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Abstract

The voltage sensitivity of voltage-gated cation channels is primarily attributed to conformational changes of a four
transmembrane segment voltage-sensing domain, conserved across many levels of biological complexity. We have
identified a remarkable point mutation that confers significant voltage dependence to Kir6.2, a ligand-gated channel that
lacks any canonical voltage-sensing domain. Similar to voltage-dependent Kv channels, the Kir6.2[L157E] mutant exhibits
time-dependent activation upon membrane depolarization, resulting in an outwardly rectifying current-voltage
relationship. This voltage dependence is convergent with the intrinsic ligand-dependent gating mechanisms of Kir6.2,
since increasing the membrane PIP2 content saturates Po and eliminates voltage dependence, whereas voltage activation is
more dramatic when channel Po is reduced by application of ATP or poly-lysine. These experiments thus demonstrate an
inherent voltage dependence of gating in a ‘‘ligand-gated’’ K+ channel, and thereby provide a new view of voltage-
dependent gating mechanisms in ion channels. Most interestingly, the voltage- and ligand-dependent gating of
Kir6.2[L157E] is highly sensitive to intracellular [K+], indicating an interaction between ion permeation and gating. While
these two key features of channel function are classically dealt with separately, the results provide a framework for
understanding their interaction, which is likely to be a general, if latent, feature of the superfamily of cation channels.
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Introduction

While the entire complement of ion channels in a given cell

contributes to the membrane voltage, only a subset (the voltage-

gated cation channel family) responds significantly to changes in

membrane voltage, and the molecular mechanisms underlying

their voltage dependence remain the subject of considerable

scrutiny [1–6]. Voltage-gated cation channels are typified by a

modular 6-transmembrane segment (S1–S6) architecture, with the

S5 and S6 helices forming a core pore-forming module, and the

S1–S4 helices forming a canonical voltage-sensing domain (VSD)

[7]. The VSD, and particularly a subset of positively charged

amino acids in the S4 transmembrane segment, is essential for this

voltage-dependent gating [8–10]. Inwardly rectifying potassium

(Kir) channels possess a similar core K+-selective pore module but

lack the VSD, and the gating mechanisms of this channel family

are generally considered independent of voltage [11–13]. Instead,

Kir channels are physiologically regulated by ligands specific to

each channel subfamily, such as Gbc subunits (Kir3 channels),

protons (ROMK1 and others), or nucleotides (Kir6 channels)

[14–16]. In addition, anionic ‘‘signaling’’ phospholipids such as

PIP2 interact with the cytoplasmic domains of all known Kir

channels and increase channel activity [17].

Despite clear distinctions at the level of primary sequence,

predictions of functional behavior based on structural properties

do not always hold firm. For example, CNG channels contain a

VSD but exhibit little intrinsic voltage-dependent gating [18]. A

similar lack of voltage dependence is apparent in the voltage-

sensor equipped KCNQ1 channel when assembled with certain

accessory subunits (e.g., MiRP1 and 2) [19]. On the opposite end

of this spectrum, KcsA channels, now an archetypal model for K+-

selective pores, appear to exhibit some intrinsic voltage depen-

dence despite lacking a canonical VSD [20,21]. A second

important uncertainty arises in the mechanism of coupling

between the voltage sensor and channel pore. In classical models

of voltage-dependent gating (such as Shaker or other Kv channels),

the VSD strongly influences opening/closing of the pore-forming

domain, in the sense that channel open probability (Po) can be

reduced to virtually 0 at sufficiently negative voltages and

increased to near 1 upon depolarization [22]. In contrast, certain

voltage-sensor equipped TRP channels exhibit sustained measur-

able open probability even at very negative voltages, together with

much weaker apparent voltage dependence of gating relative to

Kv channels [23–25], and incomplete closure can be engineered in

classical Kv channels with open state stabilizing mutations at the

S6 helix bundle crossing [26]. Such observations indicate that a
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model of ‘‘tight coupling’’ between the VSD and pore does not

apply to all channel types and that the pore domain itself may

strongly influence open probability in some ion channels (whether

equipped with a voltage sensor or not). In this regard, voltage-

sensitive dynamics of the pore-forming module may not always be

obvious in ion channels that are strongly governed by motions of

the voltage sensor.

Through ongoing characterization of the Kir6.2 channel, we have

begun to recognize that substitution of charged residues at pore-

lining positions can affect channel gating in very unexpected ways.

Kir6.2 is a two transmembrane domain inwardly rectifying K

channel, clearly falling into the realm of ‘‘voltage sensor-less’’ ion

channels, and assembles with sulfonylurea receptor subunits (SUR1,

SUR2A, or SUR2B) to form KATP channels [27–29]. To date, most

characterization of KATP gating has focused on its recognized

physiological ligands (notably intracellular nucleotides and anionic

phospholipids) [30–32]. The present study reveals remarkable

voltage-dependent properties that arise in this ‘‘voltage-sensor-less’’

KATP channel, together with other unrecognized mechanisms of

KATP channel regulation by intracellular ions. We have character-

ized a mutant Kir6.2 channel that exhibits marked voltage-

dependent gating upon membrane depolarization. The voltage

dependence of gating of Kir6.2[L157E] is convergent with ligand-

dependent gating by ATP and PIP2 and is likely to involve the same

‘‘gate’’ as these intrinsic physiological ligands of the KATP complex.

