DOAC drug interactions management resource

Ayush Chadha, Pharm $D^{\textcircled{D}}$; Micheal Guirguis, BScPharm, Ph $D^{\textcircled{D}}$; Tammy J. Bungard, BSP, Pharm $D^{\textcircled{D}}$

Background

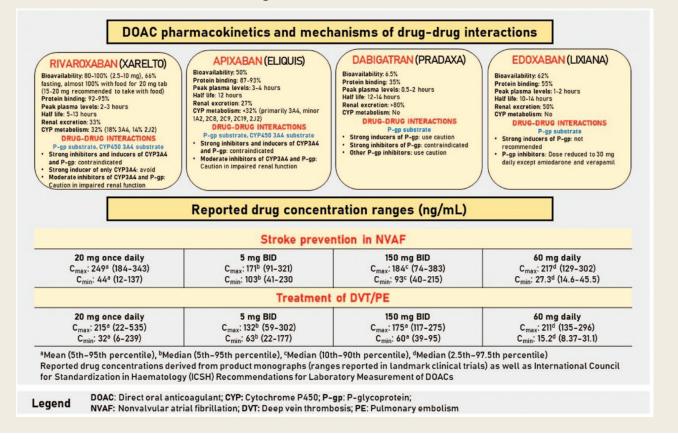
Over the past decade, direct oral anticoagulants (DOACs; apixaban, dabigatran, edoxaban and rivaroxaban) have offered many advantages over traditional therapy with warfarin \pm low-molecular-weight heparins (LMWHs). The DOACs have established dosing without the need for coagulation monitoring as well as a quick onset (C_{max} at 1-4 hours) and offset (half-lives ranging from 9-14 hours for patients with normal renal function), thereby eliminating the need for bridging with LMWHs (Figure 1).¹⁻⁵ Moreover, DOACs have fewer drug-drug interactions (DDIs) relative to warfarin; however, as the use of DOACs continues to increase in clinical practice, more information surrounding DOAC DDIs is necessary to make timely clinical decisions.

Pathways relevant to DOAC DDIs encompass the cytochrome P450 system (focusing on 3A4), as well as the Pglycoprotein (P-gp) transport system.⁷ Rivaroxaban and apixaban are substrates for P-gp and (in part) metabolized by CYP 3A4. Subsequently, rivaroxaban and apixaban DDIs must strongly affect both P-gp and CYP 3A4; the clinician should ensure a patient is not on 2 concomitant drugs that affect CYP 3A4 and P-gp separately, as these combined DDIs could cause significant changes in DOAC concentrations. In contrast, dabigatran and edoxaban are affected only by strong inhibitors/ inducers of P-gp, as they lack metabolism by the CYP enzyme. The P-gp impact is within the gastrointestinal tract; hence, to minimize the P-gp DDI, dabigatran or edoxaban may be administered 2 hours prior to the interacting agent.⁴ Notably, all DOACs have a component of renal elimination (dabigatran > edoxaban > rivaroxaban > apixaban), and while progressive renal dysfunction will result in elevated DOAC concentrations, this elimination is not a direct mechanism of DDIs.²⁻⁵

At this time, there is limited clinical pharmacokinetic (PK)/ pharmacodynamic (PD) data to quantify the clinical impact of specific DOAC DDIs. DDIs of this nature (i.e., P-gp or CYP

450) are highly variable because of the timing of the induction/ inhibition turnover as well as the strength (mild, moderate or strong) of the interaction.⁸ In addition, there is inherent intersubject variability of 30% for concentrations of dabigatran, edoxaban and apixaban, with rivaroxaban reaching 40% for PK parameters.9 In addition, reported ranges of DOAC concentrations assessed in subgroups of clinical trials demonstrate variability in peak/trough ratios of nearly 1.6-fold.²⁻⁵ With this in mind, DDIs that alter DOAC concentrations of 30% to 40% often still result in DOAC concentrations falling within these reported concentration ranges. Subsequently, when regulators consider providing advice surrounding DDIs, within the context of high PK/PD variability, general recommendations are often to avoid these combinations; specifically, regulators contraindicate DOACs for DDIs with inducing agents (for fear of thrombotic events) and recommend use with caution and assess other factors that may warrant avoidance when an inhibitor is the interacting culprit.

Limited, if any, data provide a comparison of DDIs between the DOACs. Unique to edoxaban are recommendations for dose reduction (from 60 to 30 mg daily) in the presence of P-gp inhibitors (except amiodarone and verapamil), with certain drugs listed based on clinical trial protocols or product monograph content.^{5,10} As the front-line clinician continues to manage more complex clinical scenarios with consideration of DOAC use, a summary of available literature specific to DOAC DDIs is necessary, given there may be no or conflicting information for drug interactions. As such, our purpose is to provide a tool that differentiates DDIs across the 4 DOACs specific to agents commonly prescribed for patients with cardiovascular disease, with a description of available data to support the same.


Development of the practice tool

To create the practice tool, a systematic approach was used to collate data from both product monographs and peer-reviewed

Article reuse guidelines: sagepub.com/journals-permissions D0I:10.1177/17151635221116100

© The Author(s) 2022

FIGURE 1 Overview of direct oral anticoagulants^{1–6}

literature available for DDIs with the DOACs. As conflicting information was identified across multiple sources, we streamlined our approach. First, a general table of drugs known to be CYP 3A4 and P-gp inhibitors and inducers was created using data from LexiComp and was cross-checked using the Food and Drug Administration (FDA) database where inconsistencies arose.^{11,12} Following this, all possible medication interactions were entered into the Lexi-Interact database-the one most commonly used by our clinical pharmacists.¹³ As most information was general in nature and based on a theoretical interaction, a formal search of the literature was then completed using the OVID database searching both MEDLINE (back to 1946) and Embase (back to 1974) on May 14, 2021, using the following search strategy: search term 1: "Dabigatran or Pradaxa or Apixaban or Eliquis or Rivaroxaban or Xarelto or Edoxaban or Lixiana or DOAC* or direct oral acting anticoagulant* or NOAC* or novel oral acting anticoagulant*" and search term 2: "Drug interaction* or Drug-drug interaction* or medication interaction*". A total of 182 articles were identified and included if they demonstrated area under the curve (AUC) data or any clinical evidence (either drug concentrations or clinical outcomes) of a DDI. Among included articles, citations were also reviewed for relevant literature. Based on available data, recommendations for concomitant use with a DOAC (Table 1) were classified as follows:

- Green: No interaction or clinically nonsignificant interaction—no effect on pharmacokinetics
- Green/yellow: Use together with caution; limited data suggest either increased major bleeding or altered drug concentrations
- Yellow: Use with caution as either:
 - a theoretical/documented interaction that would affect DOAC concentration,
 - product monograph recommendation to use with caution, or
 - for edoxaban, recommendation to reduce dose (signified with \downarrow dose)
- Yellow/red: Concomitant use is not recommended; limited data may support use
- Red: Avoid combination, may use only if DOAC concentrations are assessed as either:
 - theoretical/documented interaction that affects DOAC concentration or
 - product monograph recommendation to avoid or contraindicate, implies expected drug concentrations exceed the observed and acceptable variability

Inclusion of all actual or potential DDIs with DOACs was beyond the scope of our tool. As this tool was created for use by practitioners within an anticoagulation clinic having a thrombosis/cardiology-based practice, herbal supplements and drug

