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Melanoma is one of the most aggressive tumors of the skin, and its incidence is
growing worldwide. Historically considered a drug resistant disease, since 2011 the
therapeutic landscape of melanoma has radically changed. Indeed, the improved
knowledge of the immune system and its interactions with the tumor, and the ever
more thorough molecular characterization of the disease, has allowed the development
of immunotherapy on the one hand, and molecular target therapies on the other. The
increased availability of more performing technologies like Next-Generation Sequencing
(NGS), and the availability of increasingly large genetic panels, allows the identification
of several potential therapeutic targets. In light of this, numerous clinical and preclinical
trials are ongoing, to identify new molecular targets. Here, we review the landscape of
mutated non-BRAF skin melanoma, in light of recent data deriving from Whole-Exome
Sequencing (WES) or Whole-Genome Sequencing (WGS) studies on melanoma cohorts
for which information on the mutation rate of each gene was available, for a total of 10
NGS studies and 992 samples, focusing on available, or in experimentation, targeted
therapies beyond those targeting mutated BRAF. Namely, we describe 33 established
and candidate driver genes altered with frequency greater than 1.5%, and the current
status of targeted therapy for each gene. Only 1.1% of the samples showed no coding
mutations, whereas 30% showed at least one mutation in the RAS genes (mostly NRAS)
and 70% showed mutations outside of the RAS genes, suggesting potential new roads
for targeted therapy. Ongoing clinical trials are available for 33.3% of the most frequently
altered genes.

Keywords: melanoma, non-BRAF mutation, targeted therapy, driver mutations, genetic, heterogeneity, WES, WGS

INTRODUCTION

Cutaneous melanoma is one of the most aggressive malignancies of the skin. Its incidence is globally
growing partly due to the increase of early diagnoses, and contextually, the prevalence is also
increasing (Bray et al., 2018; Schadendorf et al., 2018). Until 10 years ago, advanced melanoma was
associated with poor survival due to the lack of durable responses to conventional chemotherapy
and biochemotherapy (Korn et al., 2008), with a median Overall Survival (OS) of about 6 month
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in patients with stage IV melanoma. Since 2011, however, the
rules of the treatment of stage IV melanoma have been completely
rewritten, with the introduction of targeted therapies with BRAF
and MEK inhibitors (Larkin et al., 2014; Long et al., 2014;
Robert et al., 2016), and immunotherapy with the anti CTLA-
4 ipilimumab (Hodi et al., 2010) and the anti-PD-1 nivolumab
(Robert et al., 2015) and pembrolizumab (Schachter et al.,
2017). These new therapeutic approaches improved melanoma
prognosis, resulting in a 5-year survival rate of 34–43% (Hamid
et al., 2019; Robert et al., 2019). However, mainly because of
primary and acquired resistance to treatments, the majority of
patients will ultimately relapse, and only patients harboring a
BRAF mutation, observed in about 50% of cutaneous melanoma,
can receive a targeted treatment with BRAF and MEK inhibitors
(Spagnolo et al., 2015). The current state of molecular-target
drugs and the current therapeutic scenario for patients with
BRAF mutated melanoma, from the introduction of BRAF
inhibitors as single agents to modern clinical practice, has been
extensively described in a related minireview (Tanda et al.,
2020). With the purpose of further improving the prognosis
of melanoma patients, several preclinical and clinical trials
are studying new actionable mechanisms and/or molecules, to
simultaneously tackle multiple resistance mechanisms.

The aim of this review is to describe the landscape of mutated
non-BRAF melanoma, in light of recent data deriving from Next-
Generation Sequencing (NGS) (or Massive Parallel Sequencing –
MPS) analysis, focusing on available, or in experimentation,
targeted therapies. The advent of MPS, allowing the simultaneous
analysis of several genes, led, in the past two decades, to Whole-
Exome Sequencing (WES) and Whole-Genome Sequencing
(WGS) studies that found several mutated genes in human
cancers. The evolution of molecular testing in melanoma, as
well as the main techniques and MPS platforms currently in
use for BRAF mutation testing, have been recently reviewed
(Vanni et al., 2020).

The first actionable mutation to be targeted by specific
drugs in melanoma, BRAF V600, was found in 2002 along
several other drivers of human cancers (Davies et al., 2002).
Since then, several other genes have been identified as putative
drivers of melanomagenesis and/or melanoma progression,
and additional candidate drivers are currently being assessed,
prompting pharmacogenomics studies on potentially actionable
targets (Priestley et al., 2019). However, melanoma is one of
the tumors with the highest mutation burden, and results from
different studies were frequently not overlapping, possibly due
to dissimilar sample size and cohort characteristics (Berger et al.,
2012; Hodis et al., 2012; Krauthammer et al., 2012; Snyder et al.,
2014; Van Allen et al., 2015). Although this high mutational
burden is one of the reason behind the success of immunotherapy
in this tumor, it makes it hard to clearly identify novel driver
genes that could be used for targeted therapies (Davis et al., 2018).

In 2015, The Cancer Genome Atlas analyzed 333 cutaneous
melanoma samples by integrating integrated multi-level genomic
analyses, namely WES and low-pass WGS, transcriptome
sequencing including miRNA, protein expression, and
classified melanoma in four major molecular subtypes:
mutant BRAF, mutant RAS, mutant NF1 and triple wild-type

(The Cancer Genome Atlas Network, 2015). However, as NF1
mutations can be found in melanomas with concurrent BRAF
or NRAS hotspot mutation, a three-group classification of
melanoma (mutant BRAF, mutant RAS, non-BRAFmut /non-
NRASmut) has been proposed (Palmieri et al., 2018). Although
providing an unprecedented insight into the complex mutational
spectrum of melanoma, the TCGA study cohort did not include
acral and mucosal melanomas. Two years later, this issue was
addressed with the molecular characterization of 183 melanoma
samples through WGS, including the acral and mucosal subtypes
(Hayward et al., 2017). Recently, a joint effort by the TCGA
and the ICGC resulted in the description of the molecular
spectrum of the largest whole genome dataset of 38 different
tumor types, which included a subset of 118 melanoma samples
previously described (ICGC/TCGA Pan-Cancer Analysis of
Whole Genomes Consortium, 2020).

The spectrum of genomic alterations in melanoma involve
multiple genes and signaling networks, but the most frequently
altered pathways are MAPK, PIK3CA, KIT signaling, and
apoptosis/cell senescence pathways (Figure 1). This review
focuses on cutaneous melanoma, including the acral melanoma.
To obtain an overview of molecular alterations in skin melanoma,
we focused our analysis on all WES or WGS studies on melanoma
cohorts or pan-cancer cohorts that included melanoma, for
which information on the mutation rate of each gene was
available. For selecting TCGA melanoma samples we considered
the group’s pan-cancer flagship paper (Hoadley et al., 2018),
which included the original cohort of the melanoma-only TCGA
study, plus an additional set of 60 skin melanoma samples. With
these criteria we collected and combined mutational data from
10 studies published from 2012 to 2019, available from either the
cBioportal repository (cBioPortal for Cancer Genomics, 2020) or
from the tables within the published manuscripts (Hayward et al.,
2017; Birkeland et al., 2018; Kontogianni et al., 2018; Wilmott
et al., 2019), to obtain cumulative mutational frequencies of
all genes assessed by these studies (Table 1) (Berger et al.,
2012; Hodis et al., 2012; Krauthammer et al., 2012; Snyder
et al., 2014; Van Allen et al., 2015; Hayward et al., 2017;
Kontogianni et al., 2018; Wilmott et al., 2019; cBioPortal for
Cancer Genomics, 2020). When present, we filtered out uveal
and mucosal melanoma samples, as well as synonymous variants.
Moreover, only three studies used for this review were performed
with WGS (Berger et al., 2012; Hodis et al., 2012; Hayward et al.,
2017; Wilmott et al., 2019), while all the others are WES studies.
Non-coding regions were not considered for our analysis, except
for TERT promoter, whose frequency was calculated on data
from a single WGS study (Hayward et al., 2017). Similarly, we
used the WGS subset to assess Copy Number Variations (CNVs).
An overview of the studies analyzed for this review is found
in Table 1.

In the following sections, we provide a description of 33
selected established and candidate melanoma driver genes, as well
as the mutational and CNV frequency of each gene (Figures 2, 3)
in the melanoma samples analyzed, and we describe available,
or in experimentation, targeted therapies for each gene/pathway,
excluding immunotherapy. Mutational frequency of these genes
in melanoma across each study included in the review is displayed
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TABLE 1 | Skin melanomas samples from the 10 NGS-based studies evaluated for the mutational and CNV frequency in the present report.

Cutaneous melanomas Acral melanoma Total samples (N◦) Reference (PUBMED ID)

Primary Metastatic Primary Metastatic

Berger MF, Nature 2012 0 25 0 0 25 22622578

Snyder A, NEJM 2014 0 44 0 5 49 25409260

Van Allen EM, Science 2015 0 92 0 0 92 26359337

Hodis E, Cell 2012 15 85 2 3 100 22817889

TCGA, PanCancer Atlas* 0 363 0 0 363 26091043

Krauthammer M, Nat Genet 2012 35 62 8 9 114 22842228

Hayward NK, Nature 2017 54 86 14 21 175 28467829

Kontogianni G, Cancers 2018 9 0 0 0 9 29596374

Birkeland E, Nat Commun 2018 0 37 0 3 40 29991680

Wilmott JS, Int J Cancer 2019 2 23 0 0 25 30178487

Total samples (N◦) 100 822 24 41 992

*Samples data from TCGA, PanCancer Atlas, were assessed by cBioportal repository (cBioPortal for Cancer Genomics, 2020).

FIGURE 1 | Main pathways involved in melanomagenesis. Genes and proteins are marked in circle and rectangles, respectively.

in Supplementary Figures S1–S10; ongoing targeted clinical
trials are displayed in Table 2.

Moreover, for each of the 33 genes included in this review
and listed here by mutational frequency and/or pathway, we also
provide molecular function, frequency alterations (mutations
plus CNV) in our dataset, and ranked their effect on melanoma
according to the DisGeNET Gene–Disease Association (GDA)
Score (Piñero et al., 2015) (Figure 4).

RAS GENES (NRAS/KRAS/HRAS)

Ras is a superfamily of small GTPase proteins that regulate
cell growth, survival, differentiation and play a key role in
transmitting the signal from Receptor Tyrosine Kinases (RTK)

to several downstream signaling pathways, in particularly MAPK
(mitogen-activated protein kinase) and PI3K (phosphoinositide
3-kinase). The three RAS tissue specific isoforms (NRAS,
neuroblastoma ras viral oncogene homolog; KRAS, Kirsten rat
sarcoma viral oncogene homolog; HRAS, Harvey rat sarcoma
viral oncogene homolog) are frequently mutated in cancers.
In cutaneous melanoma, NRAS is mutated in about 15–30%
of cases, while KRAS (∼2%) and HRAS (∼1%) play a minor
role (Milagre et al., 2010). NRAS, KRAS, and HRAS, mutations
and CNVs in our dataset are reported in Figures 2, 3 and
Supplementary Figures S1A–C.

