi.nlm.nih.gov/

20301167/, gastric cancer [72] and colorectal cancer [73]. In conclusion, these important

DEMs offered potential biomarkers and molecular mechanisms for the high-risk diagnosis of

BE.

The overall changes of mRNA and miRNA expression are associated with the regulatory

mechanisms of the development and progression of BE. 16 mRNAs has been identified, which

were seem as hub genes, might have crucial roles in EAC. CDH1, GART, GTSE1 and NEK2

were found to be correlated with survival. CDH1, which is considered to be the driving gene of

BE progressing to EAC, is strongly expressed in the BE [62]. CDH1 is mainly localized on the

plasma membrane and functions as a gatekeeper of the epithelial cell. The expression of CDH1

in BE without dysplasia was similar to that in the squamous epithelium. Yet, the expression of

CDH1 significantly changed during the progression of BE to EAC. In poorly differentiated

EAC, the expression level was almost zero. This phenomenon suggests that low expression of

CDH1 might be a marker of high-risk transformation from BE to EAC. Moreover, patients

with CDH1 mutations are more at risk of diffuse gastric cancer and lobular breast cancer [74].

It has been reported that the cumulative risk of diffuse gastric cancer at age of 80 years is 70%

for men CDH1 mutation carriers and 56% for women [75].

GART has been shown to be related to digestive cancer by mediating a metastatic cascade

[76]. Elevated expression of GART, which is associated with chemosensitivity to multiple

drugs, has been used as a target for anti-cancer drugs [77–79]. The depletion of GART can

inhibit cell proliferation and blocked mitosis. In addition, GART can indicate poor prognosis

in liver cancer. GTSE1 could promote the growth of cancer cell via activating the AKT pathway

and promote tumor metastasis by EMT pathway [80]. The overexpression of GTSE1 might be

involves in regulating FoxM1/CCNB1 expression by inducting lymph node invasion and pro-

gression. Patients with higher expression of GTSE1 were more likely to have a shorter survival

time [3].

NEK2 is highly expressed in various tumor types and cancer cell lines with rapid relapse

and poor outcome [81, 82]. Studies have found that overexpression of NEK2 may lead to chro-

mosomal instability, mitosis, and aneuploidy, which is associated with the invasion, metastasis,

proliferation, apoptosis, and sensitivity of a variety of tumors [82]. These processes include

PP1/AKT, WNT signaling pathway and Ki-67. Inhibition of NEK2 expression can significantly

inhibit tumor growth in vivo and in vitro [82], and NEK2 was also identified as a hub gene in

ESCC [83]. Therefore, we speculate that NEK2 may become the next therapeutic target of EC.

5. Conclusion

In this research, 21 DEMs and 723 DEGs (256 up-regulated and 467 down-regulated) were

identified. CDH1, GART, GTSE1, NEK2 and hsa-miR-496, hsa-miR-214, hsa-miR-15b were

found to be correlated with survival and may be potential molecular biomarkers for predicting

the clinical risk of BE patient progressing to EAC.
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