We demonstrate that the voltage- and ligand-dependent gating of

these channels is significantly affected by intracellular potassium

ions, indicating an interaction between ion permeation and gating

and providing a framework for understanding for what is likely to be

a general feature of the superfamily of cation channels.

Results and Discussion

Voltage-Dependent Activation of the Kir6.2[L157E]
Channel

We have characterized the properties of a number of Kir6.2

mutant channels substituted with various charged residues at pore-

lining positions. Very unexpectedly, we observed that a single

point mutation in the pore-forming subunit of KATP

(Kir6.2[L157E]) generates channels that exhibit voltage-depen-

dent activation (two different patches are depicted in Figure 1A).

At negative voltages, patches exhibit a steady-state non-deactivat-

ing current. Depolarizing voltage steps result in an instantaneous

current jump followed by subsequent activation of current,

resulting in an outwardly rectifying current–voltage relationship

(Figure 1E). These observations contrast with behavior of WT

Kir6.2 channels (Figure 1B), in which significant time-dependent

activation is not typical and the macroscopic current-voltage

relationship is nearly linear (Figure 1E). Residue 157 is located at a

deep pore-lining position in the Kir6.2 inner cavity, directly

adjacent to the putative ‘‘glycine hinge’’ (Figure 1C,D). While this

single amino acid substitution introduces time-dependent activa-

tion somewhat similar to voltage-gated cation channels, the lack of

a canonical VSD and a weaker voltage dependence relative to

classical Kv channels implies a fundamentally different mechanism

is at work (Figure 1D).

The effects of glutamate substitution at residue 157 are position

specific. We have examined glutamate substitution at multiple

other pore-lining positions in Kir6.2 [33] and found no evidence of

similar behavior in 129E, 160E, or 164E channels (see Figure S1).

Glutamate substitution at position 168 results in somewhat unusual

effects on conduction, including intrinsic inward rectification (in

the absence of intracellular blockers), but these do not resemble the

unique voltage-dependent activation of Kir6.2[L157E].

Open Probability Is Voltage Dependent in Kir6.2[L157E]
Several observations confirm that voltage-dependent activation

of Kir6.2[L157E] is due to channel gating, rather than an

alternative mechanism such as relief of block, a voltage-dependent

change in conductance, or activation of an alternative channel

type in the patch. Firstly, we examined the effects of ligands known

to alter channel Po in WT Kir6.2 and other Kirs, namely PIP2

(which is stimulatory and enhances open state stability/open

probability) and poly-lysine (which is inhibitory and reduces open

state stability). After inside-out patch excision, voltage-dependent

currents were inhibited by internal ATP (Figure 2A,B) indicating

that currents were indeed carried by KATP channels. We

subsequently applied either PIP2 or poly-lysine to the cytoplasmic

face of the membrane and subjected patches to a series of voltage

steps. A pattern emerged in which PIP2 application resulted in

accelerated kinetics of activation and a reduction in the activating

fraction of macroscopic currents. This effect could be saturated

with sufficient PIP2 application, to the point where an activating

component of current was no longer apparent (Figure 2C).

Application of poly-lysine, which reduces open probability of Kir

channels by shielding negatively charged headgroups of anionic

phospholipids (e.g., PIP2) [34], led to opposite effects: slower

activation kinetics and an increased activating fraction of current

(Figure 2C,D). To further verify that observed currents are indeed

carried by Kir6.2, we exploited the fact that the L157E mutation

confers strong spermine sensitivity. Application of spermine to

excised membrane patches resulted in complete current inhibition

at depolarized voltages (Figure S2), confirming that the observed

voltage dependence is intrinsic to these channels and that

development of leak does not contribute to current properties

observed after subsequent treatment with activating agents such as

PIP2.

Manipulation of open state stability over a wide range (using

PIP2 or poly-lysine) illustrates a relationship between open state

stability and the properties of voltage-dependent gating, demon-

strated in normalized current records (Figure 2E) and in data from

multiple patches (Figure 2F,G). Using ATP sensitivity (fractional

inhibition in 10 mM ATP) as an index of open state stability

[30,31], there is a clear relationship between open state stability

and both the activation time constant and the fractional activating

Author Summary

Ion channels are proteins that regulate the transfer of ions
across the cell membrane. The ions travel via a pore
formed by the different subunits that constitute the
channels, and this pore can be gated by changes in the
electrical field across cell membranes. The canonical
mechanism underlying voltage dependence of gating
relies upon a widely conserved structural motif called the
voltage sensor, which undergoes conformational changes
when charged amino acids within the motif respond to
voltage and consequently affect the opening of the ion
channel pore. In the present study, we have identified a
non-canonical mechanism that surprisingly generates
voltage-dependent changes in the activity of a ligand-
gated ion channel that has no voltage sensor. Our
observations suggest that ions flowing through the ion
channel pore can significantly affect channel activity, and
we suggest that voltage-dependent changes in ion
distribution in the ‘‘cavity site’’ of the channel can
influence opening and closing of the channel independent
of canonical voltage sensors.

