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Background:Motivational interventions to improve health behaviors based onconventional cognitive andbehavioral theories have been
extensively studied; however, advances in neuroimaging technology make it possible to assess the neurophysiological basis of
health behaviors, such as physical activity. The goals of this approach are to support new interventions to achieve optimal outcomes.

Objectives: This study used functional magnetic resonance imaging (fMRI) to assess differences in brain responses in healthy
weight to obese midlife women during a goal-directed decision task.

Methods: Thirty nondiabetic, midlife (age 47–55 years) women with body mass index (BMI) ranging from 18.5 to 40 kg/m2 were
recruited. A descriptive, correlational design was used to assess the relationship between brain activations and weight status. Participants
underwent a goal-directed behavior task in the fMRI scanner consisting of a learning and implementation phase. The task was
designed to assess both goal-directed and habitual behaviors. One participant was omitted from the analysis because of excessive motion
(>4mm),andsixwereomittedbecauseof fewer than50%correct responsesontheexit survey.Fourparticipantsdevelopedclaustrophobia
in the scanner and were disqualified from further participation. The remaining 19 participants were included in the final analysis.

Results: Brain responses while participants learned goal-directed behavior showed a positive correlation with BMI in the
dorsomedial prefrontal cortex (dmPFC) and a negative correlation with BMI in the insula. During the implementation of
goal-directed behavior, brain responses in the dorsolateral prefrontal cortex (dlPFC) negatively correlated with BMI.

Discussion: These results indicate that overweight women activate regions associated with cognitive control to a greater degree
than healthy weight women during goal-directed learning. The brain regions activated (dmPFC, dlPFC, insula) are associated
with cognitive control and self-regulation. On the other hand, healthy weight women activate regions associated with emotion
processing, planning, and self-regulation (lateral orbitofrontal cortex, anterior insula) to a greater degree than overweight
women during goal-directed learning and implementation of goal-directed behavior. Overweight women activate cognitive control
regions while learning associations between actions and outcomes; however, this is not the case during the implementation
phase—which may make it more difficult to transform goals into action (e.g., maintain physical activity over time). Overall, these
results indicate that overweight midlife women respond differently during learning and implementation of actions that lead to
positive outcomes during a general test of goal-directed behavior. Future study is needed to assess the transfer of goal-directed
and habitual behavior to specific aspects of energy balance to improve health outcomes.

Key Words: fMRI • health behavior • neuroimaging • neurophysiology • obesity • women’s health

Nursing Research, November/December 2014, Vol 63, No 6, 388–396
M idlife women are a critical focus for lifestyle inter-
ventions. A marked increase in the prevalence of
biomarkers of cardiometabolic risk was found in
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perimenopausal midlife women—independent of other factors,
such as hormonal changes (Janssen, Powell, Crawford, Lasley, &
Sutton-Tyrrell, 2008). Without intervention, cardiometabolic
disease progresses to diabetes and doubles the risk of cardio-
vascular disease morbidity and mortality (Roger et al., 2011).
This is also significant because the total cost and the indirect
mortality cost estimates for cardiovascular disease alone are
higher than for any other major diagnostic group. This trend is
expected to continue over the next 20 years, as real total direct
healthcare costs of cardiovascular disease are projected to
triple, from $272.5 billion to $818.1 billion (Heidenreich
et al., 2011). Furthermore, the 2012 Economic Costs of Diabetes
study showed that, in the United States alone, cost estimates of
diagnosed diabetes have risen to $245 billion, including
$176 billion in direct medical costs and $69 billion in indirect
medical costs (American Diabetes Association, 2013). This
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does not take into account the personal burden associated
with chronic cardiometabolic conditions or the multiple co-
morbidities, including stroke and kidney disease. Modifying life-
style behaviors is demanding, and many midlife women are
unable to meet the lifestyle recommendations to reduce their
risk without support from their healthcare providers.

