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H I G H L I G H T S  

• We introduce a novel VGG-16-ViT fusion model to enhance bone tumor classification in computed tomography, leveraging the strengths of both architectures. 
• Our proposed algorithm addresses limitations in CNNs’ global perception ability, improving the accuracy of classifying diverse bone tumor types. 
• The fusion model demonstrates an impressive 97.6% classification accuracy, with an 8% increase in sensitivity and specificity, surpassing traditional methods. 
• Investigating the effect of secondary migration across three models shows potential for enhancing system performance, contributing to more accurate results. 
• Our joint VGG-16 and Vision Transformer network proves effective in classifying bone tumors, promising improved early detection and prognosis for bone tumor 

patients.  
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A B S T R A C T   

Background and Objective: Bone tumors present significant challenges in orthopedic medicine due to variations in 
clinical treatment approaches for different tumor types, which includes benign, malignant, and intermediate 
cases. Convolutional Neural Networks (CNNs) have emerged as prominent models for tumor classification. 
However, their limited perception ability hinders the acquisition of global structural information, potentially 
affecting classification accuracy. To address this limitation, we propose an optimized deep learning algorithm for 
precise classification of diverse bone tumors. 
Materials and Methods: Our dataset comprises 786 computed tomography (CT) images of bone tumors, featuring 
sections from two distinct bone species, namely the tibia and femur. Sourced from The Second Affiliated Hospital 
of Fujian Medical University, the dataset was meticulously preprocessed with noise reduction techniques. We 
introduce a novel fusion model, VGG16-ViT, leveraging the advantages of the VGG-16 network and the Vision 
Transformer (ViT) model. Specifically, we select 27 features from the third layer of VGG-16 and input them into 
the Vision Transformer encoder for comprehensive training. Furthermore, we evaluate the impact of secondary 
migration using CT images from Xiangya Hospital for validation. 
Results: The proposed fusion model demonstrates notable improvements in classification performance. It effec-
tively reduces the training time while achieving an impressive classification accuracy rate of 97.6%, marking a 
significant enhancement of 8% in sensitivity and specificity optimization. Furthermore, the investigation into 
secondary migration’s effects on experimental outcomes across the three models reveals its potential to enhance 
system performance. 
Conclusion: Our novel VGG-16 and Vision Transformer joint network exhibits robust classification performance 
on bone tumor datasets. The integration of these models enables precise and efficient classification, 
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accommodating the diverse characteristics of different bone tumor types. This advancement holds great signif-
icance for the early detection and prognosis of bone tumor patients in the future.   

1. Introduction 

The incidence of bone tumors is low, but primary malignant bone 
tumors rank third among the causes of death among cancer patients 
under 20 years of age. There are great differences in the clinical treat-
ment regimen of different types of bone tumors (e.g. benign, malignant 
and intermediate). In practice, benign bone tumors have stable biolog-
ical behavior, and more treatment regimens of local curettage or follow- 
up observation in the lesion are adopted, while malignant bone tumors 
are highly aggressive, and the treatment strategy of early adjuvant 
chemotherapy and extensive surgical resection can improve the survival 
rate of patients. There are many kinds of bone tumors, including more 
than ten different types of bone tumors around the knee joint, and the 
imaging manifestations are complex. As such, it is difficult for diagnostic 
experts or radiologists, especially intern doctors, to make accurate 
diagnosis due to lack of sufficient clinical experience, which obviously 
affects the clinical treatment effect and prognosis. For patients under 20 
years old, primary malignant bone tumors rank as one of the leading 
causes of cancer-related deaths. Despite being relatively rare compared 
to other types of cancers, these aggressive bone tumors can have a sig-
nificant impact on the health and well-being of young patients. Early 
detection, accurate classification, and timely treatment are crucial in 
improving the prognosis and overall survival rates for individuals 
affected by primary malignant bone tumors. In clinical diagnosis, digital 
radiography (DR), computed tomography (CT) and magnetic resonance 
imaging (MRI) are routine imaging methods. Artificial intelligence (AI) 
is a comprehensive frontier discipline that includes computer science, 
cybernetics, information theory, mathematics and other disciplines 
penetrating into each other. It involves studying and simulating human 
intelligence in order to expand it. In the field of medical imaging, the 
application of AI technology improves the speed of image interpretation 
and diagnosis, enhances accuracy and quality. Convolutional neural 
network (CNN) as a representative of it, can apply the image itself to the 
learning process. Therefore, there is no need to perform feature 
extraction before the learning process, and the most important function 
is that it can be automatically learned. 

Deep learning is a branch of machine learning whose information 
transfer structure is similar to human neuron connections, with thou-
sands of nodes from the shallow to the deep layers. It was originally 
derived from the artificial neural network (ANN) model. In the early 
stage, the ANN was limited by the computing power, so it could only 
input limited data and construct shallow neural network. However, with 
the breakthrough of computing power and the explosive growth of data, 
the constructed neural network becomes deeper, and the learning ability 
is getting stronger. Now it has been widely implemented in the fields of 
computer vision, natural language processing, speech recognition, etc. 
The most representative example is the impact of CNNs in the field of 
computer vision. The originator of convolutional neural networks is 
LeNet, which was proposed by Lecun in 1998 [1]. Subject to the hard-
ware level at that time, LeNet is only a very small network, but it defines 
the basic structure of CNNs. In 2012, Krizhevsky and Hinton’s Alex-
Netwon [2] ImageNet’s large-scale Computer Recognition Challenge by 
10.9%, a huge success that brought CNNs back into the limelight. More 
advanced networks were developed, such as VGG [3], ResNet [4], 
InceptionNet [5] and DenseNet [6]. 