Voltage-Gating without a Voltage-Sensor
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component of macroscopic current. At low open state stability

(after poly-lysine, low Po, channels very sensitive to ATP), the

activating fraction is large and the activation kinetics are slow

(Figure 2E, red trace, and Figure 2F,G). In contrast, at high open

state stability (after PIP2, high Po, channels weakly sensitive to

ATP), the activating component of current decreases, and the

activation time constant is accelerated (Figure 2F,G). PIP2

exposures sufficient to saturate open probability virtually eliminate

voltage-dependent gating (because channels are maximally open at

all voltages, Figure 2E, green trace). The demonstrated relation-

ship between channel Po and voltage-dependent gating, and

especially the loss of voltage dependence at saturating open

probability, indicates that the gating of Kir6.2[L157E] arises

primarily from voltage-dependent changes in Po. Also, conver-

gence of the novel voltage-dependent gating mechanism and

intrinsic PIP2 regulation suggests that voltage is influencing the

ligand-operated (ATP/PIP2) gate of Kir6.2.

Multi-Tiered Kinetic Model of Voltage-Dependent Gating
It is notable that voltage-dependent properties can vary from

patch to patch, as ambient lipid levels (likely PIP2) vary (Figure 1A,B,

Figure 2A) [35]. The relationship between open state stability and

voltage-dependent gating is further illustrated in Figure 3 and

provides an additional perspective to the effects described in

Figure 2. After excision, open probability was first brought to

saturation by application of PIP2 [30] (Figure 3A,i), and then

iteratively reduced with brief poly-lysine applications (Figure 3A,ii–

v). Currents after each poly-lysine exposure were normalized to the

‘‘fully activated’’ currents (condition (i)). Notably, at low open state

stability (low PIP2 levels, e.g., Figure 3A,v, or Figure 2D), currents at

negative voltages are small but can increase several-fold upon

depolarization. The result is a large activating fraction of outward

current (in normalized traces, Figure 2E), although the absolute

currents do not reach the same level as observed in higher PIP2

conditions. As open state stability is increased, basal currents at

negative voltages are larger, and the fraction of outward current that

exhibits time-dependent activation is necessarily smaller. Important-

ly, the emergence of these patterns are not due to electrostatic effects

on permeation, because neither PIP2 or poly-lysine affect the Kir6.2

single channel conductance[31,34].

The steady-state voltage and PIP2 dependence of activation of

Kir6.2[L157E] can be reasonably well fit over a wide range of

Figure 1. Voltage-dependent activation of Kir6.2[L157E] channels. (A,B) Representative inside-out patch clamp recordings from (A) two
different Kir6.2[L157E] membrane patches and (B) a WT Kir6.2 membrane patch (both co-expressed with SUR1). Patches were pulsed to voltages
between 2100 and +100 mV, with a holding potential of 250 mV. (C) Molecular model of Kir6.2, with residue 157 highlighted in red. (D)
Transmembrane topologies of Kir and Kv channel families, with elements underlying voltage-dependent gating colored red in each case. (E) Current-
voltage relationships illustrating outward rectification of Kir6.2[L157E] channels. Symbols correspond to the recordings depicted in panels in A–B.
doi:10.1371/journal.pbio.1000315.g001

Voltage-Gating without a Voltage-Sensor
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open state stability with a simple allosteric model (Figure 3B). The

model describes an open-closed equilibrium (KCO) governed by

the membrane PIP2 content, with channels able to occupy two

different gating tiers distinguished by the KCO equilibrium

constant (the low Po tier has a small KCO, and the high Po tier

a higher KCO—indicated by KCO* in Figure 3B). For clarity, the

KCO?[PIP2] term directly reflects what we have referred to as

‘‘open state stability’’ thus far. The partition between high and low

Po tiers is described by a voltage-dependent equilibrium constant

(Kv). The model was fit simultaneously to data over a wide range

of open state stability (by varying [PIP2] in the model). Similar

experiments and analysis in four patches indicates a Kv(0 mV)

equilibrium constant of 0.760.2 (with an effective valence of

0.760.1) and a ,7-fold stabilization of the KCO equilibrium

constant in the high Po tier (KCO*/KCO = 7.560.9, this is also the

value of the reversibility factor g).

Although a potential physical mechanism underlying voltage-

dependent activation will be discussed in detail in subsequent

sections, two elements of this kinetic model are worth noting. In

simple terms, the model implies that the Kir6.2[L157E] channel

operates in two gating tiers (high Po and low Po), with the partition

between gating tiers influenced by voltage. Secondly, experimental

data seem to preclude any simple model in which an open-closed

equilibrium is directly controlled by voltage—such models predict

that sufficiently high voltages would open channels to a similar

level (and sufficiently negative voltages would close channels),

irrespective of basal open probability, a prediction that fails to

match the observed behavior (Figure 3).