TABLE 1 DOAC drug interaction tool

		Antiarrhythmic agents				
	Substrate	DDI mechanism	R	А	D	E
Amiodarone	3A4	Moderate 2C9 inhibitor Weak 3A4, 2D6 inhibitor P-gp inhibitor	1	2	3	4
Dronedarone	3A4	Moderate 3A4 inhibitor P-gp inhibitor	5	6	7	8↓dose
Propafenone	3A4, 2D6	P-gp inhibitor	9	10	11	12
Quinidine	3A4, P-gp	Weak 3A4 inhibitor P-gp inhibitor	13	14	15	16↓dose
		Antibacterial agents				
	Substrate	DDI mechanism	R	А	D	E
Azithromycin	3A4	P-gp inhibitor	17	18	19	20
Ciprofloxacin	P-gp	Strong 1A2 inhibitor Moderate 3A4 inhibitor	21	22	23	24
Clarithromycin	3A4	Strong 3A4 inhibitor P-gp inhibitor	25	26	27	28
Erythromycin	3A4, P-gp	Moderate 3A4 inhibitor P-gp inhibitor	29	30	31	32↓dose
Rifampicin	P-gp	Strong 3A4, 2C19 inducer Weak 2C9, 1A2 inducer P-gp inducer	33	34	35	36
		Antidepressants				
	Substrate	DDI mechanism	R	А	D	E
SSRI		Pharmacodynamic	37	38	39	40
SNRI		Pharmacodynamic	41	42	43	44
		Antiepileptic agents				
	Substrate	DDI mechanism	R	Α	D	E
Carbamazepine	3A4, 2C8	Strong 3A4 inducer Weak 2C9/1A2 inducer P-gp inducer	45	46	47	48
Phenobarbital	2C19, 2C9	Strong 3A4 inducer Weak 2C9/1A2 inducer 2C19/2C9 substrate	49	50	51	52
Phenytoin	2C19, 2C9, 3A4	Strong 3A4 inducer Weak 1A2 inducer P-gp inducer	53	54	55	56
Other (lamotrigine, levetiracetam, valproic acid)			57	58	59	60
		Antiplatelet agents				
	Substrate	DDI mechanism	R	А	D	E
			61	62	63	64
Aspirin	2C9	Pharmacodynamic	01	02		
Aspirin Clopidogrel	2C9 2C19, 3A4	Pharmacodynamic Moderate 2C8 inhibitor Pharmacodynamic	65	66	67	68

TABLE 1 (continued)

		Azole antifungal agents				
	Substrate	DDI mechanism	R	А	D	E
Fluconazole		Strong 2C19 inhibitor Moderate 3A4/2C9 inhibitor	73	74	75	76
Itraconazole	3A4	Strong 3A4 inhibitor P-gp inhibitor	77	78	79	80
Ketoconazole	3A4	Strong 3A4 inhibitor Weak 2C19/2C8 inhibitor P-gp inhibitor	81	82	83	84
Posaconazole	3A4	Strong 3A4 inhibitor	85	86	87	88
Voriconazole	2C19	Strong 3A4 inhibitor Weak 2B6, 2C9, 2C19 inhibitor	89	90	91	92
		Beta-blockers				
	Substrate	DDI mechanism	R	А	D	E
Carvedilol		P-gp inhibitor	93	94	95	96
Other (atenolol, bisoprolol, labetalol, metoprolol, nadolol, propranolol, sotalol, timolol)			97	98	99	100
		Cardiotonic glycosides				
	Substrate	DDI mechanism	R	Α	D	E
Digoxin	3A4, P-gp		101	102	103	104
		Immunosuppresants				
	Substrate	Inhibitor	R	Α	D	E
Cyclosporine	3A4, P-gp	Weak 3A4/2C9 inhibitor P-gp inhibitor	105	106	107	108↓dose
Tacrolimus	3A4, P-gp	P-gp inhibitor	109	110	111	112
		Lipid-lowering agents				
	Substrate	DDI mechanism	R	A	D	E
Lovastatin	3A4, P-gp		113	114	115	116
Simvastatin	3A4, P-gp		117	118	119	120
Other (atorvastatin, rosuvastatin, fluvastatin, pravastatin)			121	122	123	124
	Non	steroidal anti-inflammatory drug	s			
	Substrate	DDI mechanism	R	А	D	E
Naproxen	2C9, 1A2	Pharmacodynamic	125	126	127	128
Other (ibuprofen, diclofenac, ibuprofen, indomethacin, ketorolac, meloxicam)			129	129	129	129

(continued)

TABLE 1 (continued)

Proton pump inhibitors						
	Substrate	DDI mechanism	R	А	D	E
Esomeprazole	3A4, 2C19	Weak 2C19 inhibitor Increase gastric pH	130	131	132	133
Omeprazole	3A4, 2C19	Weak 2C19 inhibitor Increase gastric pH	134	135	136	137
Pantoprazole	3A4, 2C19	Increase gastric pH	138	139	140	141
Other (dexlansoprazole, lansoprazole, rabeprazole)		Increase gastric pH	142	143	144	145

SELECTIVE CALCIUM CHANNEL BLOCKERS

	Substrate	Inhibitor	R	А	D	E
Diltiazem	3A4, 2C9, P-gp	Moderate 3A4 inhibitor	146	147	148	149
Verapamil	3A4, 1A2, 2C9, P-gp	Moderate 3A4 inhibitor Weak 1A2 inhibitor P-gp inhibitor	150	151	152	153
Other (felodipine, nifedipine, amlodipine)			154	155	156	157

Numbers in this table refer to interaction details described below.

Disclaimer: To the best of our knowledge, the data in the table are an accurate summary of the published data up to July 2021. See full disclaimer at the end of the article.

No interaction or clinically nonsignificant interaction—no effect on pharmacokinetics
Use together with caution; limited data suggest either increased major bleeding or altered drug concentrations
 Use with caution as either: a theoretical/documented interaction that would affect DOAC concentration yet in an allowable quantity, product monograph recommendation to use with caution or for edoxaban, recommendation to reduce dose (signified with ↓ dose)
Concomitant use is not recommended; limited data may support use
 Avoid combination, may use only if DOAC concentrations are assessed as either: theoretical/documented interaction that affects DOAC concentration or product monograph recommendation to avoid or contraindicate implying expected drug concentrations due to the interaction exceed the observed and acceptable variability

DOAC, direct oral anticoagulant; DDI, drug-drug interaction; R, rivaroxaban; A, apixaban; D, dabigatran; E, edoxaban; P-gp, P-glycoprotein; MB, major bleeding; GIB, gastrointestinal bleeding; PM, product monograph; ICH, intracerebral haemorrhage; SSRI, selective serotonin reuptake inhibitor; SNRI, serotonin–norepinephrine reuptake inhibitor.