NRAS
The NRAS was the first oncogene identified in melanoma in
1984, and the second most prevalent after BRAF (mutation
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FIGURE 2 | Somatic mutations frequency in top melanoma driver cancer genes based on 992 skin melanoma samples derived by the 10 selected NGS studies.
Somatic coding mutations were considered for the analysis excluding synonymous variants. Red asterisks indicate the presence of clinical trials for the altered gene.

FIGURE 3 | CNV frequency in top melanoma driver cancer genes. Amplifications and deletions are reported in red and blue, respectively. Only four studies with
available CNV information were considered for CNV analysis. Red asterisks indicate the presence of clinical trials for the altered gene.

Frontiers in Molecular Biosciences | www.frontiersin.org 4 July 2020 | Volume 7 | Article 172

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-00172 July 22, 2020 Time: 17:53 # 5

Vanni et al. Non-BRAF Mutated Melanoma Molecular Landscape

TABLE 2 | Clinical trials.

NCT Phase N Random Drugs Patient selection Recruiting state Results

RAS

NCT03979651 Ib/II 29 NO Trametinib plus hydroxychloroquine activating NRAS mutation Recruiting –

NCT03973151 I/II 54 NO HL-085 (MEK inhibitor) NRAS mutation Recruiting –

NCT01763164 III 402 YES MEK162 vs. dacarbazine NRAS Q61 mutation Completed Dummer et al.,
2017

NCT01320085 II 183 NO MEK162 BRAF V600 or NRAS Mutations Active, not
recruiting

Ascierto et al.,
2013

NCT01693068 II 194 YES Pimasertib vs. dacarbazine NRAS mutation Completed Lebbe et al., 2016

NCT03932253 I 37 NO FCN-159 NRAS mutation Recruiting –

NCT01781572 Ib/II 102 NO LEE011 + MEK162 NRAS mutation Completed Sosman et al.,
2014

NCT04109456 I 52 NO IN10018 / IN10018 + Cobimetinib uveal melanoma (UM); NRAS mutation Recruiting –

NCT02974725 Ib 195 NO LXH254 + LTT462 / Trametinib /
Ribociclib

NRAS mutation Recruiting –

NCT00866177 II 167 NO AZD6244 (Selumetinib) V600E or V600K BRAF mutation;
NRAS mutation at codons 12, 13, or 61

Completed Catalanotti et al.,
2013

NCT00338130 II 239 YES AZD6244 / Temodal BRAF and/or NRAS mutation Completed Kirkwood et al.,
2012

NCT03415126 I 49 NO ASN007 BRAF mutation or fusion / NRAS and
HRAS mutation / MEK1 mutation

Active, not
recruiting

–

NCT03989115 Ib/II 144 NO RMC-4630+ Cobimetinib KRAS mutations and amplifications,
BRAF Class 3 mutations, or NF1 LOF
mutations

Recruiting –

NCT02065063 I/II 28 NO Trametinib + Palbociclib BRAF V600 wild type and either NRAS
wild type or NRAS mutation type

Completed –

NCT03634982 I 240 NO RMC-4630 RTK mutations, amplifications or
rearrangements, KRASG12, BRAF
Class 3, or NF1 LOF mutations

Recruiting –

NCT04284774 II 49 NO Tipifarnib HRAS genomic alterations Not yet recruiting –

NCT01941927 II 20 NO Trametinib + GSK2141795 (AKTi) NRAS mutation or NRAS Wild-type /
BRAF Wild-type.

Completed Algazi et al., 2018

NCT04059224 II 58 no Trametinib BRAF V600 wild-type / NRAS wild-type
/ NRAS mutation

Recruiting –

NCT04198818 I/II 150 no HH2710 RAS/RAF/MEK/ERK mutation Recruiting –

NCT02857270 I 272 no LY3214996 / LY3214996 + Midazolam
/ Abemaciclib / Nab-paclitaxel +
Gemcitabine / Encorafenib +
Cetuximab /

Activating MAPK pathway alteration,
BRAF mutation, NRAS mutation

Recruiting –

NCT01390818 I 146 NO Pimasertib (MEKi) + Voxtalisib
(PI3K/mTOR)

Genetic alteration in PTEN, BRAF,
KRAS, NRAS, PI3KCA, ERBB1,
ERBB2, MET, RET, KIT, GNAQ, GNA11

Completed Schram et al., 2018

NF1

NCT02465060 II 6452 NO Trametinib (MEKi) Defactinib (FAKi) NF1 mutation, NF2 inactivating
mutation

Recruiting –

NCT03634982 I 240 NO RMC-4630 (SHP2i) NF1 LOF Recruiting –

NCT03989115 Ib/II 144 no RMC-4630 + Cobimetinib KRAS mutations and amplifications,
BRAF Class 3 mutations, or NF1 LOF
mutations

Recruiting –

CDKN2A/CDK4

NCT02478320 II 12 NO Ilorasertib (Aurora A/B/Ci) CDKN2A deletion or mutation Active, not
recruiting

–

NCT02202200 I/II 40 NO Palbociclib (CDK4/6i) BRAF V600E/K mutation, CDNKN2A
loss and expression of Rb

Unknown –

(Continued)
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TABLE 2 | Continued

NCT Phase N Random Drugs Patient selection Recruiting state Results

CDKN2A/CDK4

NCT03454919 II 60 NO Palbociclib (CDK4/6i) Any gene aberrations in cell cycle
pathways, including CDK4 amplification
and/or CCND1 amplification and/or
CDKN2A loss

Not yet recruiting –

NCT02671513 I 30 NO SHR6390 (CDK4/6i) Any cell cycle pathway abnormality
(e.g., CDK4 amplify and/or CCND1
amplify and/or CDKN2A loss)

Unknown –

NCT00835419 II 12 NO P276-00 (CDK1/4/9i) cyclin D1 expression Completed –

NCT02065063 I/II 28 NO Trametinib + Palbociclib BRAF V600 wild type and either NRAS
wild type or NRAS mutation type

Completed –

NCT01037790 II 304 NO Palbociclib (CDK4/6i) CCND1 amplification, CDK4/6
mutation, CCND2 amplification OR any
other functional alteration at the G1/S
checkpoint.

Completed –

NCT02308020 II 162 NO Abemaciclib Any* Completed –

NCT01781572 Ib/II 102 NO LEE011 (ribociclib) + MEK162 NRAS mutation Completed Sosman et al.,
2014

NCT02974725 I 315 NO LXH254 + LTT462; LXH254 +
Trametinib; LXH254 + Ribociclib

NRAS mutation Recruiting –

PTEN

NCT03131908 I/II 41 NO GSK2636771 (Pi3Ki) + pembrolizumab Evidence of PTEN loss Recruiting –

NCT01390818 I 146 NO Pimasertib (MEKi) + Voxtalisib
(PI3K/mTORi)

Genetic alteration in PTEN, BRAF,
KRAS, NRAS, PI3KCA, ERBB1,
ERBB2, MET, RET, KIT, GNAQ, GNA11

Completed Schram et al., 2018

MAP2K1/MAP2K2

NCT01364051 I 19 NO Cediranib Maleate + Selumetinib Any* Active, not
recruiting

–

NCT01941927 II 20 no Trametinib + GSK2141795 (AKTi) BRAF Wild-type and NRAS mutations Completed Algazi et al., 2018

NCT00948467 I 51 NO TAK-733 (MEKi) Any* Completed Adjei et al., 2017

NCT02296112 II 9 NO Trametinib BRAF mutations in loci other than V600
(BRAF non V600 MUT) or BRAF fusion

Active, not
recruiting

–

NCT02857270 I 272 no LY3214996 / LY3214996 + Midazolam
/ Abemaciclib / Nab-paclitaxel +
Gemcitabine / Encorafenib +
Cetuximab /

Activating MAPK pathway alteration,
BRAF mutations, NRAS mutations

Recruiting –

NCT04198818 I/II 150 no HH2710 RAS / RAF / MEK / ERK mutations Recruiting –

NCT04059224 II 58 no trametinib BRAF V600 wild-type / NRAS wild-type
/ NRAS mutant

Recruiting –

KIT

NCT02501551 II 36 NO Regorafenib KIT mutations Recruiting –

NCT01028222 II 55 NO Nilotinib / DTIC KIT mutations Completed Guo et al., 2017

NCT01395121 II 29 NO Nilotinib KIT mutations Completed –

NCT01168050 II 25 NO Nilotinib KIT mutations or amplification Unknown Carvajal et al., 2015

NCT00470470 II 30 NO Imatinib mesylate KIT mutations Completed Carvajal et al., 2011

NCT00881049 II 1 NO Imatinib KIT mutations Completed –

NCT01782508 II 40 YES Imatinib KIT mutations Unknown –

NCT00577382 II 52 NO Sunitinib KIT mutations Completed Buchbinder et al.,
2015

NCT00424515 II 24 NO Imatinib KIT mutations Completed Hodi et al., 2013

NCT00631618 II 12 NO Sunitinib KIT mutations Completed –

(Continued)
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TABLE 2 | Continued

NCT Phase N Random Drugs Patient selection Recruiting state Results

KIT

NCT01738139 I 96 NO Ipilimumab + Imatinib KIT mutations Recruiting –

NCT00700882 II 81 NO Dasatinib KIT mutation or amplification Active, not
recruiting

–

NCT01390818 I 146 NO Pimasertib (MEKi) + Voxtalisib
(PI3K/mTORi)

Genetic alteration in PTEN, BRAF,
KRAS, NRAS, PI3KCA, ERBB1,
ERBB2, MET, RET, KIT, GNAQ, GNA11

Completed Schram et al., 2018

FBXW7 and RB1

NCT02873975 II 50 NO LY2606368 (prexasertib) MYC amplification, CCNE1
amplification, Rb loss, FBXW7
mutation, or another genomic
abnormality indicative of replicative
stress

Active, not
recruiting

–

NCT02202200 I/II 40 NO Palbociclib (CDK4/6i) BRAF V600E/K mutation, CDNKN2A
loss and expression of Rb

Unknown –

PI3KCA

NCT01449058 Ib 139 NO BYL719 + MEK162 Any* Completed Juric et al., 2014

NCT02646748 I 159 NO Pembrolizumb + Itacitinib (JAKi −
INCB039110; Pembrolizumab +
Parsaclisib (Pi3kδi INCB050465)