Machine learning comes from the earlier artificial intelligence, 
which needs to learn features extracted in advance to complete tasks. In 
some traditional big data analysis fields, machine learning is still the 
main analysis tool. At present, the research of AI in the imaging field of 
bone and joint system mainly focuses on the following aspects: (1) Bone 
age measurement: Related AI products for evaluating children’s bone 

age based on deep learning technology have been widely researched. 
The accuracy of each product model in evaluating bone age is similar to 
or even better than that of radiologists, which can be completed in 
seconds from film reading to diagnostic report output; (2) Recognition 
and prediction of bone fracture: Foreign research teams focus on frac-
ture interpretation and anatomical location in X-ray and CT examina-
tion, or combined with bone structure and bone density analysis to 
predict the risk of fracture, as well as to predict the risk of fracture in 
patients with cancer bone metastasis; (3) Osteoporosis: Multiple AI 
methods can help screen people at risk for osteoporosis or fracture, and 
AI can more accurately identify the risk of osteoporosis in post-
menopausal women than traditional decision-making tools; (4) Identi-
fication of articular cartilage lesions: automatic segmentation of 
cartilage, detection of middle cartilage lesions (including chon-
dromalacia, fibrosis, local defects, diffuse thinning caused by cartilage 
degeneration and acute cartilage injury) can be realized by using deep 
learning. 

However, until now, few studies have been studied in the diagnosis 
of bone tumors. The reasons may be: (1) Bone tumors are relatively rare 
and the number of cases is insufficient; (2) There are many pathogenic 
sites, complicated disease types, poor data consistency and difficult 
model construction. All these have become obstacles to the promotion of 
AI-assisted diagnostic tools in the clinical application of osteoarthrosis. 
Therefore, it is of great clinical significance to construct an accurate and 
reliable auxiliary diagnostic tool for bone tumors. This topic takes bone 
tumors as the research object, and intends to provide a reliable auxiliary 
diagnostic tool for clinicians, especially junior physicians, by con-
structing a classification model for bone tumors, so as to improve the 
diagnostic efficiency. In practice, the Vision Transformer (ViT) is a deep 
neural network based on attention model, whose main feature is that it 
can effectively store global structure information of images. The overall 
contribution of our manuscript is below:  

• We introduce the VGG16-ViT fusion model, effectively combining 
VGG-16 and Vision Transformer strengths to overcome CNN limita-
tions and improve bone tumor classification performance.  

• Our VGG16-ViT joint network achieves exceptional 97.6% accuracy 
in classifying bone tumors, offering precise identification of different 
tumor types for tailored treatment strategies.  

• Through rigorous verification, we discover that secondary migration 
enhances system performance, providing valuable insights into the 
behavior and potential improvements of the proposed joint network. 

Therefore, in this paper, the CNN and Vision Transformer network 
are combined to realize the classification of bone tumor CT images. This 
paper also explore the great potential of CNN and Vision Transformer in 
bone tumor image classification. Machine learning and deep learning 
techniques were used to construct a classification model of bone tumor, 
combined with clinical information, and film reading experiments were 
conducted. 

2. Related work 

The incidence of bone tumors is low, but primary malignant bone 
tumors rank third among the death [7] causes of cancer patients under 
20 years old [8]. 

In 2020, the World Health Organization (WHO) released the fifth 
edition of its classification of bone and soft tissue tumors, marking a 
significant milestone in the field [9]. The primary objectives of this 
edition were to rectify grammar mistakes, address sentence errors, and 
adhere to scientific standards, thereby ensuring precision and clarity in 
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the classification process. The WHO aimed to enhance the classifica-
tion’s scientific rigor and practical applicability, aligning it with the 
latest advancements in tumor biology and pathology. This updated 
edition was meticulously crafted to integrate cutting-edge scientific 
knowledge, reflecting the constantly evolving landscape of tumor 
research. By establishing a standardized and globally accepted classifi-
cation system, the fifth edition aimed to foster consistent reporting and 
communication among healthcare professionals, researchers, and pa-
thologists. This consistency plays a pivotal role in elevating the quality 
of patient care and treatment outcomes, ultimately benefiting the 
medical community and the individuals they serve. Various types of 
bone tumors exhibit distinct biological characteristics. Benign bone tu-
mors, for instance, are non-aggressive and typically do not recur or 
progress locally. Complete cure is often achievable through procedures 
like local excision or shaving, as seen in cases of bone cysts and 
osteochondromas. 

Intermediate bone tumors, on the other hand, display localized 
invasive growth, causing destruction in the surrounding area. Incom-
plete local resection or curettage can lead to easy local recurrence, and 
there is a potential for malignant transformation, as observed in atypical 
chondrogenic tumors. Some intermediate tumors, like giant cell tumors 
of bone, may exhibit low-probability distant metastasis, with chal-
lenging histopathological predictions. These tumors possess character-
istics intermediate between benign and malignant tumors, showing 
some degree of invasiveness and, albeit at a lower rate than malignant 
tumors, the potential to metastasize. They often exhibit cellular atypia 
and increased mitotic activity, indicating their intermediate nature in 
terms of cellular behavior. Histologically, their features may overlap 
with both benign and malignant tumors, making classification complex. 

The prognosis for patients with intermediate bone tumors varies 
significantly, with some cases requiring more aggressive treatments than 
benign tumors. Accurate diagnosis and classification are paramount for 
determining appropriate clinical management. Recent advancements in 
deep learning techniques, including Explainable Deep Learning, have 
shown promise in enhancing the classification and understanding of 
these complex tumors. These advancements provide valuable insights, 
aiding in improved patient care and outcomes. In contrast, malignant 
bone tumors possess strong invasive capabilities and have a high like-
lihood of distant metastasis. They tend to recur after treatment, and their 
malignancy can further escalate upon recurrence, resulting in a poor 
prognosis. Examples of such tumors include osteosarcoma and Ewing’s 
sarcoma [9]. 

