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The outbreak of COVID-19 disrupts the life of many people in the world. In response to this
global pandemic, various institutions across the globe had soon issued their prevention
guidelines. Governments in the US had also implemented social distancing policies.
However, those policies, which were designed to slow the spread of COVID-19, and its
compliance, have varied across the states, which led to spatial and temporal heterogeneity
in COVID-19 spread. This paper aims to propose a spatio-temporal model for quantifying
compliance with the US COVID-19 mitigation policies at a regional level. To achieve this
goal, a specific partial differential equation (PDE) is developed and validated with short-
term predictions. The proposed model describes the combined effects of transboundary
spread among state clusters in the US and human mobilities on the transmission of COVID-
19. The model can help inform policymakers as they decide how to react to future
outbreaks.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications

Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Coronavirus Disease 2019 (COVID-19) pandemic is an unprecedented global crisis, and the US has become the center of
the crisis. By December 20, 2020, the total number of reported COVID-19 cases exceeded 17, 000, 000, with over 300, 000
deaths in the US alone (Centers for Disease Control and Prevention). As the number of confirmed COVID-19 cases in the US
continued to rise in early 2020, many states declared states of emergency and issued shutdown orders or stay-at-home orders
to slow the spread of COVID-19 (Department of Health and Human Services). Many schools, workplaces, and public gathering
spaces across the US were closed for an extended time. Although such measures might have saved lives, they have come at a
high cost socially and economically. To balance various health, economic, and social concerns, governors across the US made
decisions to gradually reopen the economy in summer 2020, which resulted in the increase of the number of COVID-19 cases
in many states. While the first wave of COVID-19 in the early spring was mainly in coastal cities, the second wave was
observed among the states in the Sun Belt. Although the geographic location was one of the main factors to identify the
epidemic trend, almost all the states are still setting weekly records for new cases.
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As the third wave of COVID-19 threatens communities’ health across the nation, governors are considering another round
of lockdowns. However, because of trade-offs between health and economy, when and howa state should impose and/or ease
restrictions are not trivial. Different states have taken very different approaches to tackle the pandemic. Because businesses
are only advised to follow federal guidance on social distancing, many businesses do not fully implement social distancing
measurements. The absence of a national level mask mandate is thought to be escalating the spread of the virus. As delays in
policy implementation could produce significant harm to public health, rigorous quantification of the non-pharmaceutical
interventions to slow the spread of the disease is urgently necessary.

The other important factor determining the success of those policies is the levels of compliance. Bargain and Aminjonov
(2020a) shows that compliance with policies depends on the level of trust in institutions and decision-makers in the time of
COVID-19. However, people in the US experienced the absence of a cohesive national strategy and conflicting messaging
around their social distancing measures, especially during the US election campaign. As a result, each state has experienced
the policy difference and the difference in compliance level. Thus, it is crucial to quantify the temporal and geographical
differences in policy implementation, together with the level of compliance.

In this paper, we quantify compliance with the COVID-19 mitigation policies at a regional level during the first two waves
of the pandemic, which is peaked on April 10 and July 24 (Fig. 1). We use a spatio-temporal model, specifically, a partial
differential equation (PDE) model. Our analysis is based on ten regions defined by the US Department of Health and Human
Services (HHS) because the clusters represent different geographical and social characteristics regarding the spread of COVID-
19. The proposed model describes the combined effects of transboundary spread among regional clusters and human ac-
tivities on the transmission of COVID-19, enabling us to model the regional risk disparities and validate the COVID-19 spread.
The localized results of the spatio-temporal model could provide valuable information to the local governments and public
health officials to closely monitor new COVID-19 outbreaks and quickly reinstating mobility restrictions.