Interaction details:

1. Rivaroxaban: no \uparrow in MB (ROCKET-AF clinical trial^{2,14}); \uparrow MB (3 retrospective cohorts^{15–17}); predicted \uparrow in rivaroxaban area under the curve (AUC) by 37% (in silico study¹⁸)

2. Apixaban: \downarrow MB compared with warfarin independent of amiodarone use (subanalysis of ARISTOLE¹⁹); \uparrow MB (2 retrospective cohorts^{15,17}); apixaban 5 mg bid + amiodarone 200 mg daily with hemopericardium (1 case report²⁰); probable \uparrow AUC by 30% and C by 40%³ 3. Dabigatran: \uparrow MB (1 retrospective cohort¹⁵), dabigatran 75 mg bid

3. Dabigatran: \uparrow MB (1 retrospective cohort¹⁵), dabigatran 75 mg bid + amiodarone 200 mg daily with rectal bleeding $-\downarrow$ renal function with dabigatran trough concentration at 5600 ng/mL (1 case report²¹); single dose of amiodarone 600 mg \uparrow AUC by 60% and C_{max} by 50%⁴ 4. Edoxaban: single dose of edoxaban 60 mg and amiodarone 400 mg

4. Edoxaban: single dose of edoxaban 60 mg and amiodarone 400 mg daily \times 4 days with \uparrow in AUC by 40% and C_{max} by 66% (clinical trial in 30 healthy volunteers^{5,22})

5. Rivaroxaban: ↑ overall bleeding and GIB (2 retrospective cohorts^{17,23});

+ no \uparrow MB (1 retrospective cohort¹⁵); PM not recommended²

6. Apixaban: no \uparrow overall bleeding (1 retrospective cohort²³); no \uparrow MB (2 retrospective cohorts^{15,24}); \uparrow overall bleeding (1 retrospective cohort¹⁷); probable \uparrow in AUC by 30% and C_{max} by 40% (based on diltiazem³) 7. Dabigatran: \uparrow GIB (1 retrospective cohort²³); no \uparrow MB (1 retrospective

7. Dabigatran: \uparrow GIB (1 retrospective cohort²³); no \uparrow MB (1 retrospective cohort¹⁵); single and multiple doses of dronedarone 400 mg \uparrow AUC by 114%-136% and C_{max} by 87%-125%⁴

8. Edoxaban: single dose of edoxaban 60 mg and dronedarone 400 mg twice daily \times 7 days with \uparrow in AUC by 46% and C_{max} by 66% (clinical trial in 34 healthy volunteers^{5,22})

9. Rivaroxaban: no anticipated drug interaction

- 10. Apixaban: no anticipated drug interaction
- 11. Dabigatran: no clinical data—theoretical interaction⁴

PRACTICE TOOL

- Edoxaban: no clinical data—theoretical interaction⁵ 12.
- Rivaroxaban: no anticipated drug interaction 13.
- 14. Apixaban: no anticipated drug interaction

Dabigatran: dabigatran 150 mg bid + dextromethorphan 20 mg/ 15. guinidine 10 mg bid resulting in lower GIB in a patient with acute kidney injury and \uparrow thrombin time despite several doses of idarucizumab (1 case report²⁵); \uparrow in AUC by 53%—product monograph recommends separating administration of dabigatran by at least 2 hours before quinidine⁴

Edoxaban: single dose of edoxaban 60 mg and quinidine 300 mg 16. imes 2 days, \uparrow in AUC by 77% and C max by 85% (clinical trial in 42 healthy volunteers²²)

- 17. Rivaroxaban: no anticipated drug interaction
- Apixaban: no anticipated drug interaction 18.
- Dabigatran: no clinical data—theoretical interaction⁴ 19.
- 20. Edoxaban: no clinical data—theoretical interaction⁵
- Rivaroxaban: no anticipated drug interaction 21.
- Apixaban: no anticipated drug interaction 22.
- 23. Dabigatran: no anticipated drug interaction
- Edoxaban: no anticipated drug interaction 24.

Rivaroxaban: [↑] MB compared with either azithromycin or no 25. clarithromycin use (1 elderly cohort²⁶); no difference when used for Helicobacter pylori treatment combined erythromycin and clarithromycin (1 retrospective cohort¹⁵); rivaroxaban 20 mg daily + clarithromycin 500 mg twice daily resulting in ICH and rivaroxaban trough concentration of 537 ng/mL (1 case report²⁷); single dose of rivaroxaban 10 mg daily and clarithromycin 500 mg twice daily \uparrow AUC by 50% and C $_{_{\rm max}}$ by 40% (clinical trial in 16 healthy volunteers^{2,28})

26. Apixaban: \uparrow MB compared with either azithromycin or no clarithromycin use (1 elderly cohort²⁶); \downarrow MB when used for *H. pylori* treatment combined erythromycin and clarithromycin (1 retrospective cohort¹⁵) \uparrow in AUC by 60% and C_{max} by 30%³

27. Dabigatran: [↑] MB compared with either azithromycin or no clarithromycin use (1 elderly cohort²⁶); \downarrow MB when used for *H. pylori* treatment combined erythromycin and clarithromycin (1 retrospective cohort¹⁵); single dose of dabigatran 300 mg and 500 mg clarithromycin twice daily \uparrow AUC by 49% and C_{max} by 60% (clinical trial in 10 healthy volunteers²⁹); coadministration of 500 mg bid clarithromycin with dabigatran \uparrow in AUC by 19% and C_{max} by 15%⁴ 28. Edoxaban: no clinical data – theoretical interaction⁵

Rivaroxaban: \downarrow MB when used for *H. pylori* treatment combined 29. erythromycin and clarithromycin (1 retrospective cohort¹⁵); erythromycin 500 mg tid and rivaroxaban \uparrow in AUC by 30%²

Apixaban: \downarrow MB when used for *H. pylori* treatment combined erythromycin and clarithromycin (1 retrospective cohort¹⁵)

31. Dabigatran: \downarrow MB when used for *H. pylori* treatment combined

erythromycin and clarithromycin (1 retrospective cohort¹⁵)

Edoxaban: single dose of edoxaban and erythromycin 500 mg qid for 32. 8 days \uparrow AUC by 85% and C_{max} by 68%⁵

33. Rivaroxaban: rivaroxaban 20 mg daily and rifampicin 150 mg bid leading to a fatal pulmonary embolism (PE) with peak rivaroxaban concentration at 178 ng/mL (1 case report³⁰; rivaroxaban + rifampicin [doses not specified] \downarrow AUC by 50%²)

34. Apixaban: coadministration of rivaroxaban + rifampicin 600 mg daily \downarrow AUC by 54% and C_{max} by 42%³

35. Dabigatran: rifampicin 600 mg \times 7 days + dabigatran \downarrow AUC by 66% and C_{max} by 67%⁴

36. Edoxaban: single dose of edoxaban 60 mg and rifampicin 600 mg

imes 7 days \downarrow AUC by 34% with no change in C _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (clinical trial in 32 healthy volunteers^{5,31})

37. Rivaroxaban: numerically [↑] MB in rivaroxaban and warfarin groups with SSRI vs without (subanalysis of ROCKET-AF³²); [↑] MB with DOACs, but a secondary analysis with individual DOACs found no statistically significant interaction of rivaroxaban with SSRI (1 case-control study³³)

Apixaban: apixaban coadministered with SSRI/SNRI did not show a 38. significant \uparrow MB compared with those on apixaban alone (cohort study³⁴); ↑ MB risk with DOAC + SSRI vs no SSRI^{3,35}

39. Dabigatran: [↑] MB with DOACs, a secondary analysis with individual DOACs found statistically significant interaction of rivaroxaban with SSRI (1 case-control study³⁴); [↑] MB with dabigatran and warfarin with SSRI vs without (drug information manufacturer⁴)

40. Edoxaban: theoretical [↑] MB risk (not in other DOAC studies) 41. Rivaroxaban: no DDI studies done, yet potential ↑ risk of MB identified in case reports and epidemiological studies-theoretical impact²

42. Apixaban: apixaban coadministered with SSRI/SNRI did not show a significant \uparrow MB compared with those on apixaban alone (cohort study³⁴); \uparrow MB risk with DOAC + SNRI vs no SNRI^{3,35}

43. Dabigatran: no DDI studies done, yet potential 1 risk of MB identified in case reports and epidemiological studies—theoretical impact (PM)

Edoxaban: theoretical \uparrow MB risk (not in other DOAC studies) 44. Rivaroxaban: rivaroxaban 20 mg/day + carbamazepine 900 mg/ 45. day with reduced rivaroxaban concentration <20 ng/mL with recurrent venous thromboembolism (VTE; case report³⁶); PE after total knee replacement taking rivaroxaban 10 mg/day + carbamazepine 600 mg bid without rivaroxaban concentration (case report³⁷); avoid use²