Single Channel Properties of WT and Kir6.2[L157E]
Channels

We also measured currents from patches expressing small

numbers of channels (1–5 per patch) to determine the effects of

voltage on unitary conductance and Po (Figure 4A). WT Kir6.2

and L157E channels exhibit similar single channel current

magnitude, indicating that the L157E mutation has little effect

on ion permeation (Figure 4B). Consistent with previous reports

[36,37], single channel current-voltage relationships also exhibited

mild inward rectification. Notably, L157E (but not WT) channels

exhibit obvious increases in open probability at depolarized

voltages (Figure 4A,C). Basal open probability tended to be fairly

low in both WT and 157E patches, and so significant increases in

open probability were frequently observed for L157E (Figure 4C,

accounting for the large ‘‘activating fraction’’ observed in

macropatch records—Figure 2E, Figure 3A,v).

Investigating the Voltage-Sensing Mechanism in
Kir6.2[L157E]

(i) Internal cations affect gating of Kir6.2 channels. In

addition to conferring voltage-dependent activation, mutations of

Kir6.2 residue 157 surprisingly alter the effects of intracellular K+

(Kint) on channel activity. In both WT Kir6.2 (Figure 5A) and

Kir6.2[L157E] (Figure 5B), macroscopic currents (at 2100 mV)

are reduced in high Kint (300 mM), and increased in low Kint,

effects that are substantially enhanced in L157E channels. To

account for changes in reversal potential in different Kint, we used

voltage-step protocols (e.g., Figure 5E–G) to calculate the change

in macroscopic conductance (chord conductance), by measuring

the change in current magnitude between 280 and 2100 mV.

This demonstrated that conductance of WT patches increased

,40%, while L157E patches changed 4.5-fold with a switch from

300 mM Kint to 50 mM Kint (Figure 5D). Normalization to single

channel current produced a similar result. This indicates that K+

ions significantly influence the gating mechanism in Kir6.2[L157E]

channels, with lower Kint favoring a higher open probability.

Single channel records illustrate dramatic changes in Po as Kint is

altered (see Figure S3). Together, these observations indicate that

intracellular K+ ions significantly affect channel open probability in

Kir6.2[L157E], and to a lesser degree in WT Kir6.2 channels.

Remarkably, the sensitivity to Kint can be reversed by

introducing a positive charge at position 157. In Kir6.2[L157K]

channels, increasing Kint causes an immediate and fully

reversible increase of inward currents. This is opposite of what

could be accounted for by changes in electrochemical driving

force and contrasts dramatically with the effects of Kint in WT

Kir6.2 and Kir6.2[L157E] channels. It is also notable that these

effects are not selective for K+. In WT Kir6.2, L157E, and

L157K channels, the effects of 300 mM Kint are closely

mimicked by 50 mM Kint supplemented with 250 mM Naint

(Figure 5A–D).

Intracellular K+ ions also dramatically influence gating kinetics

of Kir6.2[L157E] (Figure 5E–H). In 300 mM Kint, activation

kinetics are very slow, and the activating fraction of macroscopic

currents is large, resembling the features observed for low Po

patches (i.e., following poly-lysine application, Figure 2E). Con-

versely, currents in 50 mM Kint exhibit no time-dependent

activation of currents, similar to the behavior of high Po patches

Figure 2. Voltage-dependent gating of Kir6.2[L157E] channels
interacts with PIP2-regulated open probability. (A–D) Represen-
tative current traces from a Kir6.2[L157E] membrane patch, (A)
immediately after excision, (B) in 1 mM ATP, (C) after exposure to
5 mg/mL PIP2, (D) after brief exposure to the PIP2 antagonist poly-lysine.
(E) Currents from A, C, and D are normalized to peak to illustrate the
effects of basal open probability (determined by PIP2) on activation
kinetics and on the activating fraction of peak current. (F,G) Compiled
data from 4 Kir6.2[L157E] membrane patches, illustrating the relation-
ship between ATP sensitivity (an index of open state stability), and (F)
activation kinetics or (G) activating fraction. At higher open state
stability, a smaller fraction of the peak current exhibits time-dependent
activation, and the kinetics of activation are markedly faster. In (F,G),
data are presented from four patches, with each symbol type reflecting
a different membrane patch. Dashed lines are linear regression fits to
each individual patch, while the solid line is a fit to the entire data set.
doi:10.1371/journal.pbio.1000315.g002

Voltage-Gating without a Voltage-Sensor

PLoS Biology | www.plosbiology.org 4 February 2010 | Volume 8 | Issue 2 | e1000315



(i.e., after saturating PIP2 treatment). Overall, these data indicate

an especially strong interaction between permeant ions and gating

of Kir6.2[L157E] channels.

