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Abstract

Trastuzumab and pertuzumab are monoclonal antibodies that bind to distinct subdomains

of the extracellular domain of human epidermal growth factor receptor 2 (HER2). Adding

these monoclonal antibodies to the treatment regimen of HER2-positive breast cancer has

changed the paradigm for treatment in that form of cancer. Synergistic activity has been

observed with the combination of these two antibodies leading to hypotheses regarding the

mechanism(s) and to the development of bispecific antibodies to maximize the clinical effect

further. Although the individual crystal structures of HER2-trastuzumab and HER2-pertuzu-

mab revealed the distinct binding sites and provided the structural basis for their anti-tumor

activities, detailed structural information on the HER2-trastuzumab-pertuzumab complex

has been elusive. Here we present the cryo-EM structure of HER2-trastuzumab-pertuzu-

mab at 4.36 Å resolution. Comparison with the binary complexes reveals no cooperative

interaction between trastuzumab and pertuzumab, and provides key insights into the design

of novel, high-avidity bispecific molecules with potentially greater clinical efficacy.

Introduction

Human epidermal growth factor receptors (HER) are a family of 4 transmembrane tyrosine

kinase receptors that can dimerize with one another and mediate cell growth, differentiation,

and survival.[1] In total, ten different homo- and heterodimers are formed by four HER recep-

tors, allowing for integration of complex biological signaling events. Over-expression of HER2

has been shown to correlate with aggressive tumors, making it a key target for development of

anti-cancer agents.[2, 3]

Structural studies have shown that the extracellular domain (ECD) of the HER family of

receptors is composed of four subdomains (I-IV), and that the ECD can only exist in two

forms: a tethered form and an extended form. In the tethered form the ECD is unable to medi-

ate dimerization, due to interactions between subdomain II and subdomain IV.[4] However,

in the extended form, the dimerization elements of the receptor are fully exposed allowing

dimerization and signaling. HER2 is unique in that it exists in a constitutively extended form
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due to stabilization through direct interactions between subdomains I and III, explaining both

why HER2 is a preferred binding partner for other HER family members and contributing to

its importance in tumor development. [4, 5]

Trastuzumab, a therapeutic antibody targeting subdomain IV of the HER2 ECD, results in

inhibition of HER2-mediated mitogenic signaling and a reduction in cell proliferation by

blocking homodimerization of the protein.[6] The use of trastuzumab in HER2-positive can-

cer has transformed the treatment paradigm, but resistance has posed a serious limitation on

its overall impact, provoking investigation into complementary therapies against this target.[7]

The development of pertuzumab, a monoclonal antibody targeting subdomain II of the HER2

ECD is one such treatment, designed to block heterodimerization as well as homodimerization

to more completely inhibit HER2 signaling.[4] The use of pertuzumab in combination with

trastuzumab and docetaxel chemotherapy has improved clinical outcomes, justifying the use

of this approach.[8] There are multiple hypotheses for how such synergy is produced including

in silico models showing that enhanced binding affinity towards the HER2 molecule may

result from cooperative interactions between the two antibodies.[9] If true, this would influ-

ence the design of improved bi-specific molecules for the treatment of HER2-positive cancers.

Thus, it is of interest to better understand the structure and dynamics of a ternary complex

including the HER2 ECD, trastuzumab and pertuzumab to inform on the design of novel ther-

apeutic candidates. This paper describes results from cryo-EM structural studies on the ternary

HER2-trastuzumab-pertuzumab complex and discusses the implications of the results on the

design of novel therapeutics.

Results and discussion

Previous computational and biophysical studies have demonstrated that both trastuzumab Fab

and pertuzumab Fab could bind simultaneously on HER2 ECD.[9, 10] To obtain the ternary

complex of HER2 with both Fabs, we purified the binary complex of HER2 with the first Fab

using size exclusion chromatography (SEC) before adding the second Fab. Based on the SEC

profiles, HER2 formed stable binary complex with either Fab in solution and no HER2 peak

was observed when excessive amount of Fab was present (Fig 1). The addition of the second

Fab clearly shifted the elution volume again in SEC, indicating the presence of the larger ter-

nary complex, and there was no obvious HER2-Fab binary complex detected as a shoulder

peak (Fig 1). This experiment also demonstrated that the order of Fab binding doesn’t affect

the ternary complex formation.