In response to the current COVID-19 pandemic, many mathematical models have been proposed. Many of them use or-
dinary differential equations (ODE) (He et al., 2020; Li et al., 2020;Wang et al., 2020a; Yamamoto&Wang, 2009). The classical
susceptible-infectious-recovered model (SIR) (Huang et al., 2020) and susceptible-exposed-infectious-recovered model
(SEIR) (Lai et al., 2020; Omori et al., 2020; Yang et al., 2020) are the most widely adopted ones for characterizing the outbreak
of COVID-19. The extension of the classical SEIR model with the age-stratified model (Prem et al., 2020) and the meta-
population model (Pujari & Shekatkar, 2020) were also introduced. Our previous work (Wang et al., 2016; Wang et al.,
2020b; Wang et al., 2020c) applies PDE models to make a regional level of influenza with geo-tagged data. The PDE model
we develop in the present work focuses on the spread of COVID-19 and incorporating social distancing factors. While there is
a rich literature on the application of PDE to model the spatial spread of infectious diseases (Brauer et al., 2019; Holmes et al.,
1994; Wang et al., 2020c; Wang & Yamamoto, 2020; Zhu et al., 2017), to the best of our knowledge, this work is the first
attempt to apply PDE models on COVID-19 short-term prediction incorporating COVID-19 mitigation policies and its
compliance together with human mobility data.

Besides, ourmodel incorporates several open-source empirical data: social distancing policy dataset from the University of
Washington (Fullman et al., 2020), and the Google Community Mobility Reports (GCMR) (Google. GoogleD-19 C). Mobility
trends obtained from location history are dynamic in time and reflect real-time social behavior changes, making them a
Fig. 1. COVID-19 daily new reported cases in the US. The bars show the number of new COVID-19 cases reported each day in the US. The red line represents the
7-day rolling average of the cases between March 11, 2020, and August 18, 2020.
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crucial factor in analyzing COVID-19 spread and its countermeasure. Several models utilize the GCMR, including our previous
studies (Picchiotti et al., 2005; Abouk&Heydari, 2020; Vok�o& Pitter, 2020). This study extends our previous studies (Wang&
Yamamoto, 2020; Yamamoto & Wang, 2009), which focused on Arizona, to the US national level as well as considering
compliance to provide a more accurate prediction of the COVID-19 cases.
2. Collections of datasets

Wedivide the country into ten regions defined by the HHS, with a regional office locatedwithin each of the regions (Fig. 2).
There are several reasons for us to use the ten regions: (i) this enables us to capture the geographical and social characteristics
regarding the spread of the virus while avoiding the high computational cost, (ii) the Centers for Disease Control and Pre-
vention (CDC) uses the ten regions to report weekly influenza activities. We compute three time-series data of each region by
accumulating the data of all states belonging to a region.

First, we compute each region’s daily cumulative cases by adding the COVID-19 cases of all states belonging to a region.We
use the COVID-19 data from The New York Times at the state level over time. The New York Times compiles the time-series
data from state and local governments and health departments to provide a complete record of the ongoing outbreak. The
data can be downloaded from https://github.com/nytimes/covid-19-data and https://www.nytimes.com/article/coronavirus-
county-data-us.html.

Second, we create a time-series data of COVID-19mitigation policy for each region using the data from https://github.com/
COVID19StatePolicy/SocialDistancing. The dataset is developed and maintained by researchers at the University of Wash-
ington, Seattle, WA, USA. The policies include emergency declarations, gathering restrictions and recommendations, school
closures, restaurant restrictions, bar restrictions, business closures (including non-essential business closures), stay-at-home
orders and advisories, travel restrictions and travel-based quarantine orders, case-based isolation orders, public mask
mandates. To quantify the policies, we set each policy as score one and calculate the region’s daily policy scores by summing
the score belonging to a region and dividing by the number of states in the region. Fig. 3 shows the calculated time-series of
the policy index of the ten regions.