Any* Active, not
recruiting

–

NCT04282018 I/II 150 no BGB-10188 / BGB-10188 +
Zanubrutinib / BGB-10188 +
Tislelizumab

Any* Recruiting –

NCT01390818 I 146 NO Pimasertib (MEKi) + Voxtalisib
(PI3K/mTOR)

Genetic alteration in PTEN, BRAF,
KRAS, NRAS, PI3KCA, ERBB1,
ERBB2, MET, RET, KIT, GNAQ, GNA11

Completed Schram et al., 2018

WT1

NCT03311334 Ib/II 84 NO DSP-7888 + Nivolumab / DSP-7888 +
Pembrolizumab

Any* Recruiting

NCT02498665 I 24 NO DSP-7888 Any* Completed

MITF

NCT01065467 I 16 NO LBH589 Any* Completed Ibrahim et al., 2016

MTOR

NCT01960829 II 60 NO Everolimus MTOR mutation Unknown

NCT01166126 II 4 NO Temsirolimus/AZD 6244 BRAF mutation Terminated

NCT01014351 II 70 NO Everolimus + paclitaxel + carboplatin Any Completed Hauke et al., 2013

NCT01522820 I 18 NO Rapamycin + dendritic Cell Vaccine NY-ESO-1 expression Completed

NCT00655655 I 96 NO Everolimus + Vatalanib Any Completed Zhu et al., 2020

NCT01596140 I 27 NO Vemurafenib + Everolimus +
Temsirolimus

Any Completed

NCT02201212 II 30 NO Everolimus TSC1 or TSC2 mutation or activating
MTOR mutations

Completed

*Any: population not selected for mutation. Clinicaltrials.gov accessed May 10, 2020.

frequency of 30%) (The Cancer Genome Atlas Network,
2015). NRAS mutations primarily occur at position 61
(Q61R/K/L accounts for about 80%) and, less frequently, at
positions 12 and 13 (G12/13 accounts for about 6%) (Bos,
1989; Lee et al., 2011). These mutations cause an altered
GTPase activity that keeps NRAS activated: this always-
on signal induces a constitutional activation of the whole
MAPK pathway with cell proliferation, dysregulation of

the cell cycle and activation of other pro-survival pathways
(Hodis et al., 2012).

Melanoma patients harboring mutated NRAS display different
characteristics compared to those harboring mutated BRAF: they
are older (>55 years) and have a story of UV exposure, thicker
primary tumors and a higher rate of mitosis. Several studies
showed that NRAS mutations may result in an inferior clinical
outcome with a shorter Melanoma-Specific Survival (MSS)

Frontiers in Molecular Biosciences | www.frontiersin.org 7 July 2020 | Volume 7 | Article 172

Clinicaltrials.gov
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-00172 July 22, 2020 Time: 17:53 # 8

Vanni et al. Non-BRAF Mutated Melanoma Molecular Landscape

FIGURE 4 | Molecular function (A) and ranking (B) of the 33 genes analyzed. (A) Gene Ontology (GO) molecular function of the 33 genes. GO molecular function
was obtained using FunRich v3.1.3, a stand-alone software tool (Pathan et al., 2015). (B) The table reports the frequency of genomic alterations (mutations and
CNV) resulting from the 10 selected NGS studies, as well as the Gene–Disease Association (GDA) Score obtained from the DisGeNET (Piñero et al., 2015) database
using the keyword “melanoma” (C0025202 result). The GDA Score is computed by integrating evidence from multiple sources. The higher the GDA Score, the more
reliable the gene–disease relationship is.

(Devitt et al., 2011; Ellerhorst et al., 2011), although partially
debated (Omholt et al., 2003; Akslen et al., 2005; Edlundh-Rose
et al., 2006; Ugurel et al., 2007; Ellerhorst et al., 2011).

The high number of NRAS mutations in cutaneous
melanoma did not allow the development of effective drugs:
targeting directly NRAS remains a great challenge, and the
target therapy for NRAS mutant melanoma is focused on
MEK inhibitors.

KRAS
KRAS encodes for two proteins resulting from alternative
splicing of exon 4, KRAS4A and KRAS4B. These proteins
have different structures in their C-terminal region and
use different mechanisms to localize to cellular membranes
(Welman et al., 2000). KRAS4B is the most frequent in
human cells and differs from KRAS4A for a C-terminal
residue which allows to bind calmodulin and induce its
phosphorylation by PKC (Villalonga et al., 2001; Sung
et al., 2013). Binding between KRAS4B and calmodulin
seems to determine drug resistance, facilitate tumorigenesis
and express stem-like markers on the cell surface (Wang
et al., 2015). KRAS mutations occur most commonly at
codon 12 but also at 13 and 61 (Pylayeva-Gupta et al.,
2011; Liu et al., 2019). Mutation of G12 interferes with
GAP binding and GAP-stimulated GTP hydrolysis and
represents ∼12% of all KRAS mutations (Tate et al., 2019;
COSMIC, 2020). The mutation in G13 decreases GAP

binding and its hydrolysis while mutation in codon 61
has a direct role in inhibiting the hydrolysis reaction
(Ostrem and Shokat, 2016). KRAS mutations are found
in 15–20% of cancers, mostly in colorectal and pancreatic
adenocarcinomas (Chiosea et al., 2011; Hartman et al., 2012;
Zhou et al., 2017; Román et al., 2018). In melanoma, KRAS
mutations are rare (1.7% of our cases) occurring almost
exclusively in codon G12 (Milagre et al., 2010). KRAS mutant
remains undruggable.

HRAS
HRAS encodes for a GTPase involved in regulating cell division in
response to growth factor stimulation (Wong-Staal et al., 1981).
Mutations in HRAS cause cell overgrowth and are implicated
in a variety of cancers (Rauen, 2007). HRAS is altered in
0.97% of all cancers and, rarely, in 1.5% of melanoma (AACR
Project Genie Consortium, 2017). Moreover, HRAS has been
shown to be mutated in Spitz nevi both by CNVs (12/102;
12%) and point mutations (8/12; 67%) (Bastian et al., 1999,
2000). The reason why mutations in HRAS lead to Spitz nevi
is unclear but could be related to higher affinity for the PI3K-
PKB/AKT pathway which would be able to drive the symmetrical
overgrowth of cells with an epithelioid morphology without
marked activation of the melanizing pathways (Ross et al.,
2011). Spitz nevus should not be regarded as a precursor
lesion of melanoma. HRAS mutation analysis seems to be
useful in the differential diagnosis between Spitz nevus and
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Spitzoid melanoma, and the presence of HRAS mutations
is a marker of benignity and/or favorable clinical outcome
(Dimonitsas et al., 2018).

RAS Genes – A Clinical Approach
To date, therapeutic inhibition of RAS remains an unmet
need. Indeed, there are no approved therapies that specifically
target NRAS, KRAS or HRAS and RAS-mutated patients are
usually treated with immunotherapy. However, several trials are
ongoing (Table 2).

Several years ago in vitro studies had already shown that
mutated NRAS melanoma cells were sensitive to MEK inhibitors
(Solit et al., 2006). However, the efficacy of such drugs on mutated
NRAS cells was lower than that observed in mutated BRAF cells,
and this lower efficacy could be explained, at least in part, if
we consider the complexity of the molecular pathways network
involving RAS. From these observations, two hypotheses arose:
first, that probably a therapy based on a single drug could be
insufficient; second, that the best therapeutic possibility was
to target RAS directly (Mandalà et al., 2014). Unfortunately,
targeting directly RAS did not give the expected results. Indeed,
acting on GTP binding pocket in RAS protein is difficult due to
the excessive affinity between RAS and GTP (Baines et al., 2011).
In the same way, the inhibition of farnesylation of a cysteine
residue, a post translational modification necessary to RAS
insertion to the plasma cell membrane, has proven ineffective.
Due to these disappointing results, the therapeutic strategies for
mutated NRAS melanoma reverted on MEK inhibitors.

Initially, the use of MEK inhibitors led to modest results, with
an Overall Response Rate (ORR) of 10% and a high incidence
of adverse events (Rinehart et al., 2004; LoRusso et al., 2010).
Subsequently, the MEK 1/2 inhibitor selumetinib (AZD-6244)
was developed (Yeh et al., 2007). Phase I trial enrolled 11
melanoma patients and showed promising results (Adjei et al.,
2008, 142886); on this wave, phase II trials comparing selumetinib
and chemotherapy (temozolomide and docetaxel) in BRAF-WT
and NRAS-unselected melanoma patients were initiated. The
results were unsatisfactory for both trials, with no difference in
efficacy outcomes (Kirkwood et al., 2012; Gupta et al., 2014).

Later, other MEK inhibitors were developed. Binimetinib
(MEK162) is an allosteric, selective, non-ATP competitive
MEK 1/2 inhibitor.

In preclinical studies binimetinib inhibited the growth of
NRAS and BRAF mutated melanoma tumor cells (Winski et al.,
2010). In the subsequent phase II trial (Ascierto et al., 2013)
MEK162 obtained an ORR of 14.5% and a Disease Control
Rate (DCR) of 56%. Median Progression Free Survival (PFS)
was 3.6 months, underlying a rapid development of resistance,
and the median OS 12.2 months (van Herpen et al., 2014).
Phase III trial (NEMO) (Dummer et al., 2016) compared the
efficacy of MEK162 versus dacarbazine in 402 NRAS mutated,
melanoma patients. The ORR was 15% in the binimetinib
arm versus 7% in dacarbazine arm. Furthermore, binimetib
significantly prolonged median PFS, with 2.8 months [3.9 in
patients with normal lactate dehydrogenase (LDH)] versus 1.5
months, respectively [hazard ratio (HR), 0.62]. Interestingly,
immunotherapy pretreated patients had a longer median PFS (5.5

months). However, no differences in terms of OS were noted, and
binimetinib as single agent did not receive regulatory agencies
approval for the treatment of NRAS-mutated melanoma.

Finally, pimasertib (PIM; AS703026) has been evaluated in a
phase I trial with encouraging results. Phase II study enrolled
194 patients to be treated with pimasertib or dacarbazine. Results
showed a significant benefit for pimasertib, with a median PFS
of 13.0 versus 6.9 weeks and a DCR of 37.7% versus 26.6%.
Unfortunately, no difference in OS was showed (8.9 vs. 10.6
months) (Lebbe et al., 2016).

Combination of MEK inhibition with other targets is currently
being evaluated. Among all, the results of a combination trial
performed on 14 patients treated with ribociclib (LEE001) and
MEK162 are particularly interesting. Indeed, the combination
obtained six partial response and six stable disease, with a DCR
of 85% (Sosman et al., 2014).