(ii) Voltage-dependent occupancy of the cavity site in K+

channels. These observations suggest a ‘‘unifying’’ explanation

for the unique behavior of Kir6.2[L157E] channels. Rather than

acting as a sensor for changes in transmembrane voltage, we

suggest that the L157E mutation generates an environment in

which open state stability depends especially strongly on ion

occupancy of the inner cavity (Figure 6). Intuitively, this is a

straightforward idea: in the absence of a cation in the cavity ion

binding site, repulsion between negatively charged side chains

would drive the M2 helices apart, favoring channel opening at the

helix bundle crossing [38,39]. Occupancy of the cavity ion site

would mitigate this repulsion—157E carboxylates could approach

more closely to the central axis of the pore, stabilizing channel

closure relative to the unoccupied state. Consistent with our

findings, these effects should be reversed with introduction of a

positively charged sidechain at position 157 (e.g., L157K,

Figure 5C,D). In general terms, the position specificity of the

157E effects (Figure S1) also seems well explained by this idea,

because position 157 directly faces the cavity ion binding site and

is adjacent to the putative ‘‘gating hinge’’ at glycine G156. Thus,

even small motions in this region, perhaps driven by coulombic

interactions between neighboring side chains and occupant ions,

could be translated into significantly larger motions at the helix

bundle crossing.

Such a mechanism may also account for the voltage-dependent

activation of Kir6.2[L157E]. Specifically, kinetic models of ion

permeation can predict substantial voltage-dependent changes in

occupancy of selectivity filter sites and the cavity ion binding site.

We have simulated voltage-dependent occupancy of the cavity ion

binding site, based on published parameters for a model describing

K+ permeation in KcsA. (Figure 6B,C) [40]. At positive voltages (or

low Kint), the model predicts that occupancy of the cavity ion

binding site is low, because the voltage dependence of entry of the

cavity ion into the selectivity filter is larger than the voltage

dependence for ‘‘refilling’’ this site with an ion from the

intracellular solution (Figure 6C). In this way, the gating effects

(high Po) observed in low Kint can also be achieved at depolarized

voltages. At negative voltages (or higher Kint), inward currents

saturate the cavity ion binding site. Voltage-dependent cavity site

occupancy can be predicted by permeation models in which the

movement of the cavity ion into the selectivity filter is more voltage

dependent than ‘‘refilling’’ of the cavity site with an intracellular

ion and is consistent with the marked asymmetries in the

characteristics of single channel openings carrying inward versus

outward currents (see Figure S3). Given the generally accepted

view that the membrane field is dissipated primarily across the

selectivity filter [41,42], this seems a reasonable assumption. Also,

the weak voltage dependence of cavity site occupancy over the

experimental voltage range is comparable to the voltage

dependence of channel activity (Figure 4).

Predictions of Permeation-Coupled Gating
An important concept of this model is that voltage does not

directly drive the channel to open. Rather, channels open

stochastically, and rearrangement of ion occupancy after channel

opening governs the partition between high and low Po gating

modes/tiers. Thus, if anything, the permeant ions themselves can

be considered the ‘‘voltage sensors.’’ If this represents the

predominant sequence of events during voltage-dependent

activation, then the observed gating kinetics should depend

primarily on intrinsic channel opening and closing rates (rather

than the voltage-driven rate), and ATP stabilization of the closed

state (prolongation of single channel interburst intervals) should

affect the kinetics of channel opening. This behavior is indeed

observed, and the effects can be quite dramatic (Figure 7A–E).

Activation kinetics are slowed significantly in 10 mM ATP

(Figure 7B,D). In some patches with sufficient current expression

Figure 3. Kinetic model describing voltage-dependent activation of Kir6.2[L157E] over a range of voltage and basal open
probability. (A) Current records collected after saturating open probability with PIP2 (i), followed by progressive reduction of open state stability
with brief applications of poly-lysine (ii–v). In the right-hand panel, steady-state currents were normalized to fully activated currents (record i) to
illustrate the extent of activation at each voltage. (B) Kinetic model depicting two tiers of gating—a low Po tier (lower) and a high Po tier (upper). In
the high Po tier, the KCO equilibrium constant is 7-fold larger. Equilibria between the high and low Po tiers are governed by the Kv constant, and g is
a factor included to preserve reversibility (g = KCO*/KCO).
doi:10.1371/journal.pbio.1000315.g003

Voltage-Gating without a Voltage-Sensor
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and appropriate open state stability, extremely slow activation

was also observed in 100 mM ATP (Figure 7C,D). This reflects

the infrequency of opening in 100 mM ATP—since openings

occur rarely, channels will enter the high Po tier very slowly.

These effects can be rationalized by an extension of the simple

allosteric model presented earlier (Figure 7E), with the addition of

ATP-bound closed states reflecting stabilization of channel

closure by ATP. This scheme is not intended to provide a

complete description of ATP binding to KATP channels (see [43–

45]). However, the model describes the important counter-

regulation of KATP channels by ATP and PIP2 [30,31] and

predicts longer channel closures in the presence of ATP. In

addition, channel opening upon depolarization and closure after

hyperpolarization exhibit very weak voltage dependence

(zact = 0.1160.01, zdeact ,0.01, Figure 7F,G). Again, this likely

reflects the idea that the activation/deactivation kinetics are

limited by the intrinsic bursting kinetics of the channel and that

voltage is not driving the conformational changes that mediate

gating.