Conventional cognitive and behavioral theoretical approaches
based on the constructs of social cognitive theory (SCT) have
been extensively studied to guide health behavior change. Spe-
cifically, motivational interventions to improve physical activity
(PA) have received considerable research attention but found
sizeable variability and only modest effects on outcomes (Conn
et al., 2007; Conn,Hafdahl, &Mehr, 2011; Conn,Hafdahl,Moore,
Nielsen, & Brown, 2009; Conn, Phillips, Ruppar, & Chase, 2012).
The primary SCT constructs for health behavior change involve
self-control that can be achieved through goal-directed behav-
ior, monitoring, and rewards for goal achievement. The main
cognitive resources used in SCT are skills and self-efficacy or
the capability to perform the behavior (Bandura, 1977, 2004;
Baranowski, Cullen, Nicklas, Thompson, & Baranowski, 2003;
Bowers, 1980).

Neuroimaging of health behavior offers a complementary
approach to conventional SCT to provide insight into the under-
lying neural mechanisms to predict and explain health behav-
ior. This translational approach also holds promise to improve
the validity of instruments developed tomeasure these constructs
as well as to provide an organizing framework, thereby increas-
ing the fidelity of health behavior interventions (Borrelli et al.,
2005; Bosak, Pozehl, & Yates, 2012).

Dual System Framework

The dual system framework has been used to explain the neu-
rophysiology of behavior (deWit, Barker, Dickinson, & Cools,
2011; deWit, Corlett, Aitken, Dickinson, & Fletcher, 2009) and
guides the analytic plan of this study. Dual system frameworks
are useful for understanding human judgment, decision mak-
ing, and behavior, as well as the emotion processing involved
in integrating affect and cognition (Cushman, 2013). The cur-
rent approach includes the goal-directed and the habit-based
systems in the brain. The semiautomated habit-based system
is relatively more efficient than the goal-directed system—which
also requires consideration of goals and outcomes (Adams, 1982;
Dickinson, 1985). On the basis of the dual system, participants
who are more successful with goal-directed behavior are also
more successful in developing habitual behavior—such as PA
concurrently over time (de Wit et al., 2009)—resulting in im-
proved health outcomes.

PreviousNeuroimaging Studies of Goal-Directed Behavior

Functional magnetic resonance imaging (fMRI) is a noninva-
sive, indirect measure of brain responses that can be used to
examine the brain regions associated with a variety of cog-
nitive functions, including goal-directed behavior. fMRI can
enhance our understanding of the cognitive processes in-
volved in lifestyle interventions by providing insight into deci-
sion making that may guide the development of more effective
interventions in the future. In previous studies, goal-directed
behavior was associated with reward processing, as goals tend
to consist of some form of reward. In the case of lifestyle
interventions, these rewards included increasing PA, fitness,
and losing weight. In order to reach these goals, individ-
uals must first evaluate the potential reward, plan actions
to gain the reward, and update these reward values based
on feedback.

Goal-directedbehavior involves brain regions associatedwith
evaluating whether stimuli are rewarding. Cognitive control
regions are associated with inhibiting a response, and self-
regulation regions integrate the reward and response informa-
tion to guide goal-directed behavior (Bari & Robbins, 2013).
De Wit et al. (2009) tested the dual system framework and
showed that engagement of the goal-directed system during
learning was associated with increased activity in the ventro-
medial prefrontal cortex (vmPFC; deWit et al., 2009). In a pre-
vious lifestyle intervention study, brain activations in the vmPFC
and dorsolateral prefrontal cortex (dlPFC)—while participants
made decisions about food—were shown to correlate with
weight loss (Hare, Camerer, & Rangel, 2009;Weygandt et al.,
2013). These results indicate that vmPFC activity is a probable
index of goal-directed behavior.

A preliminary study focusing on food motivation showed
differential fMRI activations in healthy weight participants,
compared to obese participants (Martin et al., 2010). Processing
motivating stimuli—such as images of food—is associated with
goal-directed behaviors in that people tend to direct their long-term
goals to some sort of reward, such as living a healthier lifestyle.

Few studies have used general taskswith fMRI to test goal-
directed behaviors or to explain and predict lifestyle behaviors,
such as PA as in the current study. A general task of goal-directed
behavior has the advantage of being translated to a variety of
lifestyle interventions (e.g., PA, diet, smoking, alcohol intake)
to improve health outcomes. This general task was used in
previous studies to describe problematic behavior. Overreliance
on habit—or an imbalance between goal-directed and habitual
behavior—was found to be involved in impulsivity and related
conditions underlying overeating and substance abuse disor-
ders (de Wit et al., 2012; Gillan et al., 2011).