46. Apixaban: Transient ischemic attack with apixaban 5 mg bid + carbamazepine 400 mg/day with peak apixaban concentration 94 ng/mL (case report³⁸); apixaban 5 mg bid + carbamazepine 400 mg/ day with peak apixaban concentration 110 ng/mL and trough 64 ng/ mL—concentrations higher than while not taking carbamazepine (case report³⁹); titration of carbamazepine with apixaban 5 mg bid +carbamazepine 800 mg/day had apixaban trough concentration 30 ng/mL + peak 114 ng/mL, apixaban 10 mg bid + carbamazepine 1000 mg/day with repeat trough/peak of 41/99 ng/mL (case report⁴⁰); avoid use³ 47. Dabigatran: dabigatran 150 mg bid + carbamazepine dose not specified yielded reduced dabigatran concentration of <30 ng/mL (2 case reports⁴¹); avoid use⁴

48. Edoxaban: edoxaban 60 mg/day + carbamazepine 400 mg/day with reference range edoxaban of peak 199 ng/mL after 2 weeks and 236 ng/mL after 4weeks (1 case report³⁸); avoid use⁵

49. Rivaroxaban: theoretical interaction—no clinical data, avoid use² Apixaban: cardioembolic stroke with apixaban 5 mg bid + "low-dose 50. phenobarbital" with trough apixaban concentration of 89 ng/mL (1 case report⁴²); avoid use³

51. Dabigatran: dabigatran + phenytoin or phenobarbital resulted in median corrected trough steady state >3 standard deviations below cohort mean (1 cohort study⁴²); dabigatran 150 mg bid + "low-dose phenobarbital" had cardioembolic stroke after 3 months (no dabigatran concentration; 1 case report⁴³)

Edoxaban: theoretical interaction—no clinical data; avoid use⁵ 52. Rivaroxaban: rivaroxaban 15 mg bid + phenytoin 300 mg/day had 53. peak rivaroxaban concentration of 70 ng/mL and 90 ng/mL (low), switched to dabigatran 150 mg bid with clinical improvement and thrombin time

>180 seconds 4 hours postdose (1 case report⁴⁴); avoid use²

Apixaban: theoretical interaction—no clinical data, avoid use³ 54. Dabigatran: dabigatran + phenytoin or phenobarbital resulted in 55. median corrected trough steady state >3 standard deviations below cohort mean (1 cohort study⁴²); dabigatran 150 mg bid + phenytoin 300 mg/day with undetectable dabigatran concentration (case report⁴⁵); left atrial thrombus with dabigatran 150 mg bid + phenytoin 300 mg/day, no dabigatran concentration noted (case report⁴⁶)

Edoxaban: theoretical interaction—no clinical data (PM); avoid use⁵ 56.

- Rivaroxaban: no anticipated drug interaction 57.
- 58. Apixaban: no anticipated drug interaction
- 59. Dabigatran: no anticipated drug interaction
- Edoxaban: no anticipated drug interaction 60.

Rivaroxaban: 1 MB; no clinically significant pharmacokinetic (PK) 61. interaction with aspirin 500 mg²

62. Apixaban: 1 MB; no clinically significant PK interaction with aspirin 325 mg³

Dabigatran: ↑ MB; no PK data available⁴ 63.

Edoxaban: \uparrow MB; coadministration of aspirin 100 mg or 325 mg and 64. edoxaban \uparrow AUC by 32% and C_{max} by 35%⁵

Rivaroxaban: 1 MB; clopidogrel 75 mg daily + single dose of 65.

rivaroxaban had no effect on PK²

66. Apixaban: \uparrow MB, no changes in PK with clopidogrel 75 mg daily³

PRACTICE TOOL

67. Dabigatran: \uparrow MB, \uparrow C $_{_{max}}$ by 30%-40% with loading dose of 300 or 600 mg clopidogrel 4

68. Edoxaban: ↑ MB, no PK data⁵

69. Rivaroxaban: [↑] MB; no PK data; PM states not recommended²

70. Apixaban: ↑ MB; no PK data; PM states not recommended⁵

71. Dabigatran: \uparrow MB; PK data reports an \uparrow in AUC by 26%-49% and C_{max} by 24%-65%; PM states not recommended⁴

72. Edoxaban: No data, concurrent use not recommended by

manufacturer due to bleeding risk⁵

73. Rivaroxaban: \uparrow MB (retrospective cohort¹⁵); rivaroxaban 20 mg daily + fluconazole 400 mg/day \times 6 days \uparrow AUC by 40%^{2,28}

74. Apixaban: \uparrow MB (retrospective cohort¹⁵)

75. Dabigatran: [↑] MB (retrospective cohort¹⁵)

76. Edoxaban: no anticipated drug interaction

77. Rivaroxaban: no \uparrow MB (combination of itraconazole, ketoconazole, posaconazole, voriconazole; retrospective cohort¹⁵); potential \uparrow rivaroxaban concentration by 160%²

78. Apixaban: theoretical interaction—no data; avoid use per PM³

79. Dabigatran: no ↑ MB (combination of itraconazole, ketoconazole,

posaconazole, voriconazole; retrospective cohort¹⁵); may \uparrow dabigatran exposure, use with caution per PM⁴

80. Edoxaban: PM use with caution; in VTE trials, the dose was reduced to 30 mg daily $^{\rm 5}$

81. Rivaroxaban: no \uparrow MB (combination of itraconazole, ketoconazole, posaconazole, voriconazole; retrospective cohort¹⁵); \uparrow AUC by 160% and C_{max} by 70%²

 C_{max} by 70%² 82. Apixaban: single dose of apixaban 10 mg and ketoconazole 400 mg/day ↑ AUC by 100% and C_{max} by 60% (clinical trial in 20 healthy volunteers^{3,47})

83. Dabigatran: no \uparrow MB (combination of itraconazole, ketoconazole, posaconazole, voriconazole; retrospective cohort¹⁵); single and multiple oral doses of ketoconazole 400 mg daily \uparrow AUC by 138%-153% and $\uparrow C_{max}$ by 135%-149%⁴

84. Edoxaban: single dose of edoxaban 60 mg and ketoconazole 400 mg/day \uparrow AUC by 87% and C by 89%, decrease dose per PM (clinical trial in 37 healthy volunteers^{CMP})

85. Rivaroxaban: no \uparrow MB (combination of itraconazole, ketoconazole, posaconazole, voriconazole; retrospective cohort¹⁵); may \uparrow rivaroxaban concentration by 160%, which \uparrow bleeding risk²

86. Apixaban: avoid use per PM—may ↑ exposure by twofold³

87. Dabigatran: no \uparrow MB (combination of itraconazole, ketoconazole, posaconazole, voriconazole; retrospective cohort¹⁵); may \uparrow exposure⁴

88. Edoxaban: no clinical data—may ↑ exposure⁵

89. Rivaroxaban: no \uparrow MB (combination of itraconazole, ketoconazole, posaconazole, voriconazole; retrospective cohort¹⁵)—may \uparrow exposure based on extrapolation with other azoles