As we mentioned before, NRAS has to undergo
some post-translational modifications, like farnesylation
(Konstantinopoulos et al., 2007). Farnesyl Transferase Inhibitors
(FTIs), like lonafarnib, was developed in an attempt to exploit
this phenomenon. FTIs inhibit the function of RAS and seem
to be able to sensitizing melanoma cells to RTK inhibitors like
sorafenib (Meier et al., 2009). Unfortunately, FTIs failed in
clinical trials showing no efficacy against NRAS and KRAS-
driven cancers (Smalley and Eisen, 2003; Konstantinopoulos
et al., 2007; Niessner et al., 2011; Gajewski et al., 2012; Margolin
et al., 2012; Cox et al., 2015). The reason of this failure seems to be
due to the action of geranylgeranyltransferase I (GGTase I) in the
alternative prenylation (Whyte et al., 1997). FTIs in combination
with GGTase I inhibitors have been tested in clinical trials but
turned out to be too toxic (Brock et al., 2016). Other approaches
attempting to inhibit some post-translational modifications are
currently being evaluated. However, the great limit remains the
toxicity of these drugs and challenges in delivering siRNA using
nanoparticles (Davis et al., 2010).

PREX2
The PREX2 gene plays oncogenic roles in human cancers,
such as melanoma, since it is involved in PIK3CA-PTEN-AKT
signaling pathway (Fine et al., 2009; Srijakotre et al., 2017).
It has been demonstrated that ectopic expression of mutant
PREX2 accelerates tumor formation of immortalized human
melanocytes in vivo (Berger et al., 2012). The upregulation
of PREX2 and its mRNA increasing expression led to the
AKT activation by PTEN phosphorylation and increases tumor
proliferation. PREX2 non-synonymous variants have been found
in 44.0% of a 25 patients cohort and in 14.0% of a 107 melanoma
samples validation cohort (Berger et al., 2012). Notably, the
truncating mutation PREX2 E824∗ was further studied to
determine its in vivo implications in the context of mutant
NRAS (Lissanu Deribe, 2016a). PREX2 truncation E824∗ was
found to cooperate with NRAS mutations but not with BRAF
V600E mutation, to accelerate melanoma development (Lissanu
Deribe, 2016a). In 2017, 100 primary melanoma samples were
analyzed by targeted NGS for 35 melanoma-related genes, and
PREX2 mutations were reported in 14 samples (de Unamuno
Bustos et al., 2017). Interestingly, recently eighty patients with
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conjunctival melanoma were examined by WES, identifying three
PREX2 mutations (frequency of 37%) (Demirci et al., 2019). In
our skin melanoma dataset, mutations and CNVs in PREX2 gene
are found at frequency of 22.3 and 4.9%, respectively, as shown in
Figures 2, 3 and Supplementary Figure S1D.

Although these evidences point to PREX2 as a key player in
melanoma, suggesting that PREX2 may be a potential therapeutic
target, to date no clinical trials are available.

TP53
The TP53 tumor suppressor gene, which is universally recognized
as the “guardian of the genome,” prevents the cell from dividing
and promotes apoptosis. Moreover, it is the most frequently
mutated gene in human cancer with a significant prevalence
of missense mutations (Hainaut and Pfeifer, 2016). The TCGA
database analysis identified across 32 different cancer types
3,786/10,225 (36.8%) patients with TP53 somatic mutations
(Donehower et al., 2019).

Loss of TP53 was uncommon in thicker, early or in situ
melanoma, but is commonly reported as a late event in the
development of melanoma (Shain et al., 2015). The Ultra-Violet
Radiation (UVR) role on melanoma formation in BRAF V600E
mice is often associated with mutations in TP53 (Viros et al.,
2014). In our data, mutations and CNVs in the TP53 gene are
present at a frequency of 14.9 and 1.3%, respectively (Figures 2, 3
and Supplementary Figure S2A).

Concerning the use and response of immune checkpoint
inhibitor therapy, data are controversial. The TP53 mutation
had previously been considered a potential negative predictor
of metastatic melanoma treated with CTLA-4 blockade (Xiao
et al., 2018), while a very recent paper showed that cell cycle
regulators, such as TP53 and CDKN2A, do not appear to
significantly alter clinical outcomes when immune checkpoint
inhibitors are used (DeLeon et al., 2020). At the time of the
writing of this manuscript, no clinical trial with TP53-targeting
drugs is ongoing.

NF1
NF1 encodes neurofibromin 1, a cytoplasmic protein highly
expressed in neurons, Schwann cells, oligodendrocytes, and
leukocytes but also involved in RAS pathway as a tumor
suppressor through its inhibiting activity as GAP (GTPase-
activating protein) that converts the active RAS-GTP to RAS-
GDP (Trovó-Marqui and Tajara, 2006). Inactivating variants
in NF1, the most frequently mutated gene in melanoma after
BRAF/NRAS/TP53, being reported in 10–15% of cases, were
described in up to 46% of wild-type BRAF and RAS melanomas,
in particular in male, older or chronically sun-exposed patients,
and in copresence of mutations in RASopathy genes, e.g.,
PTPN11 and RASA2, that enhance its role in melanomagenesis,
besides the RAS missing inhibition (Krauthammer et al., 2015).
A poorer OS for NF1-mutated subtype melanoma has also
been described (Cirenajwis et al., 2017). In BRAF V600E
melanomas, loss of NF1, frequently co-occurring with BRAF
and RAS alterations, allows a high level of activity of RAS-
GTP and resistance to BRAF inhibitors (Nissan et al., 2014).
Since 2000, a role for NF1 was proposed for the genesis of

desmoplastic neurotropic melanoma, an uncommon melanoma
with pathologic features in common with schwannomas
(Gutmann, 2001; Kiuru and Busam, 2017; Mahalingam, 2017).
Moreover, NF1 together with BRAF and NRAS has been found
significatively mutated in melanoma (Hayward et al., 2017). In
our series of skin melanomas, mutations and CNVs are reported
in Figures 2, 3 and Supplementary Figure S2B, with a frequency
of 14.3 and 1.1%, respectively.

Regarding therapy, a study revealed Calpain1 (CAPN1), a
calcium-dependent neutral cysteine protease, as a novel NF1
binding partner that regulates NF1 degradation in melanoma
cells. ShRNA-mediated knockdown of CAPN1 or treatment
with a CAPN1 inhibitor showed to stabilize NF1 protein
levels, downregulate AKT signaling and melanoma cell growth.
Moreover, combination treatment of Calpain inhibitor I with
MEK inhibitor Trametinib in different melanoma cells seemed to
be more effective in reducing melanoma cell growth compared
to treatment with Trametinib alone, suggesting that this
combination may have a therapeutic potential in melanoma
(Alon et al., 2019, p. 1). This novel mechanism for regulating NF1
in melanoma provides a molecular basis for targeting CAPN1 to
suppress Ras activation. Despite these data, this novel approach is
waiting to be tested within clinical trials. Currently, there are no
ongoing clinical trials that evaluate NF1-targeted drugs, but two
experimentations regard specifically NF1-mutated melanoma
patients, treated with either a MEK inhibitor plus a FAK inhibitor
or with RMC-4630, a potent and selective inhibitor of SHP2. The
results of these trials have not been published yet (Table 2).

ARID2
ARID2 encodes a subunit of the SWI/SNF chromatin remodeling
complexes (polybromo- and BGR1-associated factor [PBAF]),
which facilitates ligand-dependent transcriptional activation
by nuclear receptors. The SWI/SNF multiprotein chromatin
remodeling complex is involved in regulating cell growth and
proliferation. Mutations in nine genes encoding for subunits of
the SWI/SNF chromatin remodeling complex are found in 20.0%
of human cancers (Shain and Pollack, 2013). ARID2 was found
frequently mutated in melanoma, with a frequency ranging from
7.0 to 18.0% (Hodis et al., 2012; Krauthammer et al., 2012; Ticha
et al., 2019). In our dataset, mutations and CNVs in ARID2 are
found in 12.9 and 5.5%, respectively, as shown in Figures 2, 3
and Supplementary Figure S2C.

To date, studies investigating the biological function of
ARID2 in melanocytes and its role as tumor suppressor are
missing. In 2018, it has been reported that cancers with
inactivating mutations in ARID2 are more sensitive to PD-
1 blockade as well as other forms of immunotherapy (Pan
et al., 2018). In a very recent study, a higher sensitivity to
different DNA-damaging therapies in ARID2-deficient non-
small cell lung cancer cells, likely as a result of the ARID2
involvement in DNA repair, was observed (Moreno et al.,
2020). In addition, ARID2 deficiency showed synthetic lethality
with PARP inhibition using veliparib, an inhibitor that has
shown good results in the treatment of breast cancer and
is included in several clinical trials on breast, ovarian and,
lung cancer (Moreno et al., 2020). Overall, recent data prompt
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further investigation of the role of ARID2 in melanomagenesis
and direct testing of several potential therapeutic compounds
already available.

CDKN2A/CDK4 PATHWAY

CDKN2A
The CDKN2A (Cyclin Dependent Kinase Inhibitor 2A) gene
encodes two alternatively spliced variants known to function as
inhibitors of G1 progression through different mechanisms, e.g.,
the tumor suppressor p16INK4A and p14ARF.

p16INK4A blocks the G1 progression, binding CDK4 and
CDK6, and preventing them from interaction with D-cyclins
and phosphorylation of RB. p14ARF, whose name derives
from the presence of an Alternate Reading Frame (ARF)
in the transcript, binds MDM2 (Mouse double minute 2
homolog or E3 ubiquitin-protein ligase) whose role is the
degradation of p53; therefore, it also plays an indirect role
in G1 progression. Furthermore, p14ARF has a role in p53-
independent cell functions through the interaction with other
proteins (Inoue and Fry, 2018). Loss, e.g., by promoter
hypermethylation, or alterations, e.g., homozygous deletions
of CDKN2A, are described in several tumors. CDKN2A is
altered in 21.4% of cutaneous melanomas (AACR Project
Genie Consortium, 2017). The loss of the CDKN2A locus
is the most common acquired genetic change in precursor
lesions, including in situ melanomas (Shain et al., 2015).
Over 75% of cutaneous melanoma metastases have lost
one or both alleles of CDKN2A (The Cancer Genome
Atlas Network, 2015). Recently, a CRISPR-based study (Zeng
et al., 2018) demonstrated that CDKN2A suppresses the
initiation of melanoma invasion through inhibition of BRN2,
a lineage restricted transcription factor which encodes an
established regulator of melanocyte and melanoma invasion
(Fane et al., 2017). Then the loss of p16INK4A enhances the
motility of melanocytic cells through increased expression
of BRN2.