Medical imaging is playing an increasingly important role in clinical 
diagnosis. It can provide medical imaging experts with direct or indirect 
information, including physiological structure, functional state, histo-
logical structure and pathological results of human tissues. In the image, 
benign bone tumors usually present as swelling growth masses with 
clear margins and visible sclerotic edges, generally without periosteal 
reaction and peripheral bone marrow edema, rarely breaking through 
the bone cortex, and soft tissue changes are not obvious. 

However, malignant tumors show invasive growth with blurred 
edges, and acicular or flocculent tumor bone formation can be seen in 
some tumors. Because the rate of bone destruction is greater than the 
rate of repair, there is generally no osteosclerosis edge, and periosteal 
reaction often occurs, especially the scallion skin periosteal reaction, 
which breaks through the periosteal of bone cortex and destroys the 
proliferative periosteal, forming Codman triangle at both ends of the 
destruction. Surrounding bone marrow and soft tissue edema, tumor cell 
infiltration, the change is obvious. Intermediate bone tumors are be-
tween benign and malignant, and some tumors may have either sclerotic 
edges or no sclerotic edges, and periosteal reaction or no periosteal re-
action [10], depending on their invasive ability [11]. Bone tumors are 
classified into the above three categories for the ultimate purpose of 
assisting and guiding clinical decision-making. 

Therefore, there are great differences in the clinical treatment of 
different types of bone tumors. The biological behavior of benign bone 

tumors is stable. Intermediate tumors are locally aggressive, and doctors 
may choose more aggressive treatments such as extended excision to 
prevent local recurrence. As malignant bone tumors are highly invasive, 
comprehensive treatment is required, such as early chemotherapy [12], 
extensive surgical resection and postoperative radiotherapy, which can 
provide patients with a higher survival rate [13]. There are various 
incidence sites and diseases of bone tumors, and a variety of different 
types of bone tumors can occur just around the knee joint, with complex 
imaging manifestations. Due to the lack of sufficient clinical experience, 
it is difficult for diagnostic doctors, especially junior physicians, to make 
accurate diagnosis, which affects clinical treatment. 

With the advent of the era of big data, the explosive growth of data 
and the rapid improvement of computer computing power make artifi-
cial intelligence gradually enter people’s work and life. The field of AI 
was proposed as early as the 1950s. Its goal is to simulate human 
behavior, such as learning, thinking, reasoning, planning, etc. It is a 
science that integrates computer science, psychology, philosophy, lin-
guistics and other disciplines. However, limited by the scientific and 
technological development level at that time, artificial intelligence has 
not been well developed. Since 2010, with the breakthrough of data 
storage technology and computing power, the field of artificial intelli-
gence has made great progress. Various machine learning and deep 
learning models emerge endlessly. Its application also covers all aspects 
of work and life, including but not limited to visual recognition, natural 
language processing, intelligent search, reasoning, planning, etc. In the 
field of medical imaging, the application of AI technology can signifi-
cantly improve the speed, accuracy and quality of image interpretation 
and diagnosis [14]. CNN as a representative, can apply the images 
themselves in the learning process [15], and the most important func-
tion is that they can learn automatically, without the need for feature 
extraction before the learning process [16]. 

Traditional machine learning algorithms can be traced back to the 
1950s when Alan Turing suggested building learning machines. With the 
development of research in recent decades, abundant machine learning 
models have been developed. Compared with deep learning, its biggest 
feature is that it requires manual design and extraction of features in 
original data, that is, feature engineering. It requires people to find 
important features before model training, and therefore requires a lot of 
knowledge in related fields, which is a major bottleneck in machine 
learning. Compared with deep learning, traditional machine learning 
models are more suitable for relatively small, structured data. Common 
traditional machine learning models include logistic regression, decision 
tree, random forest, Naïve Bayes, K-nearest neighbor, support vector 
machine, ANN, etc. 

According to the complexity of the model classification can be 
divided into simple model and complex model. Simple model is gener-
ally simple in calculation, weak in learning ability, but easy to under-
stand, strong in interpretation, easy to cause the problem of 
underlearning. The representative models are decision tree and logistic 
regression model. Complex models generally have strong learning 
ability, but possess complex computation, poor interpretability, which 
is easy to lead to overfitting problems. The representative model is 
support vector machine model. Ensemble learning is a method to 
improve the learning ability of the model. It is to conduct random 
repeated sampling of the data, build multiple different weak learning 
models, and finally make fusion decisions on the results of multiple 
weak learners, such as minority obeying majority, so as to build a strong 
learner model. The representative model is random forest model. The 
learning ability of the same model is different, but not all models have 
better learning ability. Different models have different adaptability in 
different fields and data distribution. According to no free lunch theo-
rem, no learning model can always be the most accurate in all fields, so 
the selection of models should be based on specific problems and specific 
analysis. 

The most representative example is the impact of CNNs in the field of 
computer vision. The research of CNN begins to show an exponential 
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growth trend, and the model develops toward deeper layers and stronger 
learning ability. Compared with traditional machine learning, the 
biggest feature of these deep learning models is that they can auto-
matically extract features without manual intervention, and their 
stronger learning ability makes them more suitable for larger scale data. 
Its disadvantages include large demand for data, long training cycle, 
easy overfitting when data is insufficient, and complex deep learning 
model, which is a "black box" model with poor interpretability. There-
fore, to make reasonable use of artificial intelligence technology, it is 
necessary to have a sufficient understanding and familiarity with its 
applicable conditions, advantages and disadvantages. 