The purified ternary complex of HER2-trastuzumab-pertuzumab was subject to structural

characterization using cryo-EM, and a density map was obtained at a global resolution of 4.36

Å (Fig 2). All three components of the ternary complex were identified in the cryo-EM map

(Fig 3), and a final model of HER2-trastuzumab-pertuzumab was built and refined. Residues

Thr23-Ala644 of HER2 were defined in the cryo-EM map except T127-V129 contained within

a loop region. Predicted glycosylation on residues Asn68, Asn187, Asn259 and Asn571 could

be assigned. Both trastuzumab Fab (light chain residues Asp1-Cys214 and heavy chain resi-

dues Glu1-Pro220) and pertuzumab Fab (light chain residues Asp1-Cys214 and heavy chain

residues Glu1-Cys216) could also be fitted into the map. However, the constant region of tras-

tuzumab Fab has poor density compared to its variable region and the other two components

of the complex (Fig 3C), indicating its flexibility in solution. This is also consistent with the

local resolution analysis using ResMap[11], which shows relative low resolution of this region

(Fig 3B).

The cryo-EM structure of HER2-trastuzumab-pertuzumab (Fig 4A) superimposes well

with the crystal structures of HER2-pertuzumab (RMSD of 0.96 Å over 790 Cα atoms, Fig 4B)

Cryo-EM Structure of HER2-trastuzumab-pertuzumab complex
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and HER2-trastuzumab (RMSD of 1.33 Å over 542 Cα atoms, Fig 4C). HER2 in the ternary

complex adopts the same conformation as in the binary complexes and apo.[12, 13] Pertuzu-

mab Fab in HER2-trastuzumab-pertuzumab aligns well with that in HER2-pertuzumab

including the constant region (Fig 4B). In comparison, the variable region of trastuzumab Fab

in HER2-trastuzumab-pertuzumab superimposes well with that in HER2-trastuzumab while

its constant region is shifted from that in HER2-trastuzumab (Fig 4C). This is likely because

the trastuzumab Fab, particularly its constant region, in the HER2-trastuzumab structure is

involved in extensive crystal contacts whereas the pertuzumab Fab in the HER2-pertuzumab

structure is not.[12, 13] Importantly, the interactions between HER2 and the two Fabs are very

similar among the ternary and binary complexes[12, 13] with pertuzumab and trastuzumab

Fabs bound to domains II and IV of HER2 respectively. Comparison of the cryo-EM structure

of HER2-trastuzumab-pertuzumab with the crystal structures of HER2-pertuzumab and

Fig 1. SEC profiles showing the formation of HER2-trastuzumab-pertuzumab ternary complex. A. HER2 is first

complexed with trastuzumab Fab and the binary complex elutes earlier than HER2 alone. The purified complex is

further complexed with pertuzumab Fab and the ternary complex elutes earlier than the binary complex. The UV

absorption is normalized. B. HER2 is first complexed with pertuzumab Fab and the binary complex elutes earlier than

HER2 alone. The purified complex is further complexed with trastuzumab Fab and the ternary complex elutes earlier

than the dimer. The UV absorption is normalized.

https://doi.org/10.1371/journal.pone.0216095.g001
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HER2-trastuzumab reveals that both pertuzumab and trastuzumab can bind to HER2 simulta-

neously with little conformational change and suggests that binding of one antibody does not

enhance the binding of the other, in good agreement with previous biophysical studies.[10]

Therefore, the clinical synergism of pertuzumab and trastuzumab likely arises not from

enhanced affinity but from other mechanisms including synergy in the inhibition of HER2

ligand-dependent and ligand-independent signaling.

Since the combination treatment of trastuzumab and pertuzumab demonstrated superior

inhibitory effect on the survival of HER2-positive breast cancer cells in vitro, in vivo and in

clinical trials,[14–17] various bispecific antibodies containing both trastuzumab and pertuzu-

mab variable regions were designed and evaluated. The first approach was the tetravalent

“dual-variable-domain immunoglobulin”,[18] by fusing the variable domains of light chain

and heavy chain (VL and VH) of pertuzumab to the C-termini of the VL and VH of trastuzumab

Fig 2. Brief summary of cryo-EM data processing. 1,032,611 particles were picked automatically and extracted in

cisTEM software [28]. Three rounds of 2D classification were carried out and classes with clearer structure features

were selected. Representative classes are shown here. A total of 398,409 particles were used in 3D Auto Refine and the

final reconstruction was generated. The resolution was determined with FSC cutoff at 0.143.