In our dataset, frequencies of CDKN2A CNVs and mutations
are 28.1% (27.5 and 0.6% for deletion and amplification,
respectively) and 12%, respectively (Figures 2, 3 and
Supplementary Figure S2D).

CDK4
CDK4 (cyclin dependent kinase 4) encodes a member of
the Ser/Thr protein kinase family responsible for the
phosphorylation and regulation of transcription factors,
including RB1, SMAD3, MYC, FOXM1, MEP50, able to
mediate cell-cycle progression (Sheppard and McArthur, 2013).
p16-cyclinD-CDK4/6-retinoblastoma protein pathway, also
known as CDK4 pathway, is dysregulated in 90% of melanomas
(Curtin et al., 2005).

CDK4 amplifications are common in human cancers
(Beroukhim et al., 2010). In our dataset, frequency of CDK4
mutations and CNVs is 2.2 and 4%, respectively (Figures 2, 3
and Supplementary Figure S3A).

CDKN2A and CDK4: A Clinical
Perspective
To date, several clinical trials are ongoing, attempting to
find a way to modulate this pathway (Spagnolo et al., 2015)
(Table 2). With regard to CDKN2A alterations, drugs on study
include: ilorasertib (ABT-348), a potent and ATP-competitive
multitargeted kinase inhibitor that inhibits Aurora C, Aurora B,
and Aurora A and that suppresses RET tyrosine kinase, PDGFRβ

and Flt1; palbociclib and SHR6390, two selective inhibitor of the
cyclin-dependent kinases CDK4 and CDK6.

Phase I trial with ilorasertib showed two clinical responses
among 58 treated patients, and confirmed a good tolerability
and safety profile of the drug (Maitland et al., 2018). Palbociclib,
together with abemaciclib and ribociclib, have already been
approved for the treatment of metastatic breast cancer, after
several studies showing their activity in a spectrum of solid
tumors including melanoma. Palbociclib is currently under
investigation among patients affected by acral melanoma
with documented gene aberrations in cell cycle pathways,
including CDK4 amplification and/or CCND1 amplification
and/or CDKN2A loss. Finally, SHR6390 showed a promising
activity in preclinical studies performed on cell lines and human
tumor xenograft models.

Considering CDK4/6 alterations, several drugs are being
testing.

P276-00 is a novel inhibitor for CDK-1, CDK4 and CDK9
that has been tested in 16 tumor cell lines from different human
cancers, showing a significant antiproliferative effect compared
to cisplatin. Interestingly, some cancers showed to be particularly
sensitive to P279-00, like tumors of central nervous system,
NSCLC, breast cancer and melanoma (Joshi et al., 2007).

Ribociclib also showed some activity in melanomas with
activating mutations of BRAF or NRAS.

A phase Ib/II study with ribociclib plus MEK162 has
been performed in 2013. Among 14 NRAS mutant advanced
or metastatic melanoma patients, the combinations of drugs
allowed to obtain six partial responses and six stable disease
(Sosman et al., 2014).

Abemaciclib, another CDK4/6 inhibitor, structurally different
from ribociclib and palbociclib, showed to be effective among
several human tumors, including melanoma, in preclinical
models (Gelbert et al., 2014; Tate et al., 2014). Of note,
abemaciclib demonstrated to be particularly effective in BRAF
resistant melanoma cells (Yadav et al., 2014). Subsequently, a
phase I trial was conducted to evaluate safety and tolerability of
abemaciclib and its antitumor activity. A total of 26 melanoma
patients were enrolled: one achieved a partial response and
the DCR was 27%. Interestingly, abemaciclib was found in the
cerebrospinal fluid demonstrating to pass the blood brain barrier
and, on this basis, a trial specifically dedicated to patients with
brain metastasis was designed. Unfortunately, no information
concerning the melanoma cohort are available to date.

PTEN
The PTEN tumor-suppressor gene encodes for a phosphatidyl-
inositol-3,4,5-triphosphate 3-phosphatase which negatively
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regulate the phosphatidylinositol 3-kinase (PI3K)/protein kinase
B (AKT) pathway. The PTEN gene, which is also known as
MMAC1 (mutated in multiple advanced cancers) and TEP1
(TGF-β regulated and epithelial cell-enriched phosphatase)
exhibits both protein and lipid phosphatase activities. Therefore,
deletion or inactivation of PTEN results in constitutive AKT
activation. Loss of PTEN function through deletion, mutation,
and/or decreased expression, has been found in human sporadic
cancers, including melanoma (Bonneau and Longy, 2000). PTEN
mutations were identified for the first time in 1997 through
the analysis of 35 melanoma cell lines (Guldberg et al., 1997).
Subsequently, different studies reported that approximately 30%
of cutaneous melanoma cell lines harbor PTEN mutations or
deletions (Guldberg et al., 1997; Tsao et al., 1998) and in vitro
studies were performed attesting the involvement of PTEN
LOH in the development of more than 30–40% of melanomas
(Robertson et al., 1998). Then, PTEN mutations were identified
in 4 of 61 (7.0%) metastatic melanoma tumors (Birck et al., 2000),
a lower rate compared to previous studies (Guldberg et al., 1997;
Tsao et al., 1998), but the authors explained this disagreement
due to technical limitations and the in vitro selection of cells
harboring PTEN mutations.

PTEN and NRAS mutations were described as mutually
exclusive (Tsao et al., 2000). Moreover, evidence of cooperation
between BRAF activating mutations and PTEN loss in melanoma
development was found, suggesting that the activation of MAPK
and AKT pathways may be required for melanoma progression
(Tsao et al., 2004).

In conclusion, PTEN mutations frequently coexist with
BRAF mutations, but not with NRAS, which can independently
activate the PI3K cascade, with a mutation and deletion rate
frequency of 8.5 and 7.0% in our dataset (Figures 2, 3 and
Supplementary Figure S3B).

To date, no therapeutic strategy specifically targeting PTEN
has been developed. Interestingly, some trial evaluating the safety
and efficacy of two Pi3K inhibitor, alone or in combination
with pembrolizumab, in patients with loss of PTEN, are ongoing
(Table 2).

PPP6C
PPP6C gene encodes the catalytic subunit of the PP6
serine/threonine phosphatase complex and regulates cell
cycle progression in response to IL2 receptor stimulation
(Bastians et al., 1997; Filali et al., 1999). Loss of PPP6C function
has been known to cause the increase of Aurora A activity that,
as the Aurora A amplification, leads to chromosome instability
(Zeng et al., 2010; Hammond et al., 2013). PPP6C mutations
make melanoma cells susceptible to inhibition by Aurora kinase
inhibitors (Gold et al., 2014). Moreover, PPP6C mutations
in melanoma cells seems to induce an increased autophagy.
Indeed, PPP6C mutants bind to the PPP6Rs leading to its rapidly
degradation. This increases wild-type PPP6C stability, sensitizing
the cells autophagy induction in response to mTORC1 inhibition
(Wengrod et al., 2015).

Several NGS studies reported a PPP6C mutations frequency
around 7% (Gold et al., 2014).

In our dataset, PPP6C mutations and CNVs are found in 6.9
and 1.9% of cases, respectively (Figures 2, 3 and Supplementary
Figure S3C). In conclusion, PPP6C mutations in melanoma may
lead to new targeted approaches, such as specific PPP6 inhibitors,
but at now, no trials are ongoing.

CTNNB1
CTNNB1 gene encodes β-catenin that is a core component of
the adherens junctions that play a key role in maintaining of the
epithelial cell layers, and in transmitting the contact inhibition
signal, by anchoring the cytoskeleton. CTNNB1 is also part of
the Wnt signaling pathway and is involved, e.g., in pre-birth
development, the maintenance and renewal of stem cells. Finally,
it has a role in the formation of the matrix of hair follicles.
Gain-of-function variants of CTNNB1 cause accumulation of the
protein in the nucleus, where it promotes cell proliferation by
gene-activation, and have been found in several types of cancer.
In melanoma cells, growth is promoted by altering expression of
MITF (melanocyte inducing transcription factor) (Widlund et al.,
2002), although an opposite effect of invasion-blocking MITF
mediated has been observed (Arozarena et al., 2011).

The Wnt pathway may be altered in melanomas by different
mechanisms, e.g., somatic variants not only in CTNNB1 but also
in APC (adenomatous polyposis coli gene) or ICAT (inhibitor
of beta-catenin) genes (Reifenberger et al., 2002). However,
a major mechanism of promoting melanomagenesis is the
cooperation between CTNNB1 and NRAS by suppression of
p16INK4a expression, releasing cells from oncogene−induced
growth arrest (Curley and Bosenberg, 2008). Furthermore, the
CTNNB1 promotes expression, in a positive feedback loop,
of Tspan8, which triggers melanoma cell detachment and
invasiveness (El Kharbili et al., 2019).

In melanoma, mutations in CTNNB1 (typically missense
mutations localized in exon 3) are relatively infrequent (around
7%) (Hodis et al., 2012; Polakis, 2012; Siroy et al., 2015).

Interestingly, CTNNB1 (S33C) mutation was found to confer
resistance to imatinib in a metastatic melanoma patients
harboring KIT L576P mutation (Cho et al., 2017). In summary, in
our dataset frequency of CTNNB1 mutations and CNVs is 6.6 and
1%, respectively (Figures 2, 3 and Supplementary Figure S3D).
Currently there are no drugs that target beta-catenin right now,
nor ongoing clinical trials.

DDX3X
DDX3X gene encodes an ATP-dependent DEAD-box RNA
helicase frequently altered in various human cancers, including
melanomas (Stransky et al., 2011; Wang L. et al., 2011; Kandoth
et al., 2013; Bol et al., 2015; The Cancer Genome Atlas Network,
2015; Ojha et al., 2015; Hayward et al., 2017).

Several studies reported that DDX3X is involved in double-
stranded RNA unwinding, pre-mRNA splicing, RNA export,
transcription, and translation (He et al., 2018; Lin, 2019).
Despite its important roles in several cytosolic steps of mRNA
metabolism, its function in tumorigenesis remains incompletely
known. In our dataset, DDX3X mutations and CNVs are found
with a frequency of 6.4 and 0.4%, respectively (Figures 2, 3 and
Supplementary Figure S4A). Moreover, it has been reported
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that DDX3X loss decreases MITF mRNA levels, leading to a
proliferative-to-metastatic phenotype in vivo, and it is implicated
in resistance to BRAF inhibitors (Phung et al., 2019).

These studies reveal a DDX3X role in melanoma
cancer providing a new therapeutic target that should be
elucidated in the future.