90. Apixaban: contraindicated per PM—may \uparrow exposure by twofold based on extrapolation with other azoles³

91. Dabigatran: no [↑] MB (combination of itraconazole, ketoconazole,

posaconazole, voriconazole; retrospective cohort¹⁵

92. Edoxaban: no anticipated drug interaction

93. Rivaroxaban: no anticipated drug interaction

94. Apixaban: no anticipated drug interaction

95. Dabigatran: no data—theoretical interaction with P-gp inhibition,

P-gp inhibitor per Food and Drug Administration (FDA)^{4,12}

96. Edoxaban: no data-theoretical interaction with P-gp inhibition,

P-gp inhibitor per FDA^{5,12}

97. Rivaroxaban: no anticipated drug interaction

98. Apixaban: no anticipated drug interaction, \downarrow in AUC by 15% and C_{max}

by 18% of apixaban when coadministered with atenolol³

99. Dabigatran: no anticipated drug interaction

100. Edoxaban: no anticipated drug interaction

101. Rivaroxaban: no mutual PK interactions between digoxin and rivaroxaban $^{\rm 2}$

102. Apixaban: no dose adjustment is required³

103. Dabigatran: no PK interaction observed—no dose adjustment required per $\ensuremath{\mathsf{PM}^3}$

104. Edoxaban: no clinical data—PK data \uparrow C $_{max}$ of edoxaban 17% and \uparrow C $_{max}$ 28% of digoxin per PM 5

105. Rivaroxaban: rivaroxaban 20 mg + dose-individualized oral regimen of cyclosporine \uparrow AUC by 47% and C_{max} by 104% (clinical trial in 12 healthy volunteers⁴⁹); no \uparrow MB (retrospective cohort¹⁵); mean for trough rivaroxaban concentration 131.7 ng/mL with cyclosporine compared with mean for trough rivaroxaban concentration 20.3 ng/mL with tacrolimus (cohort study in 9 patients after liver transplant, 5 received cyclosporine and 4 received tacrolimus⁵⁰); all but 2 patients (both with renal dysfunction) had trough rivaroxaban concentration <137 ng/mL (upper limit of reported range; prospective observational study in 11 patients with orthostatic heart transplant, 8 received cyclosporine and 3 received tacrolimus⁵¹); no \uparrow MB (dabigatran n = 9, rivaroxaban n = 17, apixaban n = 1, cyclosporine n = 2, tacrolimus n = 25; retrospective observational study⁵²)

106. Apixaban: single dose of apixaban 10 mg and cyclosporine 100 mg daily \times 3 days \uparrow AUC by 20% and C_{max} by 43% (clinical trial in 12 healthy volunteers⁵³); \uparrow in MB (retrospective cohort¹⁵)

107. Dabigatran: \uparrow in MB (retrospective cohort¹⁵); no \uparrow MB among combined DOACs (dabigatran n = 9, rivaroxaban n = 17, apixaban n = 1, cyclosporine n = 2, tacrolimus n = 25) yet both MBs were taking dabigatran (retrospective observational study⁵²); may be expected to \uparrow systemic exposure to dabigatran and should be used with caution (theoretical⁴)

108. Edoxaban: cyclosporine 500 mg with a single dose of edoxaban 60 mg \uparrow edoxaban AUC by 73% and C $_{\rm max}$ by 74% (clinical trial in 33 healthy volunteers 48)

109. Rivaroxaban: No bleeding or thrombotic events, trough rivaroxaban concentration of 30-63 ng/L and peak rivaroxaban concentration of 134-449 ng/mL with limited variability in the 25th to 75th percentile range (prospective observational study in 8 renal transplant patients with stable renal function treated with tacrolimus \pm everolimus⁵⁴); mean for trough rivaroxaban concentration 131.7 ng/mL with cyclosporine compared with mean for trough rivaroxaban concentration 20.3 ng/mL with tacrolimus (cohort study in 9 patients after liver transplant,

5 received cyclosporine and 4 received tacrolimus⁵⁰); all but 2 patients (both with renal dysfunction) had trough rivaroxaban concentration <137 ng/mL (upper limit of reported range; prospective observational study in 11 patients with orthostatic heart transplant, 8 received cyclosporine and 3 received tacrolimus⁵¹); no \uparrow MB (dabigatran n = 9, rivaroxaban n = 17, apixaban n = 1, cyclosporine n = 2, tacrolimus n =25; retrospective observational study⁵²)

110. Apixaban: single dose of apixaban 10 mg and tacrolimus 5 mg daily \times 3 days \downarrow AUC by 22% and C $_{max}$ by 13% (clinical trial in 12 healthy volunteers 53)

111. Dabigatran: no \uparrow MB among combined DOACs (dabigatran n = 9, rivaroxaban n = 17, apixaban n = 1, cyclosporine n = 2, tacrolimus n = 25) yet both MBs were taking dabigatran (retrospective observational study⁵²); may be expected to \uparrow systemic exposure to dabigatran and should be used with caution (theoretical⁴)

112. Edoxaban: no data—theoretical, P-gp inhibitor per FDA^{5,12}

- 113. Rivaroxaban: no anticipated drug interaction
- 114. Apixaban: no anticipated drug interaction
- 115. Dabigatran: [↑] MB compared with other statins (case-control study⁵⁵)
- 116. Edoxaban: no anticipated drug interaction
- 117. Rivaroxaban: no anticipated drug interaction
- 118. Apixaban: no anticipated drug interaction
- 119. Dabigatran: \uparrow MB compared with other statins (case-control study⁵⁵)
- 120. Edoxaban: no anticipated drug interaction

121. Rivaroxaban: no anticipated drug interaction, PM notes no drug

interaction with atorvastatin²

122. Apixaban: no anticipated drug interaction

123. Dabigatran: no anticipated drug interaction, \downarrow in AUC by 20% of

dabigatran when coadministered with atorvastatin⁴

124. Edoxaban: no anticipated drug interaction, \downarrow in AUC and C max by 15% of edoxaban when coadministered with atorvastatin⁵

125. Rivaroxaban: ↑ MB; coadmininstration of naproxen and rivaroxaban did not affect rivaroxaban PK; no clinically relevant prolongation of bleeding time observed when 500 mg naproxen was preadministered 24 hours before concomitant administration of single doses of rivaroxaban 15 mg²

126. Apixaban: \uparrow MB; single dose of 500 mg naproxen led to \uparrow in AUC by 50% and 60% \uparrow in C_{max} of apixaban (recommends no dose adjustment but use caution³)

127. Dabigatran: ↑ MB⁴

128. Edoxaban: \uparrow MB; coadmininstration of naproxen and apixaban did not affect edoxaban PK, \uparrow bleeding time relative to either alone 5

129. Diclofenac, ibuprofen, indomethacin, ketorolac, meloxicam—no PK data, pharmacodynamic interaction suspected $^{\rm 12}$

130. Rivaroxaban: no anticipated drug interaction

131. Apixaban: no anticipated drug interaction

132. Dabigatran: concurrent proton pump inhibitor (PPI) administration \downarrow trough dabigatran concentration and peak dabigatran concentration by 33% than without coadministration (clinical trial in 35 patients with nonvalvular atrial fibrillation [NVAF] 14 lansoprazole, 14 rabeprazole, 6 esomeprazole⁵⁶); coadministration of PPIs with dabigatran \downarrow AUC by 12.5% (PK analysis of RE-LY trial⁵⁷)

133. Edoxaban: single dose of edoxaban and esomeprazole 40 mg once daily \times 5 days had no effect on the AUC of edoxaban but the Cmax \downarrow by 33%—no dose modification is necessary⁵

134. Rivaroxaban: single dose of rivaroxaban and multiple doses of omeprazole, geometric means for AUC and C means were within 80%-125% range (clinical trial in 22 healthy volunteers⁵⁸); coadministration of rivaroxaban and omeprazole did not affect rivaroxaban PK [(2)]