Third, human mobility dataset was created based on the GCMR (Google. GoogleD-19 C). GCMR provides insights into how
people’s social behaviors have been changing in response to policies aimed at combating COVID-19. The reports provide the
changes in movement trends compared to baselines overtime at the US county level, across different categories of activities.
These activities include retail and recreation, groceries and pharmacies, parks, transit stations, workplaces, and residential.
The relevant data can be downloaded from https://www.google.com/covid19/mobility/. Thenwe compute each region’s daily
changes by adding the changes of all states belonging to a region. We generated two time-series of data sets from the GCMR;
one is for the activities outside of the home, and the other is for stay-at-home activities. Former is the sum of five categories
(i.e., retail & recreation, groceries & pharmacies, parks, transit stations, workplaces), and the latter is the data of residential
activities.
Fig. 2. The US Department of Health and Human Services (HHS) ten regions. 51 states were clustered into ten regions according to the HHS.
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Fig. 3. The average policy indices from March 11, 2020, to August 18, 2020 for each region. Policy indices were computed using the data on social distancing
policy for each region.
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3. PDE model

This section introduces a specific PDE model to characterize the spatio-temporal dynamics of the US COVID-19 cases at a
regional level. To apply a PDEmodel to the interaction of the dynamics of COVID-19 cases, one needs to embed the ten regions
into Euclidean space in such a way that the ten regions stay as close as possible to ensure that the continuous model can
capture the spread of COVID-19 cases between them. Here we embed the ten regions onto the x-axis of the Cartesian co-
ordinates at x ¼ 1, 2, …, 10 in the east-west direction of US as shown in Fig. 4. One might use some algorithms discussed in
(Wang et al., 2020b) for a slight improvement. Because the accuracy of the prediction is acceptable in this paper, we take the
embedding for simplicity. According to the balance law, we will develop the spatio-temporal model for the spread of COVID-
19 cases: the rate at which a given quantity changes in a given domain must equal the rate at which it flows across its
boundary plus the rate at which it is created, or destroyed, within the domain. The PDE model can be conceptually divided
into two processes: an internal (local) process within each region and an external (global) process between different regions.
506



Fig. 4. Embedding of the ten regions into the x-axis and two spreading processes: global spread between regions and local spread within a region.
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Similar derivation for the PDE model has been used in our previous work for PDE models for COVID-19 infection in Arizona
and information diffusion in online social networks (Wang et al., 2020b; Wang & Yamamoto, 2020).

Let C(x, t) represent the cumulative number of the reported COVID-19 cases in the US region x at a given time t. The
changing rate of C(x, t) depends on two processes as in Fig. 4:

C Global process: the social interactions of people between regions, such as traveling and commuting between regions,
that contribute to the spread of COVID-19;

C Local process: in each US region, people become newly infected through social interactions with infected peoplewithin
a region; and people may take personal precautions to reduce and mitigate COVID-19 spread.

Combining the two processes, the dynamics of COVID-19 cases can be captured by Equation (1).
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(1)
Among those functions, m(x, t � 10), p(x, t � 10) and j(x) takes data and d(x), r(t), l(x), and E(x) are to be estimated.
Following is a detailed explanation of each term.

C The term v
vx

�
dðxÞ vCðx;tÞ

vx

�
denotes the spread of COVID-19 cases between different regions, where d(x) measures how

fast COVID-19 spreads across different regions. In epidemiology (Brauer et al., 2019; Murray, 2002), the term
v
vx

�
dðxÞ vCðx;tÞ

vx

�
has beenwidely used for describing the spatial spread of infectious diseases. Here we assume d(x) to be

constant, i.e., d(x) ≡ d > 0.
C r(t)l(x)m(x, t � 10)C(x, t) represents the new COVID-19 cases from a local region at location x and time t. This type of

function is widely used to describe the growth of bacteria, tumors, or social information over time (Murray, 2002).