Other Possible Effects of Internal Cations
We have also considered whether intracellular ions might affect

channel activity by other mechanisms. We speculated that

intracellular ionic strength might affect channel interactions with

PIP2, and this appears to be a definite possibility. To examine PIP2

interactions, WT Kir6.2 channel open probability was ‘‘rundown’’

with a high concentration of Mg2+, and then exposed to various

concentrations of diC8-PIP2, in both high and low ionic strength

conditions (Figure 8). It is clear that in low ionic strength, channels

are activated more completely and at lower diC8-PIP2 concentra-

tions. It appears that ionic strength can indeed alter channel-PIP2

interactions, although it should be recognized that this experiment

does not establish whether this is a direct effect of ionic strength, or

an allosteric effect arising from the actions of ions within the pore

(i.e., PIP2 interacts with higher affinity with open channels, and so

pore-mediated effects of ions on open probability could indirectly

affect channel-PIP2 interaction). Importantly, it seems unlikely that

channel-PIP2 interactions would be altered by mutations deep in

the inner cavity—and thus the distinct properties of 157K versus

157E cannot be accounted for by this phenomenon. Nevertheless,

there is a possibility that intracellular ionic strength affects KATP

channel activity by multiple mechanisms.

Integrated Voltage- and Ligand-Gating
The KATP complex is a ligand-gated ion channel, in which

diverse cytoplasmic ligands (most notably ATP, ADP, and PIP2)

determine open probability [30–32,46]. Nucleotide gating is a

unique feature of the Kir6 subfamily, but PIP2 dependence is

common to all members [47]. In the present study, we have

uncovered an additional dependence on intracellular cations that

confers substantial voltage dependence. Changes in membrane

voltage markedly alter the open probability of Kir6.2[L157E]

channels, as confirmed by single channel and macroscopic current

recordings. Saturation of Po by PIP2 (Figures 2, 3) abolishes

voltage-dependent activation, confirming that activation reflects

increased channel Po. Strong voltage-dependent gating in the

absence of a canonical VSD was unpredicted and is remarkable in

at least two respects. Firstly, it demonstrates a mechanism by

which permeating ions can influence the gating state of the pore-

forming module. Secondly, it is imposed on the intrinsic ligand-

dependent gating: the kinetic properties and extent of voltage-

dependent activation clearly depend on PIP2 (Figures 2, 3) and

ATP levels (Figure 7), indicating that voltage is influencing the

stability of the native PIP2/ATP-operated gate.

Converging lines of functional and crystallographic evidence

suggest that ligand gating of Kir channels results from closure at or

near the inner helix bundle crossing, as it does in Kv channels (see

Text S1 for a detailed discussion of this point) [1,38,41,48–51].

Our data set is consistent with this model—permeant ions play an

important role, but there is no ionic selectivity to the effect, and

the critical residue (157) is located in the M2 helix, rather than in

the selectivity filter. The voltage-dependent activation of

Kir6.2[L157E] likely arises from a state preference for one

orientation of permeating ions over another (specifically, whether

the cavity site is occupied is vacant). Voltage-dependent ion

occupancy, as modeled here (Figure 6), has been inferred from

studies of voltage-dependent relief of TEA block in KcsA channels,

in which TEA and K+ interactions have been hypothesized to

depend on voltage-dependent changes in ion occupancy profiles

[40,52]. Although specific interactions with channel gating remain

unexamined in KcsA and other channels, it is noteworthy that

general features for this mechanism (the K+ channel pore module,

with a cavity ion binding site) are likely present in all K+ channels,

Figure 4. Depolarization increases open probability of
Kir6.2[L157E] channels. (A) Current records from membrane patches
containing few channels (likely three per patch) for Kir6.2[L157E] or WT
Kir6.2 recorded in symmetrical 150 mM K+ conditions. (B) Single-
channel currents between 2100 and +100 mV in WT Kir6.2 and
Kir6.2[L157E] channels. The L157E mutation has no significant effect on
single channel conductance. (C) Open probability of Kir6.2[L157E] (top)
or WT Kir6.2 (bottom) channels measured from membrane patches
containing 125 channels, between 2100 and +100 mV (n = 3 for WT
and 4 for L157E).
doi:10.1371/journal.pbio.1000315.g004
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and the general principles could extend to other channel types

irrespective of structure/sequence.

In Kv channels, Po is strongly controlled by the canonical VSD

[22]. However, various channel types exhibit considerable

diversity in the apparent strength of coupling between the voltage

sensor and pore. As alluded to in the introduction, there is growing

recognition of nominally ‘‘voltage-gated’’ channels that show far

weaker voltage dependence than close Shaker homologues and

exhibit persistent open probability at negative voltages [25]. Such

features may indicate that coupling between the voltage sensor and

pore is relatively weak and that the pore-forming module can

significantly affect open state stability/open probability—indeed

mutations in the helix bundle crossing region can result in

persistent opening of Kv channels [26]. Furthermore, many

voltage-gated channel assemblies, perhaps most notably the

KCNQ1/KCNE1 complexes, exhibit activation kinetics that

appear to be considerably slower than the kinetics of voltage-

sensor equilibration [53]. Similarly, a small voltage dependence is

generally attributed to the final concerted opening step of the pore

module in widely studied channels like Shaker and BK [22,54],

although the mechanism for this voltage dependence is not well

understood. Growing recognition of diverse non-canonical

mechanisms of voltage sensing, in KcsA [20,21], in the present

study, and in a recent report of introduced voltage dependence in

CNG channels [55], suggest important avenues to investigate the

role of the pore-forming module in controlling open probability.