135. Apixaban: no anticipated drug interaction

136. Dabigatran: concurrent PPI administration \downarrow trough dabigatran concentration and peak dabigatran concentration by 50% than without coadministration (prospective observational study in 31 hospitalized patients 9 omeprazole 10 pantoprazole 12 no PPI⁵⁹); coadministration of PPIs with dabigatran \downarrow AUC by 12.5% (PK analysis of RE-LY trial⁵⁷)

137. Edoxaban: no anticipated drug interaction

138. Rivaroxaban: no anticipated drug interaction

139. Apixaban: no anticipated drug interaction

140. Dabigatran: concurrent PPI administration \downarrow trough dabigatran concentration and peak dabigatran concentration by 50% than without coadministration (prospective observational study in 31 hospitalized patients 9 omeprazole 10 pantoprazole 12 no PPI⁵⁹); single dose of dabigatran + pantoprazole \downarrow AUC by 32% and C_{max} by 40% (clinical trial in 18 healthy volunteers⁶⁰), dabigatran 150 mg bid + pantoprazole 40 mg bid \downarrow the AUC and C_{max} by 20% compared with subjects not on pantoprazole (clinical trial in 36 healthy elderly volunteers⁶¹), coadministration of dabigatran + pantoprazole \downarrow in AUC by 30%⁴

141. Edoxaban: no anticipated drug interaction

142. Rivaroxaban: no anticipated drug interaction

143. Apixaban: no anticipated drug interaction

144. Dabigatran: concurrent PPI administration \downarrow trough dabigatran concentration and peak dabigatran concentration by 33% than without

classes such as (but not limited to) hormonal agents, monoclonal antibodies, tyrosine kinase inhibitors, intercalating agents and antimitotic agents were excluded, given they are not commonly encountered in our practice. As DDIs most relevant to the DOACs involve either P-gp or CYP 3A4, we also identified if potentially interacting medications were substrates of these pathways and to what extent (mild, moderate, severe). In doing so, we allow the clinician to extrapolate the potential impact that an inducer/inhibitor may have on these drug concentrations.

Clinical management of DOAC DDIs

To effectively manage a potential/actual DDI with a DOAC, the clinician should consider individual patient characteristics and how these may have an impact on anticipated DOAC concentrations. For patients prescribed anticoagulants, the clinician should assess the risk of clotting vs bleeding to provide coadministration (clinical trial in 35 patients with NVAF 14 lansoprazole, 14 rabeprazole, 6 esomeprazole⁵⁶); coadministration of PPIs with dabigatran \downarrow bioavailability AUC by 12.5% (PK analysis of RE-LY trial⁵⁷)

145. Edoxaban: no anticipated drug interaction

146. Rivaroxaban: rivaroxaban + diltiazem was not associated with \uparrow bleeding (retrospective cohort⁶²); no \uparrow MB (retrospective cohort¹⁵); no \uparrow in overall bleeding in patients treated with verapamil or diltiazem vs amlodipine or metoprolol with rivaroxaban (retrospective cohort⁶³); \uparrow in MB and ICH across both rivaroxaban and warfarin (analysis of data from clinical trial ROCKET AF¹⁴)

147. Apixaban: no \uparrow in MB (retrospective cohort¹⁵); no \uparrow in overall bleeding in patients treated with verapamil or diltiazem vs amlodipine or metoprolol with apixaban (retrospective cohort⁶³); diltiazem 360 mg daily + apixaban led to \uparrow in AUC by 40% and Cmax by 30%; no dose adjustment required, use with caution³

148. Dabigatran: \uparrow in overall bleeding in patients treated with verapamil or diltiazem vs amlodipine or metoprolol (retrospective cohort⁶³); no \uparrow in MB (retrospective cohort¹⁵)

149. Edoxaban: no anticipated drug interaction

150. Rivaroxaban: concurrent verapamil + rivaroxaban \uparrow AUC by 40% (clinical trial in 27 volunteers with normal or mildly impaired renal function⁶⁴); no 1 in overall bleeding in patients treated with verapamil or diltiazem vs amlodipine or metoprolol with rivaroxaban (retrospective cohort⁶³); no ↑ in MB (retrospective cohort¹⁵); ↑ in MB and ICH across both rivaroxaban and warfarin (analysis of data from clinical trial ROCKET AF¹⁴) 151. Apixaban: no \uparrow in overall bleeding in patients treated with verapamil or diltiazem vs amlodipine or metoprolol with apixaban (retrospective cohort⁶³); no \uparrow MB (retrospective cohort¹⁵) 152. Dabigatran: 1 in overall bleeding in patients treated with verapamil or diltiazem vs amlodipine or metoprolol with dabigatran (retrospective cohort⁶³); no \uparrow MB (retrospective cohort¹⁵); coadminitration of 150 mg dabigatran once daily with verapamil (120 mg bid or 240 mg) resulted in variable \uparrow of dabigatran AUC by 20%-150% and Cmax by 10%-180% depending on the timing (1 hour prior, concurrently, 2 hours after, steady state) of administration and the formulation (immediate or extended release) of verapamil used. Simultaneous initiation of treatment with dabigatran and verapamil should be avoided at all times. In all cases, to minimize potential interaction, dabigatran should be given at least 2 hours before verapamil. Use caution. 153. Edoxaban: single dose of edoxaban 60 mg + extended release verapamil 240 mg daily for 11 days 1 the AUC and Cmax by 53% (clinical trial in 34 healthy volunteers^{5,22})

154. Rivaroxaban: no anticipated drug interaction

155. Apixaban: no anticipated drug interaction

156. Dabigatran: no anticipated drug interaction

157. Edoxaban: no anticipated drug interaction

a basis for comfort in having the patient's anticipated DOAC concentration on the higher vs lower end. Risk for clotting is specific to the indication for anticoagulant use; for some indications, validated risk scores are available (e.g., CHADS, score for nonvalvular atrial fibrillation), whereas for others, such as venous thromboembolism, clinical factors such as the proximity/extensiveness of the clot are more helpful. Specific to bleeding risk, the clinician should contemplate factors that encompass patient history of bleeding, diseases of note (e.g., esophageal varices, diffuse diverticulitis) or drugs increasing risk (e.g., concomitant antiplatelet therapy). Knowledge of renal dysfunction and the impact on DOAC concentration should also be integrated into this assessment. Once done, the clinician should extrapolate a preference for having the DOAC concentration on the high end (assuming clot risk trumps bleeding risk) or the low end (assuming the opposite).

Conclusion

This tool has been developed to assist clinicians in making decisions surrounding DOAC use. The clinician is encouraged to review the basis of the recommendation with available literature described, all drugs being administered and renal function to gauge the overall impact on DOAC concentration. With this in mind, clinical judgement should dictate practice.

From the Faculty of Pharmacy and Pharmaceutical Sciences (Chadha, Guirguis) and the Division of Cardiology (Bungard), Department of Medicine, University of Alberta; and Pharmacy Services (Guirguis), Drug Utilization and Stewardship, Alberta Health Services, Edmonton, Alberta. Contact tammy.bungard@ualberta.ca.

Disclaimer: To the best of our knowledge, the data in the tool are an accurate summary of the published data as of July 2021. The data were reviewed by all authors with recommendations put forth based on predefined criteria. Clinicians are encouraged to routinely assess information with drug interaction-checking tools and literature that may be new. This material is intended for general information only and is provided on an "as is," "where is" basis. Although reasonable efforts were made to confirm the accuracy of the information, the authors do not make any representation or warranty, express, implied or statutory, as to the accuracy, reliability, completeness, applicability or fitness for a particular purpose of such information. This material is not a substitute for the advice of a qualified health professional. The authors expressly disclaim all liability for the use of these materials and for any claims, actions, demands or suits arising from such use.