* The function r(t) > 0 represents the growth rate of COVID-19 cases at time t for all regions. For simplicity, we
assume that r(t) increases with time t as the COVID-19 cases increase. Therefore, we choose r(t) ¼ g(b1 þ b2t) and
g(u) ¼ 1/(1 þ exp(�u)) to describe the pattern with parameters b1 > 0, b2 > 0 to be determined by the collected
COVID-19 data.
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Fig. 5. One day ahead predictions of COVID-19 cases from March 11, 2020, to August 18, 2020, for ten regions. The blue lines represent the predicted COVID-
19 cases and red lines represent the observed cumulative number of COVID-19 cases.
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*l(x) describes the spatial heterogeneity of COVID-19, which depicts different infection rate of each region.
*m(x, t � 10) takes the data from GCMR outside of the home activities. t � 10 of 10 reflects the incubation period of
severe acute respiratory syndrome coronavirus 2 and reporting delay (Yamamoto & Wang, 2009).
C The term E(x)p(x, t � 10)C(x, t) is the rate of decrease of COVID-19 cases due to human efforts such as wearing masks or
social distancing to reduce the transmission rate.
*E(x) describes the spatial heterogeneity of the effectiveness of mitigation strategies to COVID-19.
*p(x, t � 10) represents policy indices for each region.
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C l(x) and E(x) are piecewise linear functions, which satisfy l(xi) ≡ li and E(xi) ≡ Ei for the location xi, where li, Ei are
determined by the fitting procedure, i ¼ 1, …, 10.

C Neumann boundary condition vC
vx ð1; tÞ ¼ vC

vx ð10; tÞ ¼ 0; t >1 is applied in (Murray, 2002). For simplicity, we count the
cases imported from neighbor states as local US cases and assume that no COVID-19 spreads across the boundaries at
x ¼ 1, 10.

C Initial function C(x, 1) ¼ j(x) describes the initial states of COVID-19 in every US region, which can be constructed from
the historical data of COVID-19 cases by cubic spline interpolation.
4. Model validation

The basic mathematical properties of the proposed PDE model in Equation (1), such as existence and uniqueness, can be
established from the standard theorems for parabolic PDEs in (Friedman, 2008). Below, we evaluate the robustness of our
PDE-based predictive model and validate if the model has acceptable short-term prediction performance with the COVID-19
cases reported in the US. In the current experiment, we predict the COVID-19 cases 1, 7 and 14 days ahead. It is not to predict
the number of future COVID-19 cases, rather to retrospectively validate that our model can explain the COVID-19 dynamics.
The procedures of predictive modeling for the COVID-19 cases are summarized as follows:

C Parameter Estimation: The process of performing the estimation can be divided into twomajor processes.We first use
an optimization method to fit parameters in the PDE model with historical data of COVID-19 cases. In essence, this is a
multi-parameter inverse problem of parabolic equations. We integrate the local and global methods to search for the
best-fitting parameters. We take a hybrid approach: first, a tensor train global optimization (Oseledets, 2011) is used to
explore the parameter space thus to locate the starting points and then Nelder-Mead simplex local optimization
method (Lagarias et al., 1998) is used to search the local optimum. The Nelder-Mead simplexmethod is implemented in
the fminsearch function in Matlab. Once the model parameters are determined, we use the fourth-order Runge-Kutta
method to solve the PDE for one-step forward prediction numerically.

C Prediction Procedure: In order to estimate the cumulative number of COVID-19 cases of a given day, we first train the
parameters of the PDE model and then solve the PDE model for prediction. For example, for one day ahead prediction,
using data for days 1e4, 2e5, …, we train the PDE model (i.e., estimate the best fitted parameter values for the PDE
model), and then using those estimated parameter values, we predict the number of COVID-19 cases for the following
days 5, 6, …, respectively. The blue lines represent the estimated COVID-19 cases and the red lines represent the cu-
mulative of the reported COVID-19 cases. Note that we normalize the data to be between [0, 1] by dividing by the
maximum value. Parameters in each prediction step are different; here, we provide the parameters in the last pre-
diction for August 18: d ¼ 4.56129, b1 ¼ 0.15022, b2 ¼ 0.00736. Values for li and Ei are shown in Table 1. The results of
COVID-19 cases prediction from March 11, 2020, to August 18, 2020, for the ten regions are shown in Fig. 5.