RASA2
RASA2 gene encodes a GTPase-activating protein that suppresses
RAS function; therefore mutations or loss of function of RASA2
enhance RAS activation (Yarwood et al., 2006). RASA2 mutations
were initially reported in skin melanoma at a frequency ranging
from 2 to 8% by three different NGS studies (Supplementary
Figure S4B) (Berger et al., 2012; Hodis et al., 2012; Krauthammer
et al., 2012, 1). Overall, frequency of RASA2 mutations and
CNVs in our skin melanomas dataset is 5.5 and 1%, respectively
(Figures 2, 3 and Supplementary Figure S4B).

RASA2 mutations co-occurred in NF1 mutant melanomas that
were BRAF-RAS wild type, in a WES study of 213 melanoma
samples (62 cell lines and 151 melanomas); 12.2% (26/212) of
melanomas were NF1-mutant/BRAF-RAS-wild-type and nine
of them harbored co-mutations in RASA2 (2 nonsense and 3
R551C) (Krauthammer et al., 2015).

Recently, RASA2 and NRAS mutations were confirmed to
be mutually exclusive, with NF1 mutations significantly co-
occurring with RASA2 mutations in BRAF and NRAS wild-type
melanomas, since RASA2 inhibits NRAS and NF1 inhibits KRAS
and HRAS (Arafeh et al., 2019). Indeed, RASA2- and NF1-
mutated genes co-selection in melanoma could be equivalent to
oncogenic RAS mutation (Arafeh et al., 2019).

To date, clinical trials direct toward RASA2 are not
currently available.

SF3B1
SF3B1 gene encodes subunit 1 of the splicing factor 3b protein
complex, a component of the U2 small nuclear ribonucleoprotein
complex (snRNP) that participates in the splicing of pre-mRNAs.
Mutations in SF3B1 can lead to alternative splicing events for
multiple genes and are found in several cancers, including uveal
(frequency of 10–20%) (Harbour et al., 2013; Martin et al., 2013,
p. 1; Dono et al., 2014, p. 1), mucosal (Newell et al., 2019;
Nassar and Tan, 2020), and cutaneous melanoma (Kong et al.,
2014). SFRB1 mutations (particularly at codon 625) are rare in
cutaneous melanoma despite in uveal, mucosal, leptomeningeal
and blue naevi-like cutaneous melanomas are reported (Schilling
et al., 2013; Kong et al., 2014). Overall, in our dataset, SF3B1
mutations and CNVs are 5.2 and 1%, respectively, as reported in
Figures 2, 3 and Supplementary Figure S4C.

Very interestingly, SF3B1 mutations were found to induce
cancer cells to produce an abnormal form of the BRD9 RNA
molecule, including noncoding DNA sequences or “junk DNA,”
which garbled the genetic message (Inoue et al., 2019). This “junk
DNA” originated from a viral element that recently inserted itself
into the human genome. The use of CRISPR technology and
antisense oligonucleotides to suppresses tumors growth deriving
by SF3B1-mutant cells opens for future therapeutic approaches,

but to date no clinical trials directed to SF3B1 are available
(Inoue et al., 2019).

RAC1
RAC1 encodes for a RHO GTPase that plays a key role in cellular
cytoskeleton organization and motility and can induce RAS
dependent pathways stimulating cell proliferation (Krauthammer
et al., 2012, 2015). WES studies led to the discovery of a hotspot
mutation (P29S) in RAC1 gene, defining it as the most frequent
driver mutation in sun-exposed melanomas, with a frequency
of 5–7% (Hodis et al., 2012; Krauthammer et al., 2012; The
Cancer Genome Atlas Network, 2015). The frequency of RAC1
P29S mutation (overall RAC1 P29S mutation of 4.1%) was found
to be more prevalent in male patients and similar between
primary (9.2%) and metastatic tumors (8.6%) (Krauthammer
et al., 2012). Indeed, mutations in RAC1 enhanced melanoma
disease progression: RAC1 P29S analysis in a cohort of 814
primary cutaneous melanomas, with known BRAF and NRAS
mutation status, revealed an association with increased tumor
thickness, increased mitotic rate, ulceration, and presence of
lymph node metastases at the time of diagnosis (Mar et al., 2014).
In general, frequency of RAC1 mutations and CNVs in our skin
melanomas dataset is 5.1 and 5.9%, respectively (Figures 2, 3 and
Supplementary Figure S4D).

Activation of RAC1 may be also promoted by mutated PREX2.
Indeed, truncating mutations in PREX2 have been shown to
activate the GTPase RAC1 abolishing the binding to PTEN
and activating the PI3K (phosphatidyl inositol 3 kinase)/Akt
signaling pathway (Lissanu Deribe, 2016b; Lissanu Deribe et al.,
2016). Concerning treatment, in vitro studies have shown that
melanoma cell lines harboring the RAC1 P29S mutation are
resistant to BRAF and MEK inhibitors, but its role in conferring
this resistance is still to be elucidated (Watson et al., 2014).
However, clinical inhibitors of RAC1 are not currently available
although SRF/MRTF inhibitors in combination with BRAF
inhibitors have been recently demonstrated to have utility in
the treatment of BRAF mutant melanoma with an RAC1 P29S
mutation (Lionarons et al., 2019).

High levels of PD-L1 in patients with RAC1 P29S mutations
compared to wild-type RAC1 melanoma samples from the
TCGA cohort were observed (Vu et al., 2015). These findings
could open up individualized therapy based on immunological
characteristics of patient tumor and the presence of RAC1 P29S
mutations with anti-PD-1 or anti-PD-L1 antibodies treatment
in melanoma patients with high expression of PD-L1 harboring
RAC1 P29S mutation.

MAP2K1/MAP2K2
MAP2K1, mitogen-activated protein kinase 1, also known as
MEK1, and MAP2K2 (MEK2), mitogen-activated protein kinase
2, encode for mitogen-activated protein (MAP) kinase involved
in many cellular processes, such as proliferation, transcription
regulation, differentiation and development, and represent the
downstream targets of the RAS-RAF-MAPK cascade. Activating
mutations in MAP2K1 and MAP2K2 represent one of the
multiple mechanisms of resistance to BRAF and MEK inhibitors
(Spagnolo et al., 2015). Overall MAP2K1/MAPK2 mutational
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and CNV prevalence in our skin melanomas dataset is 6.7
and 2.5%, respectively (Figures 2, 3). In particular, melanoma
patients have a higher frequency of MAP2K1 mutations/CNVs
compared to MAP2K2 mutations/CNVs (Figures 2, 3). Notably,
the coexistence of MAP2K1 mutations and BRAF or NRAS
mutations are often observed. In general, MAP2K1/2 mutations
in BRAF V600E melanomas are linked to both intrinsic and
acquired resistance to BRAF inhibitors.

To date, no clinical trials having MEK1/2-mutated melanoma
patients as population of interest are ongoing but, as we
mentioned before, MEK inhibitors are being tested in several
studies, alone or in combination with other drugs, and their use
with BRAF inhibitors has become a standard in the therapy of
BRAF mutated metastatic melanoma.

Trametinib is a small molecule and a selective MEK1/2
inhibitor, non-ATP competitive.

Based on the encouraging results obtained in phase I (Infante
et al., 2012) and phase II trial (Kim et al., 2013, 1), a phase
III study (METRIC) with trametinib monotherapy compared
to chemotherapy was performed (Flaherty et al., 2012). A total
of 322 patients affected by previously untreated BRAF V600
E/K stage III or IV melanoma were enrolled. Trametinib was
associated with a higher PFS (4.8 months vs. 1.5), a greater OS
(6-months OS 81% vs. 67%), and a higher rate of responses (22%
vs. 8%). Based on these data, trametinib was approved as single
agent by the FDA in May 2013. Despite this, currently MEK
inhibitors do not play a role in monotherapy in NRAS-mutated
or in WT patients but could play a role in combination with
immunotherapy or with other target agents.

Finally, TAK-733, a selective MEK1/2 inhibitor, showed a
broad antitumor activity in melanoma cell lines and in 10 out
of 11 patient-derived xenografts models (Micel et al., 2015). In
phase I study, performed among 51 patients, TAK-733 showed
a manageable toxicity profile but a limited antitumor activity,
with partial responses obtained just in 5% of patients (Table 2)
(Adjei et al., 2017).

KIT
KIT encodes for a class III tyrosine kinase receptor that is
expressed on several cell types, including melanoblasts and
differentiated melanocytes, but also hematopoietic progenitors
and mast cells. The binding to the stem cell grow factor
causes c-kit homodimerization that leads to the phosphorylation
of tyrosine residues by activating the MAPK/ERK and the
PI3K/AKT/mTOR pathways (Lennartsson and Rönnstrand,
2012). KIT was initially thought to act as a tumor suppressor
gene, because its presence in normal melanocytes and benign
nevi, and its loss during progression and in metastatic melanoma
was reported (Montone et al., 1997; Shen et al., 2003; Isabel
Zhu and Fitzpatrick, 2006). Moreover, loss of c-kit expression
was observed in different cultured melanoma cells (Lassam
and Bickford, 1992; Natali et al., 1992; Zakut et al., 1993)
and related to a higher metastatic potential of melanoma
xenografts in nude mice (Gutman et al., 1994). However,
KIT also acts as an oncogene. Indeed, it has been found an
increase of KIT mutations and/or CNVs in mucosal (39%),
acral (36%), and melanomas arose on chronically sun-damaged

skin (28%) (Curtin et al., 2006). Interestingly, a recent meta-
analysis reported KIT mutations in 497 (9.5%) melanoma
patients analyzing 5,224 patients from 32 studies selected (Gong
et al., 2018). Moreover, a close association with older age,
acral, mucosal, or chronic sun-damage sites, but not with any
histological features or tumor stage was found (Gong et al., 2018).
Approximately 70% of KIT mutations identified in melanoma
and leading to constitutive activation of kinase activity are
localized in exon 11 (L576P) or exon 13 (K642E) (Shtivelman
et al., 2014). Mutations in KIT are generally mutually exclusive
with other driver mutations, including NRAS and BRAF. In our
skin melanomas dataset, KIT mutations and CNVs are found
in 4.5 and 2.3% of patients, respectively (Figures 2, 3 and
Supplementary Figure S5C).

The activity of imatinib mesylate in KIT mutated melanoma
patients was explored through three single arm phase II trials
(Table 2). Carvajal et al. treated 28 patients affected by KIT
mutated advanced or metastatic melanoma with imatinib 400
mg twice daily (Carvajal et al., 2011). Among the 25 evaluable
patients, two complete and four partial responses were observed,
with a median time to progression of 12 weeks and a median
OS of 10.7 months. Best responses were observed among
patients with mutations involving recurrent hotspots or with a
mutant – WT allelic ratio superior of 1 (40 vs. 0%). Interestingly,
particularly good responses were obtained among patients with
K642E mutation, that showed an ORR of 50% and a DCR of
100%.