https://doi.org/10.1371/journal.pone.0216095.g002

Fig 3. Cryo-EM map of HER2-trastuzumab-pertuzumab. A. Cryo-EM map showing the three components of the

ternary complex: HER2 (sky blue), trastuzumab Fab (pink), and pertuzumab Fab (orange). B. Local resolution analysis

of the final construction calculated using ResMap. C. Final construction (grey surface) with HER2 (sky blue),

trastuzumab Fab (pink), and pertuzumab Fab (orange) fitted in the map. Glycans on HER2 are shown as sticks.

https://doi.org/10.1371/journal.pone.0216095.g003
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Fig 4. Overall structure of HER2-trastuzumab-pertuzumab and comparison with HER2-pertuzumab (PDB: 1S78)

and HER2-trastuzumab (PDB: 1N8Z) structures. A. Overall structure of HER2-trastuzumab-pertuzumab. Domain I

through domain IV of HER2 are shown in green, teal, cyan, and blue respectively. Trastuzumab Fab and pertuzumab

Fab are shown in pink and yellow respectively. The previously proposed pertuzumab-induced new trastuzumab epitope

is highlighted in magenta. B. Structure comparison of HER2-trastuzumab-pertuzumab and HER2-pertuzumab. In

HER2-trastuzumab-pertuzumab, HER2, pertuzumab and trastuzumab are shown in cyan, yellow and pink respectively.

In HER2-pertuzumab, HER2 and pertuzumab are shown in blue and orange respectively. C. Structure comparison of

HER2-trastuzumab-pertuzumab and HER2-trastuzumab. In HER2-trastuzumab-pertuzumab, HER2, trastuzumab and

pertuzumab are shown in cyan, pink and yellow respectively. In HER2- trastuzumab, HER2 and trastuzumab are shown

in blue and magenta respectively. D. Distances between the C-terminus of trastuzumab VL and N-terminus of

pertuzumab VL (68.6 Å), between C-terminus of trastuzumab VH and N-terminus of pertuzumab VH (56.2 Å), and

between the C-termini of trastuzumab CH1 and pertuzumab CH1 (99.7 Å) were measured. The residues used for

measurement are highlighted in spheres. Light chain and heavy chain of trastuzumab Fab are shown in pink and

Cryo-EM Structure of HER2-trastuzumab-pertuzumab complex
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respectively, through nine-residue linkers derived from the constant domains (CL and CH1) of

trastuzumab.[19] One of the bispecific antibodies, TPL, recognized the same epitopes as trastu-

zumab and pertuzumab, potently inhibited the in vitro HER2 heterodimerization and signaling,

and suppressed the in vivo growth of breast tumor xenografts.[19] The second approach was the

knob-into-hole Fc technique, in which half antibodies of trastuzumab and pertuzumab were

assembled together.[20, 21] Strong inhibition of HER2-positive breast cancer cell proliferation

was also observed in vitro and in vivo for these bispecific antibodies KN026 and MBS301.[20,

21] However, the anti-tumor activities of all the bispecific antibodies from both approaches

were comparable to or slightly better than the combination of trastuzumab and pertuzumab. It

appears from the cryo-EM structure of HER2-trastuzumab-pertuzumab that, even with the flex-

ibility of the hinge region and the flexibility between the variable and the constant regions, the

two Fab arms of one bispecific antibody cannot bind to both domains II and IV of one HER2

molecule simultaneously (Figs 4D and 5A), considering all the various conformations of IgG1.

[22] This is consistent with the similar binding affinities of these bispecific antibodies for HER2

to those of trastuzumab and pertuzumab as well as their Fabs.[21, 23] In contrast, a bispecific

molecule with variable regions engaging both domains II and IV of one HER2 molecule concur-

rently would have a substantially higher affinity, possibly as high as the product of the binding

affinities of trastuzumab and pertuzumab. Such bispecific antibodies could be developed by

introducing an engineered hinge region of IgG3 to increase the Fab domain flexibility necessary

for hetero-bivalent binding to HER2 (Fig 5B). Similar bispecific anti-HIV antibodies have

shown synergistic potent activity.[24] Such bispecific molecules can also be engineered by con-

necting Fab regions engaging both domains II and IV of HER2 to a rigid protein linker (such as

a dimeric coiled coil) with optimal length (about 100 Å) (Fig 5C) and these hetero-diFabs could

have anti-tumor activities far superior to the combination of trastuzumab and pertuzumab. As

a case in point, similar optimal hetero-diFabs designed against the HIV envelope trimer have

exhibited up to 2.5 orders of magnitude increased potency.[25]

Materials and methods

Protein purification and complex formation

Trastuzumab (Herceptin) and pertuzumab (Perjeta) were purchased from Genentech. Each

antibody was cleaved with papain at 37˚ for 6 h in a solution containing 20 mM tris pH 8.0,

150 mM NaCl, 1 mM EDTA, 20 mM cysteine, 1 mg/mL antibody and 0.01 mg/mL papain.