Finally, while Kir6.2[L157E] exhibits an obvious voltage-depen-

dent phenotype, the presence of a negatively charged side chain may

not be an absolute requirement, since the same underlying feature is

weakly detectable in WT channels. A small hint of this phenomenon

Figure 5. Position 157 affects the internal K+ sensitivity of Kir6.2. (A–C) Continuous current records at 2100 mV depicting responses to altered
internal ionic conditions in inside-out membrane patches expressing (A) WT Kir6.2, (B) Kir6.2[L157E], or (C) Kir6.2[L157K]. The L157E mutation exaggerates
the response observed in WT Kir6.2, while the L157K mutation reverses the WT response to intracellular K+. (D) Using voltage-step protocols, the chord
conductance between 2100 and 280 mV was calculated in all Kint conditions and normalized to the conductance in 150 mM K+ in each patch (n = 29 for
WT Kir6.2, 19 for Kir6.2[L157E], and 20 for Kir6.2[L157K]). (E–G) Current records from a Kir6.2[L157E] inside-out patch, at voltages from 2100 to +100 mV.
(H) Currents elicited by a step to +100 mV, normalized to peak current, in the ionic conditions depicted in panels E–G.
doi:10.1371/journal.pbio.1000315.g005
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is apparent in Figure 1C, and we have included a more marked

example in Figure S4. While not as dramatic as the voltage-

dependent activation of Kir6.2[L157E], these features can be quite

obvious and are exaggerated in modest inhibitory concentrations of

ATP. These observations suggest that other features (beyond

electrostatic interactions of charged side chains and the cavity ion)

can generate some state preference for specific configurations of

permeant ions. One potential candidate in K+ channels is

stabilization of the cavity ion by the pore helices, which may be

more prominent in the closed versus open state [56], and thus might

underlie some energetic preference for one configuration of permeant

ions over another in different channel states.

Conclusions
We have characterized a unique and unexpected voltage-

dependent activation feature of a ligand-gated Kir channel. The

voltage dependence arises from voltage-dependent interactions of

permeating ions with the same gate as that controlled by gating

ligands, providing a unifying interaction between two fundamental

processes of gating. The effects of the pore-forming module in

regulating the kinetics and properties of voltage-dependent gating

tend to be overlooked, since voltage dependence of cation

channels is generally attributed to motions of a canonical VSD.

However, particularly in cation channels that exhibit relatively

weak voltage dependence and persistent conductance at negative

voltages, we suggest that the pore-forming module itself may be an

important structural element in the regulation of voltage

dependence and kinetics of channel gating.

Materials and Methods

Expression of KATP Channels in COSm6 Cells
Point mutations were prepared using the Stratagene Quick-

change kit, on a background of WT mouse Kir6.2. COSm6 cells

were transfected with pCMV6b-Kir6.2 (with mutations as

described), pECE-SUR1, and pGFP using the Fugene 6

transfection reagent. Patch-clamp experiments were made at

room temperature, using a chamber that allowed rapid solution

exchange, or the Dynaflow capillary chip-based platform (Cellec-

tricon Inc.), with DF-16 Pro II chips [57].

Data were typically filtered at 1 kHz, and signals were digitized

at 5 kHz and stored directly on computer hard drive using

Clampex software (Axon Inc.). The standard pipette (extracellular)

and bath (cytoplasmic) solution used in these experiments had the

following composition: 140 mM KCl, 1 mM K-EGTA, 1 mM K-

EDTA, 4 mM K2HPO4, pH 7.3. For 50 mM Kint, 300 mM Kint,

Figure 6. Hypothetical mechanism of convergent regulation by voltage and internal ions. (A) Cation occupancy in the cavity ion binding
site will mitigate repulsion between glutamates substituted at position 157, favoring the closed state relative to conditions in which the cavity site is
unoccupied. Introduction of a positive charge at position 157 would exhibit an opposite response to cavity site occupancy. (B) Permeation model,
with boxes representing selectivity filter binding sites, flanked by an external binding site (top) and the cavity site (bottom). (C) Simulation of voltage
and internal K+-dependent changes in mean occupancy of the cavity ion binding site (sum of probability of occupancy in states i+ii), using
parameters generated to describe permeation through KcsA channels [40].
doi:10.1371/journal.pbio.1000315.g006
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and 50 mM Kint + 250 mM Naint solutions, all buffer components

were kept at the same concentration, with changes only to the

indicated principal solutes (KCl or NaCl). Chemicals were all

purchased from Sigma-Aldrich, or FLUKA, with the exception of

PIP2 (phosphatidylinositol 4,5-bisphosphate, Avanti).