Objectives

The current study used a goal-directed decision task to elicit
goal-directed behavior and characterize the associated brain ac-
tivations in nondiabetic midlife women ranging from healthy
weight (body mass index [BMI] 18.5–25 kg/m2) to overweight
or obese (BMI 25–40 kg/m2) with increased cardiometabolic
risk. Specifically, this research study used fMRI to assess brain
responses during training and implementation of goal-directed
behaviors. This study has the potential to contribute to the
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existing paradigmof health behavior change. The growing inter-
est in examining brain activations in specific cognitive control
and self-regulation areas has the potential to alter the dominant
cognitive behavioral approaches that are used to base interven-
tions in this field.
FIGURE 1. The three conditions of the decision task.
METHODS

Participants

This study was approved by the Human Subjects Committee,
the Institutional ReviewBoard for theUniversity of KansasMed-
ical Center. All participants provided written consent to partic-
ipate. Thirty nondiabetic, healthy weight (BMI 18.5–25 kg/m2)
to overweight and obese (BMI 25–40 kg/m2) women, aged
47–55 years with no routine exercise program, were recruited
from a patient list generated from the electronic health record
of an urban academic-affiliated internal medicine clinic.

This studywas limited tomidlifewomen because coronary
heart disease morbidity and mortality continue to increase in
women—with amarked increase during the transition tomeno-
pause (Janssen et al., 2008; Roger et al., 2011). Consistent with
the guidelines for reporting an fMRI study (Poldrack et al.,
2008), the following exclusion criteria were used: Potential
participants were excluded if they reported serious medical
illness unsuitable for the MRI scanner based on best clinical
judgment, including any neurological or psychiatric disorder,
diabetes, known heart disease, high blood pressure, thyroid
conditions, significant visual impairment, seizure disorder, an-
orexia nervosa or bulimia, currently taking psychotropic or car-
diovascular medication, and any history of alcohol or other
substance dependence or current abuse. Diagnoses and medi-
cations were verified in the electronic health record for all
study participants prior to scheduling the fMRI scan.

Goal-Directed Decision Task by fMRI

Participants completed a 2-hour testing session consisting of
self-report measures and fMRI. The decision task based on de
Wit et al. (2009) tests goal-directed and habitual behavior. The
task consists of three conditions: (a) cue–outcome congruent,
(b) cue–outcome incongruent, and (c) cue–outcome unrelated
control trials. According to deWit et al. (2009), congruent trials
can be solved by either the goal or the habit-based systems be-
cause the cues always match the outcomes, and there is only
one response associated with the cues. Incongruent trials can
only be solved by the habit systembecause the cue andoutcome
do not match, and participants must learn which response is
associated with the cue–outcome pair. The cue–outcome un-
related control trials are easily solved by the goal system because
these stimuli only have one response associated with the out-
comes (Figure 1).

Participants received a demonstration of the task prior to
going into the scanner. Following the demonstration, participants
completed theMRI testing, which consisted of a high-resolution
anatomical scan, followed by six fMRI runs (scanning parameters
describedbelow). The first three runs comprised the goal-directed
learning phase (Figure 2a). During this phase, participantswere
presentedwith a series of cues and asked to respond correctly
in order to receive rewarding outcomes (points). The cues or
stimuli consisted of two sets of colored icons of 11 different
commonly recognized fruits. Participants were instructed to
respond to the cue by pressing the left or right response key
associated with the fruit displayed on the screen. Correct re-
sponses led to the outcome associated fruit, and points were
added to the participants’ overall scores. Participants were not
told which key was the correct response but had to learn as
they went along. The quicker a correct response was made,
the more points they received. Participants were instructed to
earn as many points as possible during the task. Points served
as an intrinsic reward to motivate participants to perform their
best and did not impact participant payment for participation
in the study.

The final three fMRI runs made up the goal-directed imple-
mentation phase (Figure 2b). During this phase, participants
were presented with two of the previously learned cues. One
of the cues was crossed out, and participants were instructed
to respond to the cue that was not crossed out to receive the
associated outcome by pressing the correct key. This phase of
the task requires that participants have learned the associa-
tions and are able to engage the habitual learning used to solve
the incongruent trials and the goal-directed learning used to
solve the congruent and control trials.

A questionnaire was completed by participants at the end
of the scanning session to test whether or not the correct cue–
outcome associations were learned. Participants who did not
learn the correct cue–outcome associations of more than 50%
of the trials were excluded from the fMRI task analysis.