Guo et al. (2011) reported data from 43 treated patients
who received imatinib 400 mg daily or, in case of disease
progression, 800 mg daily. The median PFS was 3.5 months
with a 6-month PFS of 36.6%, while median OS was 12 months.
Globally, the (DCR) was 53.3%: 10 patients (23.3%) and 13
patients (3.2%) achieved partial response and stabilization of
disease, respectively. Overall, 18 patients (41.9%) achieved tumor
regression. Specifically, 9/10 partial responses were observed in
patients with mutations in exons 11 or 13. The overall 1-year
survival rate was 51%.

Finally, in a third study published by Hodi et al. (2013), 25
patients affected by metastatic melanoma of the mucosa, acral
or chronically UV-damaged skin with amplifications or KIT
mutations received 400 mg of imatinib daily or, in the absence of
a clinical response, twice a day. This study confirmed the clinical
activity of imatinib, mainly concerning KIT mutations: indeed,
all responses were achieved among patients with KIT mutations
while the best response observed in patients with amplifications
was stable disease. OS was 12.5 month in the overall cohort,
similar to the previously reported trials.

Other KIT inhibitors showed activity in KIT mutated
advanced melanomas (Table 2).

Nilotinib is a small molecule that showed activity among
KIT mutated advanced or metastatic melanoma patients in four
clinical studies. In the first trial published in 2015 (Carvajal et al.,
2015), 19 patients, mostly in disease progression after treatment
with imatinib, achieved an ORR of 15.8% and a median OS of 9.1
months. In a second trial, 39 patients were treated with nilotinib
(Lee S. J et al., 2015): one experienced complete response and six
partial response; median PFS was 3.3 months and median OS 11.9
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months. The subsequent phase II trial (TEAM), an ORR of 26.2%
was achieved among 42 patients naïve for previous KIT inhibition
(91% of which in the presence of exon 11 mutations), a median
PFS of 4.2 months and a median OS of 18 months. In another
phase II study, 25 patients were treated with an ORR of 16% at
six months of observation, median PFS of 6 months and median
OS of 13.2 months (Guo et al., 2017).

Sunitinib is another molecule tested in 12 patients with
advanced or metastatic melanoma, and obtained four clinical
responses in a small clinical trial (1 complete response and 3
partial response) (Minor et al., 2012).

Finally, dasatinib was evaluated in 22 patients with advanced
or metastatic KIT mutated melanoma. With regard to clinical
activity, four partial responses and seven stable diseases were
obtained. The median PFS was 4.7 months and median OS 12.3
months (Kalinsky et al., 2017).

In conclusion, to date it is recommended to test KIT
mutations (especially exons 11 and 13) in acral, mucosal,
and unknown origin melanomas, as well as cutaneous ones
arising on chronically damaged skin, to offer an additional
therapeutic option.

RB1
RB1 acts as a tumor suppressor gene by regulating cell
cycle division: when dephosphorylated, it interacts directly
with E2F1 and inhibits its transcriptional activity with cell
cycle arrest. Thus, the cell cycle is finely regulated by CDKs
with CDKIs varying levels of RB phosphorylation, E2F family
and TP53; alterations that disrupt the p16INK4A:cyclinD-
CDK4/6:RB functional pathway may the first critical step leading
to melanomagenesis (Bartkova et al., 1996; Lee B. et al., 2015).
Cells deficient or with low levels of RB go into p53-mediated
apoptosis: this phenomenon is particularly important to identify
new compounds able to activate p53 (Knudsen and Wang,
2010). In mouse melanoma cells Rb1 cooperates with MITF
to activate expression of Tyr and Cdkn1a/p21Cip1 (Carreira
et al., 2005). RB1 is also important in maintaining chromatin
structure, stabilizing histone methylation (Shao and Robbins,
1995). Summing up, RB is likely a multifunctional protein that
binds to at least 100 other proteins (Morris and Dyson, 2001).
RB1 is altered in about 4% of all cancers (MCG)1. In our dataset,
the most common somatic alterations in RB1 are mutations with
a frequency of 4.4% while CNVs are reported in 1.9% of skin
melanoma patients (Figures 2, 3 and Supplementary Figure
S5D). To date, no clinical trials specifically designed to target
RB are ongoing. However, patients with RB1 loss are specifically
considered in one clinical trial with LY260636, a checkpoint
kinase 1 inhibitor. The trial is active, not recruiting.

FBXW7
FBXW7 is a critical tumor suppressor gene and a member of
the F-box protein family, ubiquitin ligase complex, that controls
proteasome-mediated degradation of oncoproteins such as cyclin
E, c-Myc, Mcl-1, mTOR, Jun, Notch, and AURKA, STAT2
(Minella and Clurman, 2005; Yeh et al., 2018; Lee et al., 2020).

1https://www.mycancergenome.org/

Inactivating mutations in FBXW7 have been described in a
variety of human tumors and cancer cell lines (Akhoondi et al.,
2007). Loss of function of FBXW7 in several human cancers has
clinical implications and prognostic value: the use of rapamycin
has proven to inhibit breast cancer cells with loss of FBXW7 by
mTOR inhibition (Mao et al., 2008; Yeh et al., 2018).

FBXW7 expression was reduced in primary and metastatic
melanoma compared with dysplastic and normal nevi and an
increase in FBXW7 expression was significantly correlated with a
better 5-year patient survival. In vitro studies demonstrated that
FBXW7 inhibited human cell migration through MAPK/ERK
signaling pathway suggesting its prognostic and potential
therapeutic role for melanoma treatment (Cheng et al., 2013).
Several WES and WGS studies reported a FBXW7 mutations
in around 4% of melanomas (Wei et al., 2011; Berger et al.,
2012; Hodis et al., 2012; Krauthammer et al., 2012; The Cancer
Genome Atlas Network, 2015; Hayward et al., 2017; ICGC Data
Portal, 2020). WES of 103 cutaneous melanomas, including 77
tumor samples and 26 cell lines, found FBXW7 mutations (8.1%)
independently of BRAF or NRAS mutation (Aydin et al., 2014).
In the same study, the authors discovered that inactivation of
FBXW7 gene determines enhanced tumorigenesis by NOTCH1
activation (Aydin et al., 2014). These evidences open up to
FBXW7 potential therapeutic targeting through modulating
NOTCH1 signaling (Aydin et al., 2014). Moreover, another study
revealed FBXW7α deficiency leading to HSF1 (Heat shock factor
1) accumulation and subsequent activation of the invasion-
supportive transcriptional program and metastatic potential of
human melanoma cells (Kourtis et al., 2015).

In our dataset, frequency of FBXW7 mutations and
CNVs is 4.3 and 1.7%, respectively (Figures 2, 3 and
Supplementary Figure S6A).

To date, just one clinical trial designed to enroll specifically
FBXW7-mutated patients is active (Table 2). LY2606368, the
drug on study, performed well in a phase I trial where it was
tested in 45 patients affected by solid tumors, who experienced
treatment failure with standard therapies. Among 43 evaluable
patients, two partial responses and 15 stable diseases were
achieved, with a DCR of 37.7% (Hong et al., 2016).

PIK3CA
PIK3CA encodes the protein p110α, the catalytic subunit of
phosphatidylinositol 3-kinase (PI3K). PI3K signaling has a role
in many cell activities, e.g., cell proliferation, migration, survival.

Alterations in PIK3CA have an oncogenic effect mostly related
to activating variants in two hotspots located in the regions
of helical and kinase domains. The PI3K-AKT pathway plays
a significant role in melanomagenesis, frequently by activating
RAS-RAF-MEK-ERK pathway, e.g., for NRAS activating variants
or loss of PTEN (Davies, 2012), as demonstrated by studies
on resistance to targeted therapies based on BRAF inhibitors
(Deng et al., 2012; Penna et al., 2016). Usually, PIK3CA activating
mutations are rare in melanoma with a frequency of 5%, despite
the ability of activated PIK3CA (H1047R) to cooperate with BRAF
V600E promoting melanomagenesis in mouse models (Marsh
Durban et al., 2013). PIK3CA mutations frequently co-occurred
with either a BRAF or an NRAS mutation (The Cancer Genome
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Atlas Network, 2015). In our skin melanoma dataset, PIK3CA
mutations and CNVs are 4.2 and 1.5%, respectively, as shown in
Figures 2, 3 and Supplementary Figure S6B.

Several clinical trials with PI3K inhibitors are ongoing
(Table 2).

Alpelisib (BYL-719) is an oral selective inhibitor of PI3K
isoform-α that showed to be active against the somatic PI3Kα

mutations and wild-type PI3Kα (Fritsch et al., 2014). Based on
these data, 58 patients with BRAF or RAS mutated advanced solid
tumors were enrolled in a phase Ib trial and were treated with
BYL-179 plus MEK162. A total of five NRAS mutated patients
experienced a partial response (Juric et al., 2014).

Parsaclisib is a novel Pi3kδ inhibitor that exhibited an
excellent profile in xenograft models (Yue et al., 2019,
0504). To date, one clinical trial is ongoing to assess the
efficacy and the safety of the combination between parsaclisib
plus pembrolizumab and itacitinib, a JAK1 inhibitor. The
association parsalisib plus itacitinib showed good results in
a phase I/II trial for hematological malignancies, with an
ORR of 67–78%, respectively in mantle cell lymphoma and
marginal zone lymphoma. Lower results were obtained among
patients with diffuse large B-cell lymphoma (ORR 30%)
(Forero-Torres et al., 2019).

The combination between pimasertib, a MEK1/2 inhibitor,
and voxtalisib, a dual PI3K/mTOR inhibitor among patients
affected by solid tumors, including melanoma, was tested in a
phase Ib trial in 146 patients. In December 2018, data from this
experimentation were published, showing a DCR of 52% with one
complete response and five partial responses. Unfortunately, the
toxicity profile of this combination was considered not acceptable
(Schram et al., 2018).

EZH2
EZH2 encodes a histone methyltransferase that constitutes
the catalytic component of the polycomb repressive complex-
2 (PRC2) which has a role in epigenetic silencing during
cell differentiation, in particular in the development of the
hematopoietic and central nervous systems. EZH2 can also
induce an epithelial-to-mesenchymal transition in the cancer
cells, increases their metastatic potential (Min et al., 2010) and
acts as a coactivator for transcription factors including the
androgen receptor (Xu et al., 2012).

More recently it has been described the role of EZH2
as a recruitment platform for DNA methyltransferases in
epigenetic repression (Viré et al., 2006; Barsotti et al., 2015;
Moran et al., 2018).