Author Contributions: A. Chadha acquired, analyzed and interpreted the data, drafted the work, approved the work and is agreeable to be accountable for all aspects of the work. M. Guirguis interpreted the data, critically revised the work, approved the work and is agreeable to be accountable for all aspects of the work. T. J. Bungard conceived, analyzed and interpreted the data; critically revised the work; approved the work; and is agreeable to be accountable for all aspects of the work.

Declaration of Conflicts of Interest: A. Chadha has nothing to disclose. M. Guirguis has received funding from Pfizer, outside the scope of this article. T. J. Bungard has received funding from Pfizer, outside the scope of this article. The authors declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Funding: No source of funding was received for this manuscript.

ORCID iDs: Ayush Chadha D https://orcid.org/0000-0003-0594-0096 Micheal Guirguis https://orcid.org/0000-0002-8858-3129 Tammy J. Bungard D https://orcid.org/0000-0003-1805-5715

References

1. Chan NC, Eikelboom JW, Weitz JI. Evolving treatments for arterial and venous thrombosis: role of the direct oral anticoagulants. *Circ Res* 2016;118(9):1409-24.

2. Bayer Inc. Xarelto product monograph. Mississauga (ON): Bayer Inc; 2021.

3. Bristol-Myers Squibb Canada. *Eliquis product monograph.* Montréal (QC): Bristol-Myers Squibb Canada; 2019.

4. Boehringer Ingelheim Canada Ltd. *Pradaxa product monograph*. Burlington (ON): Boehringer Ingelheim Canada Ltd; 2020.

5. Servier Canada Inc. *Lixiana product monograph*. Laval (QC); Servier Canada Inc; 2021.

6. Douxfils J, Adcock DM, Bates SM, et al. 2021 update of the International Council for Standardization in Haematology recommendations for laboratory measurement of direct oral anticoagulants. *Thromb Haemost* 2021;121(8):1008-20.

 Steffel J, Verhamme P, Potpara TS, et al. The 2018 European Heart Rhythm Association practical guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. *Eur Heart J* 2018;39(16):1330-93.
 Lin JH, Lu AYH. Interindividual variability in inhibition and induction of cytochrome P450 enzymes. *Ann Rev Pharmacol Toxicol* 2001;41:535-67.

9. Dunois C. Laboratory monitoring of direct oral anticoagulants (DOACS). *Biomedicines* 2021;9(5):445.

10. Büller HR, Décousus H, Grosso MA, et al. Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism. *N Engl J Med* 2014;370(4):390.

11. Leung L. *Pharmacokinetics and drug interactions of direct oral anticoagulants.* Waltham (MA): UpToDate; 2020.

12. US Food and Drug Administration. Drug development and drug interactions | Table of substrates, inhibitors and inducers. 2020. Available: https:// www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-druginteractions-table-substrates-inhibitors-and-inducers (accessed Jul. 30, 2021). 13. Wolters Kluwer Health. Lexi-Interact. Available: http://online.lexi.com (accessed Jul. 14, 2020).

14. Washam JB, Hellkamp AS, Lokhnygina Y, et al. Efficacy and safety of rivaroxaban versus warfarin in patients taking nondihydropyridine calcium channel blockers for atrial fibrillation (from the ROCKET AF Trial). *Am J Cardiol* 2017;120(4):588-94.

Chang SH, Chou IJ, Yeh YH, et al. Association between use of non-vitamin K oral anticoagulants with and without concurrent medications and risk of major bleeding in nonvalvular atrial fibrillation. *JAMA* 2017;318(13):1250-9.
 Howell D, Hoch E, Shulman EH, et al. Interaction between amiodarone

and rivaroxaban and the risk of major bleeding. *Heart Rhythm* 2016;13:S512. 17. Hanigan S, Das J, Pogue K, Barnes GD, Dorsch MP. The real world use of

combined P-glycoprotein and moderate CYP3A4 inhibitors with rivaroxaban or apixaban increases bleeding. *J Thromb Thrombol* 2020;49(4):636-43.

18. Cheong EJY, Goh JJN, Hong Y, et al. Application of static modeling in the prediction of in vivo drug-drug interactions between rivaroxaban and antiarrhythmic agents based on in vitro inhibition studies. *Drug Metab Dispos* 2017;45(3):260-8.

19. Flaker G, Lopes RD, Hylek E, et al. Amiodarone, anticoagulation and clinical events in patients with atrial fibrillation: Insights from the ARISTOTLE trial. *J Am Coll Cardiol* 2014;64(15):1541-50.

20. Olagunju A, Khatib M, Palermo-Alvarado F. A possible drug-drug interaction between eliquis and amiodarone resulting in hemopericardium. *Cureus* 2021;13(2):e13486

21. Legrand M, Mateo J, Aribaud A, et al. The use of dabigatran in elderly patients. *Arch Intern Med* 2011;171(14):1285-6.

PRACTICE TOOL

22. Mendell J, Zahir H, Matsushima N, et al. Drug-drug interaction studies of cardiovascular drugs involving p-glycoprotein, an efflux transporter, on the pharmacokinetics of edoxaban, an oral factor xa inhibitor. *Am J Cardiovasc Drugs* 2013;13(5):331-42.

23. Gandhi S, Ezekowitz M, Reiffel J, Boiron R, Wieloch M. Abstract 15740: concomitant use of dronedarone and direct oral anticoagulants and risk of bleeding in patients with atrial fibrillation: an analysis of the U.S. Truven Health MarketScan database. *Circulation* 2020;142.

24. Friberg L. Safety of apixaban in combination with dronedarone in patients with atrial fibrillation. *Int J Cardiol* 2018;264:85-90.

25. George S, Taburyanskaya M, Lewis V. Probable drug-drug interaction between dabigatran and quinidine resulting in thrombin time rebound despite multiple idarucizumab doses. *Blood Coagul Fibrinol* 2019;30(1):42-6.

26. Hill K, Sucha E, Rhodes E, et al. Risk of hospitalization with hemorrhage among older adults taking clarithromycin vs azithromycin and direct oral anticoagulants. *JAMA Intern Med* 2020;180(8):1052-60.

27. Fralick M, Juurlink DN, Marras T. Bleeding associated with coadministration of rivaroxaban and clarithromycin. *CMAJ* 2016;188(9):669-72.

28. Mueck W, Kubitza D, Becka M. Co-administration of rivaroxaban with drugs that share its elimination pathways: pharmacokinetic effects in healthy subjects. *Br J Clin Pharmacol* 2013;76(3):455-66.

29. Delavenne X, Ollier E, Basset T, et al. A semi-mechanistic absorption model to evaluate drug-drug interaction with dabigatran: application with clarithromycin. *Br J Clin Pharmacol* 2013;76(1):107-13.

30. Altena R, van Roon E, Folkeringa R, de Wit H, Hoogendoorn M. Clinical challenges related to novel oral anticoagulants: drug-drug interactions and monitoring. *Haematologica* 2014;99(2):e26-7.

31. Mendell J, Chen S, He L, Desai M, Parasramupria DA. The effect of rifampin on the pharmacokinetics of edoxaban in healthy adults. *Clin Drug Invest* 2015;35(7):447-53.

32. Quinn GR, Hellkamp AS, Hankey GJ, et al. Selective serotonin reuptake inhibitors and bleeding risk in anticoagulated patients with atrial fibrillation: an analysis from the ROCKET AF trial. *J Am Heart Assoc* 2018;7(15):e008755. 33. Zhang Y, Souverein PC, Gardarsdottir H, van den Ham HA, Maitland-van der Zee AH, de Boer A. Risk of major bleeding among users of direct oral anticoagulants combined with interacting drugs: a population-based nested case–control study. *Br J Clin Pharmacol.* 2020;86(6):1150-64.