FIGURE 2. (A) Goal-directed learning phase. (B) Goal-directed implementation phase.
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fMRI Data Acquisition

Scanning was performed at the University of Kansas Medical
Center’s Hoglund Brain Imaging Center on a 3-Tesla (indicating
field strength) Siemens Skyra scanner using standard scanning
parameters. First, a high-resolution anatomical scan (T1-weighted
3D MPRAGE, TR/TE = 23/2 ms, flip angle = 9°, FOV = 256 mm,
matrix = 256 � 176, slice thickness = 1 mm) was acquired to
align with the fMRI scans. Six functional scans, gradient echo
blood oxygen level-dependent sequences of 50 contiguous slices
at a 40° angle to the AC/PC line (TR/TE = 3,000/25 ms, flip an-
gle = 90°, matrix = 80 � 80, slice thickness = 3 mm, in-plane
resolution = 2.9 mm, for 80 data points) were acquired while
participants completed the goal-directed learning and imple-
mentation of goal-directed behavior phases of the study. All
participants were positioned so the anterior and posterior com-
missures were on the same horizontal line (the AC–PC plane
17–22°), whichwas verified by a localization scan to standardize
head positioning between participants of varyingweights and sizes.

Data Analysis

Data preprocessing and statistical analyseswere performedusing
the Analysis of Functional Neuroimages software (AFNI; Medical
College ofWisconsin; http://afni.nimh.nih.gov/afni). Preprocess-
ing steps includedmotioncorrection, alignment, spatial smoothing,
and spatial normalization. The fMRI images were realigned to
the third slice collected in each run to correct formotion for each
run for every subject. Time points during which participants
moved more than 0.3 mm within a temporal resolution (TR =
3,000 ms) were censored. In addition, participants would have
been excluded from analysis if they had a maximum displace-
ment of greater than 4 mm (one participant was excluded for
excessive motion). The images were spatially smoothed with
a 4-mm FWHM Gaussian blur. Anatomic images were aligned
to functional images. Participants’ anatomical scans were spa-
tially normalized to Talairach stereotaxic space using AFNI’s
automated algorithm, and this transformation was applied to
the participants’ functional scans. Statistical contrastswere con-
ducted using multiple regression analysis with motion param-
eters included as nuisance regressors.

Data analyses focused on voxelwise correlation analyses to
determine the association between BMI and brain activation
(i.e., percent signal change from baseline) during goal-directed
learning and implementation of goal-directed behavior. The
voxelwise correlation was restricted to brain regions of inter-
est (ROIs) to estimate evoked signals and limit corrections for
multiple tests to a subset of all voxels (Poldrack, 2007) in the
prefrontal cortex, striatum, and insula regions. These regions have
been associated with decision-making, goal-directed behaviors,

http://afni.nimh.nih.gov/afni


TABLE 1. Demographic Characteristics

Characteristic M Range

Age (years) 51.3 47–55
BMI (kg/m2) 25.7 20.0–37.1

n %

Race
Caucasian 17 89.5
African American 2 10.5

Highest educational level
High school graduate 1 5.3
Some college 2 10.5
Associate degree 2 10.5
Bachelor’s degree 8 42.1
Master’s degree 5 26.3
Doctorate 1 5.3

Employment
Business 10 52.6
Education/academia 4 21.0
Healthcare 3 15.7

Other 2 10.5

Note. N = 19. BMI = body mass index.
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and evaluation of motivating stimuli as described above. A bi-
lateral mask encompassing these regions was created using
AFNI’s Whereami program. The mask regions or a priori ROIs
are shown in Figure 3. Activationswere corrected formultiple
comparisons within the mask based on Monte Carlo simulations
using AFNI’s 3dClustSim ( pcorrected < .05; pvoxelwise < .01, clus-
ter extent 36 voxels).

Goal-directed learningwas assessed by comparing congruent
and control conditions to the incongruent condition in the first
three fMRI runs. Implementation of goal-directed learning was
assessed by comparing congruent and control conditions to
the incongruent condition during the final three fMRI runs.
Activation in each condition compared to baseline (i.e., fixa-
tion periods) was also examined during the learning and imple-
mentation phases.