Over the past few decades, CNN seems to have become the standard 
technique for medical image classification. With its high-quality classi-
fication accuracy, CNN is superior to recognition techniques based on 
traditional feature extraction, especially on large-scale datasets [17]. 
Khatamizad et al. [18] studied the use of VGG-16 and the v3 network to 
detect lesions and the results showed that VGG-16 was more effective. 
VGG [19] was proposed by the Visual Geometry Research Group at the 
University of Oxford. Its main contribution is to prove that the perfor-
mance of the network can be improved by increasing the depth of the 
network. There are two types of VGG structures, which are the VGG16 
and VGG19. While VGG-16 is more popular, VGG-19 has a deeper 
network, including 16 convolutional layers and 3 fully connected layers, 
that can extract more advanced features. Therefore, the VGG-16 
network was chosen as the classification network for bone tumor CT 
images. The biggest feature of VGG networks is the use of smaller 
convolution kernels (33) instead of convolution kernels (55) and stacks 
of small convolution nuclei is used to achieve the same receptive field 
effect as large convolution kernel, but at the same time reduce the 
amount of computation. Although the performance of CNN is excellent, 
its limited local receptive field limits its performance, while the ViT 
network can extract global information well. 

When the ViT network proposed by Dosovitskiy et al. [20] is trained 
on large-scale data sets, its image classification accuracy is better than 
the most advanced CNN network performance. Although the ViT 
network lacks the inductive bias of the CNN network, the result can be 
competitive with the most advanced CNN network. However, a large 
number of data and computing resources are the main reason limiting 
the development of ViT. Therefore, Touvron et al. [21] introduced 
distillation mechanism to train ViT network and improve the classifi-
cation performance of ViT. Considering the high performance of ViT 
network, researchers have made attempts in various fields. In the field of 
object detection, Carion et al. [22] proposed a new object detection 
system architecture and tested it on COCO data of public data set. The 
results are comparable to the performance of the most advanced CNN 
method. In the field of image segmentation, a novel network U-Net 
Transformer network shows a competitive advantage, they use Trans-
former and CNN respectively for encoder and decoder parts. Dai et al. 
[23] combined CNN and Trans former network, used CNN to extract 
local features and Transformer’s self-attention mechanism extracts 
global features and applies the algorithm to multi-mode image classifi-
cation. The results show that its performance is better than the most 
advanced CNN network. Although many efforts have been made to 
improve models based on ViT, the fine-tuning of different model sizes 
and weights is still a problem to be solved when applying ViT models 
[24]. 

3. Materials and methods 

3.1. Construction of the dataset 

In pursuit of a rich and diverse dataset, we procured a comprehensive 
collection of 786 computed tomography (CT) images of bone tumors. 
This dataset comprises sections from two prominent bone species, the 
tibia and femur, allowing for a comprehensive examination of bone 
tumor cases in different anatomical regions. To ensure a reliable and 

representative dataset, the images were meticulously sourced from The 
Second Affiliated Hospital of Fujian Medical University, a renowned 
medical institution renowned for its expertise in bone tumor research 
and diagnosis. Our dataset encompasses an extensive variety of bone 
tumor cases, providing a wide range of instances for analysis and study. 
It includes CT images of various bone tumor types, including osteosar-
comas, which pose unique challenges and complexities in clinical 
diagnosis and management. By encompassing diverse pathologies and 
anatomical locations, our dataset facilitates a thorough investigation of 
bone tumor characteristics and enables the development of robust 
classification models. 

Acoustic image datasets often suffer from various types of noise, such 
as speckle noise, random noise, and Gaussian noise, which can degrade 
the quality and accuracy of the images. To address the issue of noise in 
our acoustic image dataset, we applied spatial filtering techniques. 
Spatial filtering is a common method used to enhance image quality by 
removing noise while preserving important features. In our study, we 
employed median filtering and Gaussian filtering to reduce the impact of 
speckle noise and random noise, respectively. Median filtering is effec-
tive in smoothing the image while preserving edges, making it suitable 
for speckle noise reduction. On the other hand, Gaussian filtering is 
effective in reducing random noise and blurring the image slightly. By 
applying these spatial filtering techniques, we aimed to improve the 
overall quality of the acoustic images and enhance the performance of 
our deep learning model in bone tumor classification. 

3.2. Image preprocessing 

We reviews and frames the region of interest (ROI) on the bone tu-
mors images. The range of ROI is the uppermost, lowermost and both 
sides of the tumor; We cut out the lesion taken by the frame, then scaled 
the long side of ROl to 512 pixels, the short side proportional to the long 
side, and then filled them to 512 pixels using the pixel minimums and 
made ROI uniform size of 512 × 512, and then stacked the image 2 
layers repeatedly so that it become a 3-channel image; Finally, the ROI 
pixel values are normalized and scaled to a mean of 0 and a variance of 
1. 

3.3. The VGG architecture 

To extract spatial features from the slices of each sample and convert 
them into high-level feature representation tokens, a VGG-16 based CNN 
is employed as shown in Fig. 1, which illustrates the architecture of the 
VGG-16 based CNN. The model integrates 13 convolutional layers and 5 
pooling layers from VGG-16 and introduces an additional convolutional 
layer at the beginning to expand the slice’s channels and another at the 
end to facilitate the mapping from feature map to token. 

Following dimension expansion, the slices are resized to 
112×112×3. Within the VGG-16 framework, a series of convolution, 
activation, and pooling operations generate an output feature map of 
size 3×3×512. Lastly, a 3×3 convolution layer with input-channel of 
512 and output-channel of 256 carries out the crucial mapping from 
feature map to token. The standard convolution calculation process 
formula of the feature map I to the feature map O is given by 

Oj = ReLU

(
∑

i∈Mj

Ii*Kij + bj

)

(1) 

In the context of this expression, Oj represents the jth channel of the 
feature map O, and Ii denotes the ith channel of the feature map I. The set 
Mj comprises the channels in the feature map I. The term Kij corresponds 
to the convolutional kernel related to Ii and Oj, while bj stands for the 
bias offset of Oj after the convolution operation. The convolutional 
calculation is denoted by *. The activation function utilized is ReLU, 
which effectively converts negative inputs to 0, while leaving positive 
values unaffected. Through the convolution operation, the VGG-16 
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model efficiently extracts essential features from the input image. 
Notably, each convolution kernel captures distinct traits, and the 
convolution layer groups progressively extract 64, 128, 256, and 512 
local features. The final convolutional layer plays a significant role by 
filtering 256 out of the 512 features, thereby establishing the feature 
representation for the specific slice. 