C Accuracy Measurement: We need to quantify the accuracy of model prediction of the COVID-19 cases by comparing
the predicted COVID-19 cases with the observed COVID-19 cases for the ten regions, which are the ground truth. The
mean absolute percentage error

1�
����xreal � xpredict

xreal

����
Table 1
The parameters for prediction with one day ahead on August 18. The parameters
were estimated for the each prediction step. The value on this table shows the
estimated parameters for the last prediction step.

Region (x) l(x) E(x)

1 0.50988 0.53263
2 0.54703 0.30095
3 0.50936 0.40965
4 0.53135 0.21784
5 0.48461 0.41442
6 0.63504 0.35492
7 0.47371 0.57967
8 0.35630 0.63066
9 0.60115 0.20417
10 0.34531 0.65291
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is applied to measure the prediction accuracy, where xreal is the observed COVID-19 cases at every data collection time point
and xpredict is the predicted cases. The average relative accuracy of the ten regions with one day prediction are well acceptable
with 93% and above as in Table 2. To further justify the model, we also perform 7 and 14 days ahead predictions as in Table 2.
As demonstrated in the table, the average accuracy for 7 and 14 days ahead are about 86% and 69% respectively.

C Pseudo-code:
Table 2
The pre
(MAPE)

1 day
7 day
14 da
e Begin with first time frame for prediction
* Input data to update m(x, t � 10), p(x, t � 10) and j(x). initialize d(x), r(t), l(x), and E(x)

, MATLAB solves PDE for C(x, t)
, fitting parameters of d(x), r(t), l(x), and E(x) to minimize the differences between C(x, t) and COVID-19 data
, repeat until accuracy is satisfied.

* Use the parameters to solve PDE for prediction
e Move to next time frame. Repeat the same procedure until the desired time frame reached. End.
5. Quantification of compliance with the US COVID-19 mitigation policy

The mitigation strategies such as social distancing, public mask-wearing and stay-at-home order have been considered as
effective measures to slow the spread of COVID-19 by CDC. These actions are especially important before a vaccine becomes
widely available (Centers for Disease Control and Prevention(CDC), 2019). For example, New York Times reports that states
with stronger mitigation policies over the long run are experiencing comparatively smaller outbreaks and better situations
during the second or third waves of the new coronavirus (The New York Times, 2020). Thus, to build a robust and accurate
model, the level of voluntary compliance has to be taken into consideration to quantify the mitigation policies. We have
estimated the compliance level from the empirical COVID-19 cases and the policy indices that we have calculated.

In this paper we use parameter E(x) to reflect the effectiveness of the state mitigation policies (i.e., how people comply
withmitigation policies) in each region. The results of estimated E(x) betweenMarch 11, 2020, and August 18, 2020 are shown
in Fig. 6. The curves in Fig. 6 all start with about the same values in at the beginning of March. Around the middle of March,
many states issued public health emergency declarations and various mitigation measures. As a result, we can see the curves
in Fig. 6 increase or decease. High values of the curves indicates better compliance indices.

For example, while Fig. 3 indicates that the policy index of the region 9 (Arizona, California, Hawaii and Nevada) is the
average of ten regions, the compliance index is lower than the average throughout the period. This might be resulting from
the fact that the people in this region less likely to comply with the ordinance and precaution measures to stop the spread of
COVID-19.

We also find that region 1 (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont) and region 4
share similar policy scores, but the infection level of region 4 significantly exceeds that of region 1. The main reason is that the
compliance index of region 1 is greater than region 4, which means the mitigation strategies in region 1 get more social
support. Another example can be found by comparing region 3 (Delaware, District of Columbia, Maryland, Pennsylvania,
Virginia, and West Virginia) and region 10 (Alaska, Idaho, Oregon, and Washington) from March 2020 to August 2020. They
share similar policy indices, but the average compliance index of region 3 is around 0.45 while region 10 is around 0.65. As a
result, region 10 shows a better COVID-19 situation during that period of time.