Four participants did not complete the fMRI scanning ses-
sion because of claustrophobia and/or discomfort during scann-
ing, resulting in disqualification from further participation. Six
participantswere excluded from the fMRI analysis because they
learned 50% or fewer correct associations between cues and
outcomes. Two participants did not complete the exit inter-
view but performed at greater than 50% on the training phase
and, therefore, were included in the analysis. In addition, one
subject was excluded from fMRI analysis because of excessive
motion throughout the fMRI study. The remaining 19 partici-
pants were included in the final analysis.
RESULTS

Demographic Characteristics

The demographic information for this sample is provided in
Table1.Thesewomenwere,onaverage,middle aged (51.3years;
47–55 years), overweight (BMI 25.7 kg/m2; 20–37.1 kg/m2),
Caucasian (89.5%), andhad a college degree (84.2%). Therewere
no differences in demographic characteristics of those partic-
ipants omitted from the final analysis.

Goal-Directed Training Phase

During the training phase of the decision task, BMI positively
correlated with activation (e.g., percent signal during congruent–
incongruent trials) in the dorsal medial prefrontal cortex (dmPFC;
Figure 4a). Furthermore, BMI negatively correlated with activation
FIGURE 3. Mask of regions of interest (ROIs) applied to brain images to focus
(e.g., percent signal change during control–incongruent trials) in the
anterior insula (Figure 4b). In addition, we examined brain activa-
tion during control, congruent, and incongruent trials compared
to baseline to examine brain activation associated specifically with
goal-directed behavior, goal/habit-directed behavior, and habit-
directed behavior, respectively. During goal-directed behavior
(i.e., control–baseline), BMI was negatively correlated with activa-
tion in the lateral orbitofrontal cortex. There were no significant
correlations for congruent or incongruent compared to baseline
analyses. A complete list of activations during goal-directed learning
is provided in Table 2.

Goal Implementation Phase

During the goal implementation phase of the decision task, there
were no significant correlations found in the congruent–
incongruent or control–incongruent contrasts. However, BMI
negatively correlated with brain activation in the regions of the
dlPFC (i.e., superior frontal gyrus) for the congruent–baseline
and control–baseline analyses (Figure 5). In addition, BMI
analysis of activations in these regions.



FIGURE 4. Correlations with BMI and brain activations in the dorsomedial prefrontal cortex (dmPFC) and insula (congruent–incongruent and
control–incongruent analyses, respectively).
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negatively correlated with activation in the middle frontal
gyrus and the medial prefrontal cortex. A complete list of ac-
tivations during goal-directed learning is provided in Table 3.
Behavioral Data

Overall, participants learned the task (mean accuracy 80%; SD=

9.6) and were able to accurately implement goal-directed learn-
ing (mean accuracy 61.1%; SD = 8.5). Accuracy was better dur-
ing the training phase than the goal implementation phase
(t(18) = 10.2; p < .001). Accuracy on the training task was
correlated with BMI (rho = .483; p < .05). However, BMI was
not correlated with the ability to implement goal-directed be-
havior (rho = .073; p = .76). During training, the behavioral and
neuroimaging results were consistent in that BMI positively
correlated with accuracy and with dmPFC activation. In addi-
tion, BMI and age were not correlated (r = −.104; p = .69). This
TABLE 2. Learning Goal-Directed Behavior: Brain
Activation and BMI

Contrast Region

Congruent > incongruent Dorsomedial prefrontal cortex
Control > incongruent Insula

Control > baseline Orbitofrontal cortex
lack of association indicates that it is unlikely that the observed
effects are related to age, rather than BMI.

DISCUSSION

This study characterized goal-directed brain responses in healthy
weight to overweightwomenwith no routine exercise program.
During goal-directed learning, overweightwomen had greater
activations in the dmPFC—a region involved in cognitive
control—compared to healthy weight women. On the other
hand, healthy weight women had greater activations in the an-
terior insula—a region involved in emotion processing—than
overweightwomen. During the implementation of goal-directed
behavior, healthy weight women had greater activations in the
dlPFC—a region associated with self-regulation and planning.
The findings of this study provide the basis for further investiga-
tion of functional and structural brain differences and the ef-
fects on modifiable lifestyle behaviors, such as PA, that may
Regions Showing Correlations Between Brain

Talairach coordinates

x y z Cluster size r

4 16 44 36 .73
−39 19 1 67 −.76

24 46 −6 37 −.80



FIGURE5. Negative correlationswithBMI andbrain activations in the dorsolateral prefrontal cortex (dlPFC) (congruent–baseline and control–baseline analyses).
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be applied to other modifiable behaviors (e.g., diet, smoking,
alcohol intake).