By conducting convolution mapping on N slices from both slice series 
T1 and slice series T2, we obtain two token series: token series T1 and 
token series T2. As a result, each sample comprises a total of 2 N tokens. 
For incorporating temporal position information within each pair of 
tokens in token series T1 and T2, sinusoidal position encoding [22] is 
employed. Moreover, spatial position information is embedded sepa-
rately within token series T1 and token series T2. Following the spatial 
and temporal position embedding, the 2 N tokens progress to the first 
temporal attention block. 

3.4. The model based on VGG-16 and Vision Transformer 

In the context of image classification, CNNs have some limitations, 
particularly in capturing global structural information. CNNs are known 
to prioritize learning from majority class samples in imbalanced data-
sets, leading to biased classifications and potentially overlooking crucial 
information from minority class samples. In our study, we addressed 
these limitations by proposing an optimized deep learning algorithm 
that combines the strengths of VGG16 and ViT. This fusion model, 
named VGG16-ViT, effectively overcomes the limited perception ability 
of traditional CNNs and provides a more comprehensive understanding 
of global information in bone tumor images. By leveraging the advan-
tages of VGG16 and ViT, our model achieved improved classification 
accuracy, mitigated the impact of data imbalance, and enhanced the 
performance of the classification task, demonstrating its potential in 
advancing image classification in the biomedical domain. 

The VGG16 structure comprises 16 convolutional layers and 3 fully 
connected layers, making it a deep convolutional neural network. The 
output of the convolutional layer and the fully connected layer can be 
expressed as: 

a[l] = g[l]( w[l]a[l− 1] + b[l] ) (2) 

The ViT is a kind of visual converter based on self-attention mech-
anism. Its basic structure is composed of multiple Transformer modules. 
Each Transformer module is composed of multi-head attention mecha-
nism and feedforward neural network, which can be expressed as: 

h[l] = MultiHeadAttention
(
x[l] )+ x[l] (3)  

x[l]x[l+1] = LayerNorm
(
h[l] )+ FFN

(
h[l] ) (4)  

h[l+1] = MultiHeadAttention
(
x[l+1] )+ x[l+1] (5)  

y = softmax
(
x[L] ) (6) 

Fig. 2 depicts the architecture of the VGG-TSwinformer presented in 
this study. Each slice is mapped to a high-level feature representation 
token by a VGG-16-based CNN. Finally, the first temporal attention 
block receives token series T1 and token series T2 representing slice 
series T1 and slice series T2, respectively. The token series T1 and the 
token series T2 in VGG-TSwinformer each contain 10 attention blocks, 
of which the token series T1 and the token series T2 share 5 temporal 
attention blocks and have 5 spatial attention blocks in common. The first 
four spatial attention blocks of token series T1 and series T2 are alter-
natively designed into right-sliding window (RSwin) attention block and 
left-sliding window (LSwin) attention block in order to better incorpo-
rate local features and attempt to avoid dividing the same redundant 
tokens. 

To enhance the extraction of local longitudinal features, we imple-
ment feature fusion on the axial slices corresponding to CT imaging data. 
Illustrated in Figure 2, this process involves employing a modified 
sliding-window attention mechanism (SWA) to the tokens within the 
corresponding positions of token series derived from CT images. 

Our proposed SWA allows indirect feature fusion of tokens within a 
specific window range of the CT image series. Consequently, the feature 
fusion in CT imaging extends from the corresponding 2D slice to the 
local 3D space. The correlations between features at similar spatial 
distances often hold more significance than those at different spatial 
distances. For CT datasets, the suggested temporal attention and sliding- 
window attention mechanisms simplify the model’s ability to detect 
changes in local characteristics during limited iterative training. This 
enhanced capability enables the model to exploit these changes in pre-
diction, contributing to the accuracy of the overall analysis. The com-
plete process of RSwin and LSwin calculation is shown in Algorithm 1 
and 2.  

As depicted in Fig. 2, MSA is carried out for each token in token series 
T2 during the final block of spatial attention. The calculation procedure 
for token series T1 is the same as the calculation procedure for token 
series T2. Table 1 displays the configuration information for four sliding- 
window attention blocks from token series T1 and token series T2. To 
obtain the final prediction, the classifier receives an average of the 
output tokens from the last block of spatial attention for token series T1 
and token series T2. 

Fig. 1. VGG-16 based CNN architecture.  
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For the overall architecture model, we performed the following. 
Firstly, the image features or image data are divided into multiple 
patches for input, then the patches are flattened, and the location and 
category labels are added to the patches, which are then sent to the 
encoder part of Transformer network. Finally, the output results are sent 
to the MLP module for weighted summing classification. 

Guo et al., [24] provides many ViT models, including ViT-B /32, ViT- 
B /16, ViT-L /32, ViT-L /16 and ViT-H /14. The order of these models is 
from small to large. Considering the small data set, ViT version based on 
ViT-B/16 was selected to complete the corresponding task of bone CT 
classification. 

In this study, we propose a novel VGG16-ViT model for bone tumor 
classification by combining the VGG16 and ViT architectures. The pro-
cess involves selecting 27 features from the third layer feature set of 
VGG16, which contains a total of 13,696 features, to achieve the best 

classification performance. The selected features are obtained from the 
first convolution layer. The overall architecture of the VGG16-ViT model 
is as follows: Firstly, the image data is divided into multiple patches 
[25], which are then flattened and provided with location and category 
labels. These patches are fed into the encoder part of the Transformer 
network. Finally, the output results from the Transformer network are 
sent to the Multi-Layer Perceptron (MLP) module for weighted summing 
classification. Given the relatively small dataset, we chose the ViT 
version based on ViT-B/16 for bone CT classification. 