The growth rate of case number of COVID-19 in region 4 (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina,
South Carolina and Tennessee) is the greatest among the ten regions after May. The compliance index is among the lowest in
the ten regions. Moreover, Fig. 3 indicates that region 4 has the lowest policy index in the ten regions. That is, the state
governments do not issue strict mitigation policies, and the people in the region did not comply. Both the compliance index
and the policy index of region 6 (Arkansas, Louisiana, New Mexico, Oklahoma, and Texas) are low. Contrary, the case number
of COVID-19 in this region is high. This implies that the people in the region do not effectively follow the guidelines to contain
the virus.

Our analysis shows that there is a significant correlation between compliance index and COVID-19 cases in many regions.
We hope that the compliance index will play an important role in disease control by quantifying policy compliance levels.
Public health policies can be more effective if they gain the wide social support and are implemented in a context of social
cohesion (Bargain and Aminjonov, 2020b).
diction accuracy of our proposed model. The average relative accuracy for the entire period calculated using the mean absolute percentage error
.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

ahead 98% 98% 98% 98% 98% 98% 96% 93% 99% 96%
s ahead 89% 87% 86% 86% 86% 86% 81% 80% 90% 87%
ys ahead 71% 66% 71% 74% 71% 68% 59% 57% 77% 71%
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Fig. 6. Compliance indices with the US mitigation policies in ten regions from March 11, 2020, to August 18, 2020. The curves represent the estimated time-
series values of E(x) which indicated the effectiveness of the state mitigation policies (i.e., how people comply with mitigation policies.).
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6. Discussion

In this work, we have built a COVID-19 prediction model incorporating social distancing policies, compliance and human
mobility. The states in the US were clustered into ten regions to understand the epidemic dynamics of COVID-19 better. For
each of the ten regions, the parameters of the PDE model were trained and used to solve the PDE for the prediction of COVID-
19 cases. The proposed model captures the spatiotemporal signals at both the national and state level. Our results agrees with
other studies (White & Dufresne, 2020) about the importance of spatial heterogeneity to understand the progression of the
COVID-19 dynamics. The average relative accuracy of the ten regions with three days prediction were well acceptable with
95% and above.

Our results highlight that social distancing policy and its compliance can reduce the number of cases and help end the
epidemic more quickly. In the US there was a large degree of heterogeneity in the social distancing policy and its compliance
throughout the states, cluster level analysis captured the trend while saving the computational cost. The effectiveness of
mitigation measures also vary in different areas due to many social factors. Every precautionary measure needs time for
511
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citizens to accept. For example, public mask-wearing is now widely viewed as a low-cost and effective measure for reducing
COVID-19 transmission; however, it was not until April 3 that the CDC formally recommended mask-wearing to the general
public. Moreover, while COVID-19 has become a partisan issue in the US, political beliefs and social trust have affected the
compliance with the mitigation policies (Painter & Qiu, 2020). Across the US, voluntary following to the CDC’s mask
recommendation has been uneven. Unlike some other nations, mask-wearing is not a cultural norm in the US. The absence of
such a standard or a national mask mandate has resulted in considerable policy variation across states. One additional
complication is that people are often unaware of hurting others when violating social distancing policies because many
infected individuals are asymptomatic and unaware of being positive.

To the best of our knowledge, this paper is the first study to validate COVID-19 cases in the US with local policies and its
compliance using a specific PDE. This work demonstrates the influences and effectiveness of various social precautions such
as stay-at-home order, face masks mandate, and practicing social distance. The proposed framework provides the mea-
surement of localized policies. Thus, medical workers and governors will have better preparation for the coming COVID-19
waves.

In conclusion, we have developed a specific PDE model taking into account social distancing policy, its compliance, and
human mobility e all issues which are crucial to disentangle the COVID-19 epidemic. The model fits the current data
remarkably well with one, seven and 14 days ahead predictions. We believe that our model can help inform policymakers as
they decide how to react to future pandemic waves.
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