Previous studies found that participants more successful
on the decision task had greater vmPFC activation during goal-
directed decisionmaking (deWit et al., 2009). The current study
did not show correlations between BMI and activation in the
vmPFC. This could be because of differences in the analysis ap-
proach, such as the current study specifically examined the as-
sociations between BMI and brain responses during goal-directed
learning and implementation of goal-directed behaviors in mid-
life women. Furthermore, previous studies using this task typi-
cally included young adults as opposed tomidlifewomen,which
could account for some differences in behaviors. Additional
studies are needed to understand the differences in vmPFC
activation between the current study and previous research.
TABLE 3. Implementation of Goal-Directed Beha
Between Brain Activation and BMI

T

Contrast of Conditions Region

Congruent > baseline Superior frontal gyrus −

Middle frontal gyrus
Control > baseline Superior frontal gyrus −

Medial prefrontal cortex
This study illustrated that the dlPFC was involved in the
learning of goal-directed behavior to a greater degree in indi-
viduals with higher BMIs. The current study extends previous
studies of goal-directed behavior, which showed increased ac-
tivation in the dlPFC when dieters made choices about foods
(Hare et al., 2009;Weygandt et al., 2013). Therehas been limited
investigation of the transfer of cognitive skills for goal-directed
behavior to outcomes in clinical populations. However, these
findings have clinical importance for predicting future outcomes—
such as fitness or weight loss—and identifying those individ-
uals who will benefit most from intensive interventions.

In addition, as indicated by Bari and Robbins (2013), the
insula and the orbitofrontal cortex are also involved in goal-
directed behavior by integrating emotion processing informa-
tion with the evaluation of rewarding and inhibiting responses
vior: Brain Regions Showing Correlations

alairach coordinates

x y z Cluster size r

24 64 16 140 −.83
49 16 34 40 −.79
21 46 24 50 −.79

4 −11 56 57 −.81
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to rewarding stimuli. Processing of emotion has receivedminimal
attention in the research literature relative to this goal-directed
decision task. The ability to translate goals into action and, thus,
to improve adherence andmaintenance of health behaviors are
associated with emotion processing. The development of inter-
ventions to support cognitive control and emotion self-regulation
involved in achieving health goals holds promise for improving
outcomes in overweight midlife women.

Limitations

The decision task was reproduced in the original form using
common fruits; however, a task more directly related to energy
balance needs to be tested in future study. The complexity of
the decision task is acknowledged as a limitation in this study.
Exit surveys tested participants’ understanding of the decision
task by asking participants to identify the correct answers to
the fruit pairings. Scores of less than 50% correct indicated that
selecting the correct responses on the decision task was no
greater than chance. Only the participants identifying at least
half of the correct answers on the exit survey were included
in the final analysis. It is acknowledged that cognitive abilities
gradually decline with age and consideration must be given to
decision tasks that are appropriate for individuals in various age
groups, such asmiddle age. In addition, recruitment was limited
to healthy weight, overweight, andmildly obese individuals, lim-
iting inference of the findings. It is acknowledged that the se-
verely (morbidly) obese groupsmaydiffer from thehealthyweight
and overweight groups in someways, and future study is needed
to identify these differences.

Conclusions

This study used a translational approach combining nursing
science, neurophysiology, and fMRI technology to character-
ize the cognitive control areas underlying goal-directed behav-
ior. The science of health behavior change will benefit from
integration of diverse sources of information to complement
the widely accepted theoretical models in this field. The neg-
ative relationship between BMI and the training phase of goal-
directed behavior identified in this study points to the need to
focus intervention strategies on transforming goals into action
with overweight and obese individuals. This may be achieved
by strategies to enhance cognitive control and emotion self-
regulation to improve adherence and long-term maintenance
of health behaviors. These findings offer a newperspective on
SCT and the construct of self-efficacy that has guided health
behavior interventions over decades. The ultimate goal of this
research is the translation of more effective health behavior in-
terventions to clinical practice to address some of the greatest
health challenges today.
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