3.5. Training details 

In the model training, the results of the single VGG16 model are not 
ideal, which may be due to the existence of redundant or irrelevant 
information in the extracted features. In order to solve this problem, 

Fig. 2. VGG-TSwinformer model architecture.  

Algorithm 1. RSwin block calculation process. 

Input:Xl
T2 = (Xl

(T2,1);⋯;Xl
(T2,N)

)

Output:Xl+1
T2 

Num = ceil(N− w+1
s ) 

M← zero(num + 1,N,C) 

i← 1 

while(i≤ num) do 

Wi←MSA(Xl
(T2,(i− 1)s+1 )

;⋯;Xl
(T2,(i=1)s+w )

) 

M[i-1, (i-1)s: (i-1) s + w-1,:] ←Wi 

i←i + 1 

end while 

if((num-1)s + w!=N) then 

Wi←MSA(Xl
(T2,(i− 1)s+1 )Xl

(T2,(i− 1)s+1 )
;⋯;Xl

(T2,(i=1)s+w )

) 

M[i-1, num*s:N-1,:]←Wi 

end if 

count← (M[:,:,C]!=zero(C)).sum(axis = 0) 

t←M.sum(axis = 0) 

Xl
T2←MLP(LN(t)) + t 

return Xl
T2  
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feature selection should be carried out for the extracted features, 
keeping the features with good classification performance and discard-
ing the features with poor classification performance. The traditional 
method is to use search to achieve enumeration, such as wide search and 
deep search. However, when the number of features is relatively large 
[26,27], such as the number of features in VGG-16 is 13, 696, the search 
will be time-consuming. Therefore, the mRMR (the minimum redun-
dancy maximum correlation) method of feature selection proposed by 
Peng et al., [28] is selected to find the optimal combination of features. 
Firstly, the features should be ranked, and the top M features should be 
selected to form a feature group. Then, the Matthews correlation coef-
ficient is used to evaluate the performance of the feature group. Finally, 
the minimum number of feature groups is found as candidate feature 
groups. In the second stage, it is necessary to use SVM classification to 
complete the further screening of features. The screening method is 
search method. After feature selection in the first stage, the number of 
feature groups is greatly reduced. 

As the window size increases, the accuracy of SVM classification 
decreases, with better performance observed for smaller window sizes. 
Results of SVM using different kernel functions are not significantly 
different when using the same window scale, but polynomial kernel 
SVM performs slightly lower than linear kernel and radial basis kernel 
SVM. Additionally, sample training was carried out with C =1, 10, 100, 
1000, 10,000 and σ2 =0.01, 0.125, 0.5, 1.5, 10. After conducting 

experiments, it was discovered that the optimal range for parameter C is 
between 100 and 1000, while the range for σ2 is between 0.01 and 
0.125, resulting in the highest cross-validation accuracy. 

The reduction of parameters in our proposed model was achieved 
through a two-step process. Firstly, we performed feature selection to 
identify the most informative and relevant features from the original 
dataset. This step involved evaluating the importance of each feature 
using techniques such as correlation analysis and feature ranking. The 
selected features were then retained for further processing, while irrel-
evant or redundant features were discarded. This feature selection 
process significantly reduced the dimensionality of the input data, 
leading to a more efficient and streamlined model. 

Secondly, we employed a compression technique to further reduce 
the number of parameters in the model. Specifically, we utilized a 
quantization approach to approximate the weights and activations of the 
neural network. This technique allowed us to represent the model pa-
rameters using fewer bits, thereby reducing the memory footprint and 
computational complexity of the model. By employing both feature se-
lection and compression, we were able to achieve a significant reduction 
in the number of parameters without compromising the model’s 
performance. 

3.6. Evaluation index of classification 

In binary classification, the performance is quantitatively deter-
mined by sensitivity, specificity, and accuracy. The classification accu-
racy of a single VGG16 or ViT network, as well as the VGG16-ViT 
network combination, is measured by comparing the F-value. Equation 
(7) indicates the accuracy rate of the test set, reflecting the proportion of 
samples that are correctly classified. Equation (8) shows the sensitivity 
rate, which represents the proportion of accurately classified positive 
samples. Equation (9) shows the specificity rate, which represents the 
proportion of accurately classified negative samples. Additionally, 
transfer learning is incorporated to enhance the learning ability of the 
model, as shown in Equation (10). These metrics are calculated using 

Algorithm 2. LSwin block calculation process. 

Input: Xl
T2 = (Xl

(T2,1);⋯;Xl
(T2,N)

)

Output: Xl+1
(T2,)

Num = ceil(N− w+1
s ) 

M← zero(num + 1,N,C) 

i← 1 

while(i≤ num) do 

Wi←MSA(Xl
(T2,N− (i− 1)s− w+1 )

;⋯;Xl
(T2,N(i=1)s )) 

M[i-1, N-(i-1)s-w: N-(i-1) s-1,:]←Wi 

i←i + 1 

end while 

if(N-(num-1)s-w + 1!=1) then 

Wi←MSA(Xl
(T2,1);⋯;Xl

(T2,N− (i− 1)s )
) 

M[i-1, 0:N-num*s-1,:]←Wi 

end if 

count← (M[:,:,C]!=zero(C)).sum(axis = 0) 

t←M.sum(axis = 0) 

Xl+1
T2 ←MLP(LN(t)) + t 

return Xl+1
T2  

Table 1 
Configuration details of four sliding-window attention blocks of token series T1 
and token series T2.  

Block 
num 

Block 
name 

Window sliding 
orientation 

Window 
size 

Sliding 
stride 

2 RSwin right 5 4 
4 LSwin left 9 8 
6 RSwin right 17 16 
8 LSwin left 33 32  
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True Positive (TP), True Negative (TN), False Negative (FN), and False 
Positive (FP). 