The reaction was quenched by adding 25 mM iodoacetamide. The Fab fragment was separated

from Fc fragment by cation exchange chromatography at pH 4.0. Purified Fab was subject to

size exclusion chromatography with Superdex 200 10/300 column (GE Healthcare) in 20 mM

HEPES pH 7.5, 150 mM NaCl (buffer A). Lyophilized human HER2 (ACRO Biosystems) was

reconstituted and incubated with an excess of the first Fab. The complex was purified with size

exclusion chromatography and subsequently incubated with an excess of the second Fab. The

ternary complex containing HER2 and both trastuzumab Fab and pertuzumab Fab was further

separated from the unbound second Fab by size exclusion chromatography in buffer A.

Cryo-EM sample preparation and data acquisition

For cryo-EM, 3 μl of HER2-trastuzumab-pertuzumab at 2.4 mg/ml was applied to a glow-dis-

charged Quantifoil R1.2/1.3 300 mesh grid. The sample was then vitrified with a FEI Vitrobot

magenta. Light chain and heavy chain of pertuzumab Fab are shown in yellow and orange. The sequences used as nine-

residue linkers in TPL bispecific antibody are highlighted in teal (light chain) and blue (heavy chain).

https://doi.org/10.1371/journal.pone.0216095.g004
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Mark IV at 100% humidity using 2.5 sec blot time. Cryo-EM data was acquired at 300 kV on a

FEI Titan Krios. Dose fractionated movie frames were collected at 130,000x nominal magnifi-

cation (corresponding to a physical pixel size of 1.059 Å) on a K2 summit direct electron detec-

tor (Gatan). A total of 6 seconds exposure with 0.2 second subframes were recorded in

superresolution counting mode with a total dose of 45 electrons per Å2.

Cryo-EM data processing and model building

Movies of HER2-trastuzumab-pertuzumab complex were dose-weighted and corrected for

beam-induced motion using Unblur.[26] CTF estimation was done with CTFFIND4[27]

using a resolution range of 30–4 Å. Micrographs with fit resolution worse than 10 Å were not

included in the subsequent processing. 1,032,611 particles were picked automatically using a

low-pass filtered disk with a characteristic radius of 55 Å at a threshold of 3.0 in cisTEM soft-

ware[28]. The particles were extracted with a box size of 208 × 208 pixels and underwent three

rounds of 2D classification into 200 classes with a mask radius of 78 Å. C1 symmetry was

imposed during processing. Classes with clearer structure features were selected and a total of

398,409 particles were subject to 3D Auto Refine in cisTEM[28] in a single 3D class with a

starting resolution limit of 30 Å. The initial reference map was generated with the Ab-Initio

3D function in cisTEM and low-pass filtered for 3D refinement. The final refined map with a

global resolution of 4.36 Å was sharpened with Phenix.autosharpen by applying a B-factor of

254.43 Å2. The initial model of HER2-trastuzumab-pertuzumab complex based on the crystal

structures of HER2-trastuzumab (PDB: 1N8Z) and HER2-pertuzumab (PDB: 1S78) was fitted

into the cryo-EM map in COOT[29] and briefly rigid-body refined. Glycans and missing loops

were manually built with the map displayed at σ around 3.5 or 4. Several rounds of manual

adjustment in COOT[29] and refinement using Phenix.real_space_refine[30] were carried out

to achieve the final structure. Refinement process was monitored with MolProbity.[31] Struc-

ture figures were generated using PyMOL (Schrödinger, LLC.) and UCSF Chimera.[32] The

cryo-EM map and coordinates of HER2-trastuzumab-pertuzumab structure have been depos-

ited in the electron microscopy data bank with access number EMD-7137 and in the Protein

Data Bank with access code 6OGE respectively.
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