34. Shen SW, Jiang J, Priyadarshi A, Zhang G. Abstract 16274: Risk of bleeding in patients with non-valvular atrial fibrillation exposed to apixaban with or without selective serotonin reuptake inhibitors (SSRIs) or serotonin-norepinephrine reuptake inhibitors (SNRIs). *Circulation* 2020;142(suppl 3).

35. Granger CB, Alexander JH, McMurray JJV, et al. Apixaban versus warfarin in patients with atrial fibrillation. *N Engl J Med.* 2011;365(11):981-92.

36. Stöllberger C, Finsterer J. Recurrent venous thrombosis under rivaroxaban and carbamazepine for symptomatic epilepsy. *Neurologia i Neurochirurgia Pol-ska* 2017;51(2):194-6.

37. Risselada AJ, Visser MJ, van Roon EN. Pulmonary embolism due to interaction between rivaroxaban and carbamazepine [in Dutch]. *Ned Tijdschr Geneeskunde* 2013;157(52):A6568.

38. Di Gennaro L, Lancellotti S, De Cristofaro R, De Candia E. Carbamazepine interaction with direct oral anticoagulants: help from the laboratory for the personalized management of oral anticoagulant therapy. *J Thromb Thrombol* 2019;48(3):528-31.

39. Evanger N, Szkotak A, Stang L, Bungard TJ. Apixaban concentration with and without coadministration of carbamazepine: a case with no apparent interaction. *Can J Hosp Pharm* 2017;70(6):463-7.

40. Bungard TJ, Roberts RN. Carbamazepine induction impacting apixaban concentrations: a case report. *CJC Open* 2020;2(5):423-5.

41. Laureano M, Crowther M, Eikelboom J, Boonyawat K. Measurement of dabigatran drug levels to manage patients taking interacting drugs: a case report. *Am J Med* 2016;129(10):e247-8.

42. Chin PKL, Wright DFB, Zhang M, et al. Correlation between trough plasma dabigatran concentrations and estimates of glomerular filtration rate based on creatinine and cystatin C. *Drugs in R and D* 2014;14(2):113-23.

43. King PK, Stump TA, Walkama AM, Ash BM, Bowling SM. Management of phenobarbital and apixaban interaction in recurrent cardioembolic stroke. *Ann Pharmacother* 2018;52:605-6.

44. Becerra AF, Amuchastegui T, Tabares AH. Decreased rivaroxaban levels in a patient with cerebral vein thrombosis receiving phenytoin. *Case Rep Hematol* 2017;2017:1-3.

45. Wiggins BS, Northup A, Johnson D, Senfield J. Reduced anticoagulant effect of dabigatran in a patient receiving concomitant phenytoin. *Pharmacotherapy* 2016;36(2):e5-7.

46. Hager N, Bolt J, Albers L, Wojcik W, Duffy P, Semchuk W. Development of left atrial thrombus after coadministration of dabigatran etexilate and phenytoin. *Can J Cardiol* 2017;33(4):554.e13-14.

47. Frost CE, Byon W, Song Y, et al. Effect of ketoconazole and diltiazem on the pharmacokinetics of apixaban, an oral direct factor Xa inhibitor. *Br J Clin Pharmacol* 2015;79(5):838-46.

48. Parasrampuria DA, Mendell J, Shi M, Matsushima N, Zahir H, Truitt K. Edoxaban drug–drug interactions with ketoconazole, erythromycin and cyclosporine. *Br J Clin Pharmacol* 2016;82(6):1591-600.

49. Brings A, Lehmann ML, Foerster KI, et al. Perpetrator effects of ciclosporin (P-glycoprotein inhibitor) and its combination with fluconazole (CYP3A inhibitor) on the pharmacokinetics of rivaroxaban in healthy volunteers. *Br J Clin Pharmacol* 2019;85(7):1528-37.

50. Wannhoff A, Weiss KH, Schemmer P, Stremmel W, Gotthardt DN. Increased levels of rivaroxaban in patients after liver transplantation treated with cyclosporine A. *Transplantation* 2014;98(2):e12-3.

51. Ambrosi P, Kreitmann B, Cohen W, Habib G, Morange P. Anticoagulation with a new oral anticoagulant in heart transplant recipients. *Int J Cardiol* 2013;168(4):4452-3.

52. Shuster JE, LaRue SJ, Vader JM. Dabigatran may have more significant drug interactions with calcineurin inhibitors than oral anti-xa inhibitors. *J Heart Lung Transplant* 2016;35(4):S417.

53. Bashir B, Stickle DF, Chervoneva I, Kraft WK. Drug-drug interaction study of apixaban with cyclosporine and tacrolimus in healthy volunteers. *Clin Translat Sci* 2018;11(6):590-6.

54. Camporese G, Bernardi D, Bernardi E, et al. Absence of interaction between rivaroxaban, tacrolimus and everolimus in renal transplant recipients with deep vein thrombosis or atrial fibrillation. *Vasc Pharmacol* 2020;130:106682.

55. Antoniou T, Macdonald EM, Yao Z, et al. Association between statin use and ischemic stroke or major hemorrhage in patients taking dabigatran for atrial fibrillation. *Can Med Assoc J* 2017;189(1):E4 LP-E10.

56. Kuwayama T, Osanai H, Ajioka M, et al. Influence of proton pump inhibitors on blood dabigatran concentrations in Japanese patients with non-valvular atrial fibrillation. *J Arrhythm* 2017;33(6):619-23.

Liesenfeld KH, Lehr T, Dansirikul C, et al. Population pharmacokinetic analysis of the oral thrombin inhibitor dabigatran etexilate in patients with non-valvular atrial fibrillation from the RE-LY trial. *J Thromb Haemost* 2011;9(11):2168-75.
 Moore KT, Plotnikov AN, Thyssen A, Vaccaro N, Ariyawansa J, Burton PB. Effect of multiple doses of omeprazole on the pharmacokinetics,

pharmacodynamics and safety of a single dose of rivaroxaban. J Cardiovasc Pharmacol 2011;58(6):581-8.

59. Bolek T, Samoš M, Stančiaková L, et al. The impact of proton pump inhibition on dabigatran levels in patients with atrial fibrillation. *Am J Ther* 2019;26(3):E308-13.

60. Stangier J, Eriksson BI, Dahl OE, et al. Pharmacokinetic profile of the oral direct thrombin inhibitor dabigatran etexilate in healthy volunteers and patients undergoing total hip replacement. *J Clin Pharmacol* 2005;45(5):555-65. 61. Stangier J, Stähle H, Rathgen K, Fuhr R. Pharmacokinetics and pharmacodynamics of the direct oral thrombin inhibitor dabigatran in healthy elderly subjects. *Clin Pharmacokinet* 2008;47(1):47-59.

- 62. Bartlett JW, Renner E, Mouland E, Barnes GD, Kuo L, Ha NB. Clinical safety outcomes in patients with nonvalvular atrial fibrillation on rivaroxaban and diltiazem. *Ann Pharmacother* 2019;53(1):21-7.
- 63. Pham P, Schmidt S, Lesko L, Lip GYH, Brown JD. Association of oral anticoagulants and verapamil or diltiazem with adverse bleeding events in patients with nonvalvular atrial fibrillation and normal kidney function. *JAMA Netw Open* 2020;3(4):e203593.

64. Greenblatt DJ, Patel M, Harmatz JS, Nicholson WT, Rubino CM, Chow CR. Impaired rivaroxaban clearance in mild renal insufficiency with verapamil coadministration: potential implications for bleeding risk and dose selection. *J Clin Pharmacol* 2018;58(4):533-40.