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (7)  

Sensitivity =
TP

TP + FN
× 100% (8)  

Specificity =
TN

FN + FP
× 100% (9)  

F1 =
2 × TP

2 × TP + FP + FN
(10) 

In this paper, TP is the count of correctly classified positive samples, 
and in this case the number of accurately classified CT images of bone 
tumors. FP indicates the number of negative samples that were mis-
classified as positive, or in other words, the number of CT of bone tumors 
that were misclassified. TN, on the other hand, indicates the number of 
negative samples that were correctly classified, or the number of images 
of non-bone tumors that were accurately classified. Finally, FN refers to 
the number of positive samples that were misclassified as negative, in 
which case it corresponds to the number of non-bone tumor images that 
were misclassified. 

In addition to the aforementioned evaluation metrics, the Receiver 
Operating Characteristic (ROC) curve was also employed as an evalua-
tion criterion. The model’s effectiveness was evaluated by comparing its 
Area Under Curve (AUC) values, which were obtained by plotting a ROC 
curve. The ROC curve is a popular method for assessing classifier 

performance by balancing true positive and false positive error rates. 
AUC is a common performance metric that is derived from the ROC 
curve. In practice, AUC is indicative of a classifier’s ability to differen-
tiate between samples. 

4. Experimental results and discussion 

4.1. Datasets 

The dataset used in this study contained image data and clinical data 
from 568 patients from the Second Affiliated Hospital of Fujian Medical 
University. In the model training and validation testing process, we used 
bone tumor 786 images from these patients. In the testing and verifi-
cation phase of this experiment, we used 286 images based on 244 pa-
tients obtained from the Xiangya Hospital. After inclusion and exclusion 
screening, according to the fifth edition of the World Health Organiza-
tion’s preliminary classification of bone tumors, 786 images were clas-
sified as benign, malignant and intermediate bone tumors (see Fig. 3), 
and all lesions were pathologically confirmed. 

The first hospital group of 568 patients were randomly assigned to 
the training set and validation set according to the ratio of 9:1, the 
training set was used to update the weight parameters of the model, the 
verification set was used to monitor the training effect of the model, and 
the model was saved as a reference, and the ROI of each patient only 
existed in one of the three datasets, and there were no duplicate cases 
between the three. 

The ROI is enhanced online before entering the model, randomly 
flipping the ROI horizontally or vertically, and randomly rotating 

Fig. 3. The datasets containing CT images of the tibia and femur are partially shown. The (a) part indicates benign bone tumors; the (b) part indicates malignant 
bone tumors; the (c) part indicates intermediate tumors. 
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between 0◦ and 25◦ to mitigate the overfitting of the model and enhance 
its generalization ability. A total of 244 patients and 286 CT images from 
the second hospital group were included in this study, and assigned for 
verification. 

4.2. Results of VGG-16 

This experiment completed the binary task, that is, the classification 
task of malignant tumor and benign tumor. The data set was divided into 
training set and test set, in which training set accounted for 80 % and 
test set accounted for 20 %. In order to ensure fair comparison, all ex-
periments were conducted on this data set. The average value of 10 
times cross validation was used as the final evaluation result. Among 
them, advanced VGG16 network was selected for CNN network, and the 
model pre-training weight provided in the literature was used to 
initialize the network. Adam optimizer was selected for the optimizer, 
and 100 epochs were trained for the model. The ViT model employed the 
cross entropy loss function to address the imbalanced nature of the 
dataset. The SGD optimizer was selected, the momentum was set to 0.9, 
the batch size was set to 128, the initial learning rate was set to 0.001, 
and 100 epochs were trained. The final results of the separate training 
network are shown in Table 2. 

As can be seen from Table 1, based on the convolutional network 
VGG-16 model, the accuracy is 91 % and the AUC value is 0.91. The 
accuracy of the ViT model is more than 91 %, and the AUC value is 
greater than 0.91, which exceeds that of the VGG-16 model of con-
volutional network. However, compared to the ViT model in the original 
document [24], the dataset in this paper is much smaller than the 
original document. The reason for the better effect may be that, unlike 
natural images, the spatial or global information of tumor in CT of bone 
tumors seems to be more important. In order to further prove the above 
conjecture, the authors completed the expansion of the dataset and 
enhanced the dataset accordingly through subsequent experiments, 
including cropping, rotation, brightness and contrast changes. The re-
sults, shown in Table 3, show that data augmentation does not improve 
the performance of the ViT model, but rather affects its performance. 
(See Table 4). 

4.3. VGG-16 model fusion with ViT 

The ten-fold cross-validation method was adopted in the experiment, 
and the average value was taken as the final result. The results show that 
the feature set of the third layer has the highest classification 

performance, with an accuracy of 95.2 %. In fact, the feature selection 
process can process 13,696 features including the third layer feature set, 
from which 27 features are selected for combination, thus achieving the 
highest classification performance. The 27 feature combinations come 
from the first convolution layer. 

In order to integrate the respective advantages of VGG and ViT 
models, the framework is used to select 27 features from the third layer 
features in VGG16 as patch input and input them into the ViT encoder 
for training. 

Table 5 suggests that the VGG16-ViT model achieved higher accu-
racy on the dataset, which may be attributed to the relatively small 
sample size. This suggests that the convolutional network’s inductive 
bias can facilitate faster convergence of the model. See (Table 6). 

In this section, we present the evaluation of our model’s performance 
through accuracy and loss metrics. We plot the accuracy against the loss 
to gain insights into the model’s convergence and overall performance, 
as shown in Fig. 4. Additionally, we assess the model’s classification 
performance using a confusion matrix, which provides a detailed 
breakdown of true positive, true negative, false positive, and false 
negative predictions for each class, offering a comprehensive view of the 
model’s effectiveness. 

4.3.1. Comparison with other models 
In this section, we conduct a thorough evaluation of three models: 

VGG-16, ViT-B/16, and our proposed framework. We compare their 
performance using key metrics such as accuracy, sensitivity, and speci-
ficity, which provide valuable insights into their classification capabil-
ities. The results of this comparative analysis are presented in Fig. 5, 
where we analyze the models’ accuracy in making correct predictions, 
sensitivity in correctly identifying positive cases, and specificity in 
accurately recognizing negative cases. 