Kinetic Modeling
Models describing steady-state voltage dependence of activa-

tion, and ion occupancy, were generated using the ‘‘Q-matrix

method’’ [58]. Matrix Q was constructed such that each element

(i,j) was equal to the rate constant from state i to state j, and each

element (i,i) was set to be equal to the negative sum of all other

elements in row i. State occupancy at time t was calculated as

p(t) = p(0)eQt, where p(t) is a row vector containing elements

corresponding to occupancy of each state in the model at time t.

All tasks required for solving these equations were performed in

MathCad 2000. Parameters describing ion occupancy are

replicated from an earlier published model describing ion

Figure 7. Predictions of gating coupled to changes in permeant ion occupancy. (A–C) In the presence of internal ATP, which acts by
prolonging interburst intervals, the kinetics of channel activation are markedly slowed. (D) Normalized current traces recorded at +100 mV, in control
and various internal ATP concentrations. (E) Extension of the scheme in Figure 3B, including ATP binding to closed states. In this scheme, ATP
stabilizes the channel closed state, thereby prolonging the interburst intervals. (F,G) Kinetics of activation (F) and deactivation (G) and normalized in
right-hand panels to illustrate very weak voltage dependence of kinetics.
doi:10.1371/journal.pbio.1000315.g007

Figure 8. Ionic strength affects channel interactions with PIP2. WT Kir6.2 channels were fully run-down in high Mg2+ and subjected to
increasing concentrations of di-C8 PIP2 in either (A) 50 mM or (B) 300 mM internal K+. PIP2 results in more significant current recovery in low ionic
strength conditions. Similar observations were made in six membrane patches.
doi:10.1371/journal.pbio.1000315.g008
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permeation through KcsA channels, with the exception of

a repulsion factor describing the interaction of ions in adjacent

binding sites [40]. We reduced the published repulsion factor

for the simulations described in Figure 6C, as we found

this predicted higher cavity occupancy at extreme negative

voltages.

Supporting Information

Figure S1 Voltage-dependent activation of L157E is
position specific. (A) Pore-lining positions substituted with

glutamate are highlighted in a molecular model of the Kir6.2

inner cavity. Position 157 is highlighted in red. (B-F) Currents

elicited from inside-out membrane patches expressing each

glutamate mutant. Pronounced voltage-dependent activation is

only observed in Kir6.2[L157E] channels.

Found at: doi:10.1371/journal.pbio.1000315.s001 (0.16 MB TIF)

Figure S2 Polyamine block of Kir6.2[L157E] channels.
Representative records depict voltage-dependent activation of

Kir6.2[L157E] channels immediately after inside-out patch

excision (A). In (B), voltage-dependent activation is abolished

after saturation of open probability by application of PIP2. (C)

Complete and steeply voltage-dependent inhibition of outward

currents in 100 mM spermine indicates that currents are

carried through Kir6.2[L157E] and that effects of PIP2 are not

due to a non-specific leak or activation of another channel

subtype.

Found at: doi:10.1371/journal.pbio.1000315.s002 (0.01 MB TIF)

Figure S3 Potassium and voltage-dependent effects on
unitary currents in Kir6.2[L157E] channels and WT
Kir6.2 channels. (A,B,C) Single channel records at 290 mV

(left) and +90 mV, in various Ki conditions, as indicated. The

properties of single channel currents vary dramatically between

positive and negative voltages. At positive voltages, extremely long

uninterrupted openings are apparent, whereas more frequent

flicker-like closures are observed at negative voltages. Additionally,

intracellular K+ dramatically affects open probability, with high

Ki reducing channel Po. (D) Similar features are also observed in

WT Kir6.2 channels, with long openings observed at depolarized

voltages and far more frequent flickering closures at negative

voltages. These marked asymmetries in the characteristics of single

channel openings carrying inward versus outward currents may

not be entirely surprising (given the asymmetric structure of an ion

channel). These are included as somewhat anecdotal support for

microscopic features of gating and permeation changing signifi-

cantly with voltage. This asymmetry is especially apparent in low

Kint conditions (Figure S3A), where negative voltages are

characterized by rapid flicker-like closures, while no closures are

observed at positive voltages.

Found at: doi:10.1371/journal.pbio.1000315.s003 (0.06 MB TIF)

Figure S4 Voltage-dependent activation of WT Kir6.2
channels. Inside-out patch-clamp recordings of WT Kir6.2 in

symmetrical K+ concentrations, in the presence or absence of

10 mM ATP. We frequently observed modest activation of WT

Kir6.2 at depolarized voltages (A). Though not as pronounced as

in Kir6.2[L157E] channels, it is quite apparent and becomes more

obvious in modest ATP concentrations (B). It is possible that

experimental conditions can be devised to maximize this voltage

dependence of WT Kir6.2.

Found at: doi:10.1371/journal.pbio.1000315.s004 (0.02 MB TIF)

Text S1 Where is the ligand/voltage-sensitive gate
located? Supplemental text presents evidence related to the

localization of the ATP/PIP2-operated gate in Kir6.2 channels

and ligand-operated gating in other Kir channels.

Found at: doi:10.1371/journal.pbio.1000315.s005 (0.06 MB

DOC)
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