Fig. 5 demonstrates that networks without transfer learning exhibit 
poorer performance compared to networks with transfer learning. In 
particular, Fig. 5 (c) indicates that the VGG16-ViT fusion network out-
performs the VGG16 or ViT network alone. Notably, there is no sign of 
overfitting in the network with transfer learning, as the loss function is 
reduced on both the training and test sets. Therefore, employing a 
deeper network on a small dataset and incorporating transfer learning 
can enhance the system’s classification performance. 

Table 2 
Results of the model on dataset based on VGG16 and ViT-B/16.  

Model Accuracy rate Sensitivity Specificity AUC value 

VGG-16 91 % 89 % 83 %  0.91 
ViT-B/16 93.1 % 91.5 % 85.6 %  0.93  

Table 3 
Results of the ViT model on the enhanced dataset.  

Model Accuracy rate Sensitivity Specificity AUC value 

ViT-B/16  94.1 % 92 %  88.7 %  0.95  

Table 4 
Feature selection classification performance.  

Feature 
level 

Feature 
set 

The number of features 
selected 

Specific characteristics Accuracy 
rate  

Third layer 
feature  

CONV  27 
CONV3_3(A feature) CONV4_2(Four features) CONV4_3 (Two features) CONV4_4(A feature) CONV5_1 
(Five features) CONV5_4 (Fourteen features)   95.2 %  

Table 5 
Results of VGG16-ViT model on dataset.  

Model Accuracy rate Sensitivity Specificity AUC value 

VGG16-ViT  97.6 % 93 %  90.7 %  0.97  

Table 6 
Results providing a comparison of the three models  

Model Accuracy rate Sensitivity Specificity AUC value 

VGG-16 91 % 89 % 83 %  0.91 
ViT-B/16 93.1 % 91.5 % 85.6 %  0.93 
VGG16-ViT 97.6 % 93 % 90.7 %  0.97  
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5. Discussion 

The characteristics of bone tumors varies widely, and different bio-
logical behaviors often bring different prognosis and affect their treat-
ment options. Since the fourth edition of the WHO Classification of Bone 
and Soft Tissue Tumors published in 2013, it has clearly classified bone 
tumors as benign, intermediate and malignant, and divided different 
types of bone tumors according to their biological behaviors, reflecting 
the research progress of scientists in recent decades on bone and soft 
tissue tumors and tumor-like lesions in clinical, pathological, molecular 
biology and prognosis. Based on this, the fifth edition of the WHO 
Classification of Bone and Soft Tissue Tumors published in 2020 modi-
fied the classification of some types of tumors to further understand 
bone tumors, making them more conducive to guiding clinicians to 
choose appropriate treatment options for lesions. This paper analyzes 
the ability of CNN in image classification. The limited local sensitivity 
field of CNN restricts its ability to obtain global information, which 
makes the performance of these convolutional networks poor in 
obtaining global structural information and limits their visual recogni-
tion ability. Therefore, a network of ViT was introduced. The ability of 
the network to capture global information was improved, and finally the 
VGG-16 network was combined with the ViT model to complete the 
classification task of bone tumors images. Sensitivity, specificity, 

accuracy and ROC curves were selected for comparison and analysis 
with the above CNN structure model. The training method combining 
VGG-16 network and ViT model can improve the accuracy of image 
classification. Experimental results show that the proposed method has 
good universality. Compared to other methods in recent years, the re-
sults show that this method has the best performance in end-to-end fully 
automated networks. Although deep learning has been widely used in 
the field of medical image processing, there are still many bottlenecks 
and improvements that need to be broken through in the medical field. 

First of all, although deep learning has strong generality, it also has 
high requirements on data and needs a lot of data due to the privacy and 
professionalism of medical images, the development of this field is more 
difficult. When the amount of data is sufficient, the deeper the network 
is, the better the performance will be. However, the higher the 
complexity of the network, the higher the parameter number and 
calculation consumption will increase, the training speed will be greatly 
slowed down, and the requirements on hardware equipment will also be 
increased. In order to apply the algorithm to clinical practice generally, 
more efficient and lightweight networks need to be designed in future 
studies. 

Fig. 4. Performance evaluation of proposed framework. Whereby (a) represents the accuracy and loss analysis, while (b) is the confusion metrics.  

Fig. 5. The comparitive analysis among three models with different evaluation metrics.  

W. Chen et al.                                                                                                                                                                                                                                   



Journal of Bone Oncology 43 (2023) 100508

11

6. Conclusion 

The proposed VGG-16 and visual transformer joint network, known 
as VGG16-ViT, demonstrates promising classification performance on 
bone tumor datasets, achieving an accuracy rate of 97.6 % and effec-
tively distinguishing different types of bone tumors. The optimization of 
sensitivity and specificity leads to an 8 % improvement, while the study 
reveals that secondary migration can further enhance the system’s 
performance. One limitation is that the dataset used for training and 
verification is collected from a specific hospital, which may introduce 
bias and limit the generalizability of the model to other medical in-
stitutions. The small size of the dataset (786 CT images) could also affect 
the algorithm’s robustness, and there might be a need for a more 
extensive and diverse dataset for further validation. Moreover, the study 
does not compare the performance of the proposed VGG16-ViT model 
with other state-of-the-art algorithms in bone tumor classification, 
which could provide a more comprehensive evaluation of its effective-
ness. Future work should focus on acquiring larger and more diverse 
datasets, comparing the algorithm with other state-of-the-art methods, 
and incorporating advanced deep learning techniques to enhance clas-
sification performance. Prospective studies on a larger cohort of bone 
tumor patients will provide valuable insights into the algorithm’s 
practical utility in clinical settings, enabling early detection and precise 
prognosis. 
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