The EZH2-dependent expression of genes associated with cell
motility contributes to early phases of metastasis (Manning et al.,
2015) while activating variants promotes melanoma progression
inactivating tumor suppressor genes (Tiffen et al., 2015). The
reactivation of tumor suppressors was correlated to increased
survival confirming that EZH2-mediated epigenetic repression
has a major role in advanced melanoma progression (Zingg
et al., 2015). A study suggested the possibility that combined
immunohistochemical expression of EZH2, H3K4me2, and
H3K27me3 might identify cancer cells with potential stem
cell properties; another relevant data that many epigenetic

changes are pharmacologically reversible (Kampilafkos et al.,
2015; Mahmoud et al., 2016).

EZH2 mutations and CNVs in our dataset are detailed in
Figures 2, 3 and Supplementary Figure S6C, with an overall
mutational rate of 3.9 and 5.7%, respectively.

Of note, coexistence of BRAF V600E mutation and EZH2
amplification is rather prevalent in melanoma. Indeed, in a cohort
of 138 patients with BRAF V600E-mutated melanoma, 40 cases
(29.0%) showed EZH2 gain. Moreover, a significant difference in
overall survival and disease-free survival between no EZH2 copy
number gain and gain groups was reported (Yu et al., 2017).

A recent study highlights that both benign melanocytes and
cutaneous melanomas frequently harbor amplifications of EZH2
that silence genes correlated to the integrity of the primary cilium
(Zingg et al., 2018).

Vemurafenib and trametinib induce senescence consistent
with downregulation of c-MYC but an EZH2 variant limits
this effect (Hartman et al., 2019). EZH2 has a role in
differentiation of CD4+ T-cells and in the function of T
regulatory cells. Its activation causes immune suppression and
it has been suggested that EZH2 inhibitors may have a role
in combination with immunotherapy and targeted therapies to
prevent immunosuppression (Tiffen et al., 2016). It has been
further demonstrated that EZH2 controls melanoma escaping
mechanisms during T cell-targeting immunotherapies (Zingg
et al., 2017) and because the upregulation of EZH2 and its
histone modification H3K27me3 seems correlated to melanoma
progression and resistance to immune checkpoint blockade,
clinical trials based on EZH2 inhibitors are strongly suggested
(Hoffmann et al., 2020).

WT1
WT1 encodes a transcription factor implied in the prenatal
development of kidneys and gonads, mainly known for its action
in cell differentiation and apoptosis. Moreover, WT1 has a role
in tumorigenesis controlling several other genes [e.g., Pecam-
1 (CD31) and c-KIT (CD117)], and modulating vascularity,
immune response and metastasis formation (Wagner et al., 2014).
High expression of WT1 is described in leukemias and in solid
tumors and it seems correlated to the chemoresistance and
poor outcome. Interestingly, inhibition of cell proliferation by
shRNA-WT1, cisplatin, and gemcitabine in B16F10 cells induces
cell death and potentiates the action of anticancer drugs by
inducing synergistic effects both in vitro and in vivo (Zapata-
Benavides et al., 2019). Although WT1 could be expressed
by Spitz naevi and in up to one third of dysplastic naevi,
it is considered as a diagnostic tool in melanoma diagnosis
(Wilsher and Cheerala, 2007). Indeed, WT1 is expressed in
more than 80% of malignant melanoma cells, but not in normal
skin or benign melanocytic nevi (Wagner et al., 2008). WT1
protein expression was associated with shorter overall survival
in melanoma (Garrido-Ruiz et al., 2010) and deemed as a target
antigen for immunotherapy since a novel signaling mechanism
mediated by PPARbeta ligands, which led to melanoma cell
growth suppression through the direct repression of WT1,
was described (Michiels et al., 2010, 1). The silencing of
WT1 through shRNAi has a synergistic effect with doxorubicin
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and cisplatin, sensitizing B16F10 melanoma cells (Zapata-
Benavides et al., 2012). WT1 somatic mutations are described in
several cancers, with cutaneous melanoma having the greatest
prevalence. Two similarly sized WES analysis of 100 and 114
skin melanomas found WT1 somatic mutations in the 3 and
1.8% of skin melanoma patients, respectively (Hodis et al., 2012;
Krauthammer et al., 2012) (Supplementary Figure S6D). In
summary, frequency of WT1 mutations and CNVs in our skin
melanomas dataset are 3.7 and 1.3%, respectively (Figures 2, 3
and Supplementary Figure S6D).

To date, one trial with DSP-7888 plus nivolumab or
pembrolizumab in advanced solid tumors including melanoma,
is ongoing (Table 2). DSP-7888 is a peptide cancer vaccine that
includes WT1 derived peptides: it has shown to induce both
a CD8+ and CD4+ mediated immune response against WT1
overexpressing tumor cells.

SNX31
SNX31 encodes for the sorting nexins protein involved in
membrane trafficking (Worby and Dixon, 2002; Ghai and
Collins, 2011; Ghai et al., 2014). It is upregulated in more than
50% of bladder carcinoma transitional cell, but to date its role in
cancer is poorly understood. In melanoma, missense mutations
in SNX31 were first reported with a 7% frequency (Hodis et al.,
2012). Interestingly, a 9.0% mutation frequency was reported in
46 primary mucosal melanomas (Kim et al., 2017). In our skin
melanomas dataset SNX31 mutations and CNVs are 3.7 and 6.0%,
respectively (Figures 2, 3 and Supplementary Figure S7A). No
clinical trials with SNX31 inhibitors are ongoing.

IDH1
IDH1 encodes for a single, soluble, cytoplasmic isocitrate
dehydrogenase 1 enzyme, that converts isocitrate to α-
ketoglutarate (also known as 2-oxoglutarate) in an NADP+
dependent manner, protecting cells against reactive oxygen
species (ROS) and radiations (Minard and McAlister-Henn,
1999; Jo et al., 2002). First described in glioma (Balss et al.,
2008, p. 1; Parsons et al., 2008; Yan et al., 2009, p. 2), mutations
in IDH1 and IDH2 (isocitrate dehydrogenase 2 (NADP+),
mitochondrial) were described in several cancers, including
melanoma (Lopez et al., 2010). IDH1 and IDH2 mutations occur
primarily in the catalytic domain at residue R132 in IDH1, and
R140 and R172 in IDH2. The mutant IDH1/IDH2 proteins
lead to a reduction of α-ketoglutarate (α-KG) with a relative
production of oncometabolite 2-hydroxylglutarate (D-2HG)
that it is likely to play a major role in the pathophysiology
of tumors blocking cellular differentiation by competitively
inhibiting αKG-dependent dioxygenases involved in histone
and DNA demethylation (Mondesir et al., 2016). The first
IDH1 mutation in melanoma was reported in 2010 (Lopez
et al., 2010). The authors also revealed BRAF V600E mutation,
but no NRAS/TP53/CDKN2A/CDKN2B mutations, in one
metastatic sample carrying the R132C mutation, analysing 78
patients. Moreover, IDH2 R172 mutations were not detected
in any of these samples (Lopez et al., 2010). The next year, in a
cohort of 142 primary non-epithelial tumors, it was shown that
about 10.0% of metastatic melanoma lesions (4/39) harbored

an IDH1 or IDH2 heterozygous mutation, equally distributed
(Shibata et al., 2011). This study confirmed the co-occurrence
of BRAF mutation with IDH1 mutation previously observed,
and demonstrated that mutant IDH1 conferred in a BRAF
V600E melanoma cell line acquired in vivo growth activities and
enhanced activation of the MAPK and STAT3 pathways (Lopez
et al., 2010; Shibata et al., 2011). Mutant IDH1 also reduced the
expression of RASSF1, DHRS1, ADH5, whereas it induced the
expression of JUN, MYCN, and ATF3 (Lopez et al., 2010).

In our skin melanoma dataset, mutations of IDH1 are 3.4%
(Figure 2 and Supplementary Figure S7B) while CNVs are 1.3%
(Figure 3 and Supplementary Figure S7B).

To date, no FDA-approved drugs or clinical trials are available
for melanoma patients carrying IDH1/IDH2 mutations. Indeed,
only two compounds, Enasidenib (AG-221), a DH2-specific
inhibitor, and Ivosidenib (AG-120), a IDH1-specific inhibitor,
have been approved by FDA for patients with relapsed or
refractory acute myeloid leukemia (Stein et al., 2017; DiNardo
et al., 2018).

Thanks to these evidences, future clinical studies could
be pursued investigating the efficacy of IDH inhibitors for
melanoma cancer.

STK19
STK19, also known as RP1, encodes a nuclear serine/threonine
kinase (Shen et al., 1994; Gomez-Escobar et al., 1998). STK19
protein can bind ATP phosphorylated a-casein proteins at
Serine/Threonine residues and histone at Serine residues,
therefore phosphorylation of STK19 is involved in transcriptional
regulation (Gomez-Escobar et al., 1998). STK19 is important
for the transcription-related DNA damage response since it is
involved in DNA repair during active transcription and in nuclear
signal transduction (Boeing et al., 2016). STK19 mutations have
been found with a frequency of around 4.1% in melanoma, with
D89N mutation present at 3.3%, whereas no SKT19 mutations
were detected in nevus associated-melanomas (Hodis et al.,
2012; Shitara et al., 2015). In our dataset, STK19 mutations and
amplifications are reported in 3.3 and 6.0% of samples selected
(Figures 2, 3 and Supplementary Figure S7C).

In a recent study, STK19 was identified as a novel regulator
of NRAS function (Yin et al., 2019). STK19 alterations were
mutually exclusive with BRAF (Yin et al., 2019). Through in vitro
and in vivo experiments STK19 was found to phosphorylate
the residue S89 of NRAS activating NRAS signaling via the
MEK-ERK and PI3K pathways. In NRAS Q61R transgenic
mice the STK19 D89N mutant promoted oncogenic NRAS-
driven melanomagenesis. An STK19 inhibitor (ZT-012-037-1)
was able to inhibit NRAS activation in NRAS-STK19 mutant mice
preventing NRAS-driven melanoma development and growth
(Yin et al., 2019), revealing a promising therapeutic strategy for
NRAS-mutant melanoma tumors treatment (Yin et al., 2019).
Based on these last observations, several natural compound
libraries were screened using a phosphorylation assay-based
approach and chelidonine was identified as a potent and selective
inhibitor of STK19, providing a novel option for targeting NRAS-
mutant cancers (Qian et al., 2020). Nevertheless, clinical trials
are not available.
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MITF
Microphthalmia-associated transcription factor is a basic helix-
loop-helix (hHLH)-leucine zipper protein that plays a role in
the development of neural crest-derived melanocytes and retinal
pigment epithelial cells, and is encoded by MITF gene (Fuse
et al., 1999). MITF is directly involved in the expression of
genes that encode melanin synthesis enzymes (TYR, TYRP1, and
DCT), melanosome proteins (PMEL, MLANA, and RAB27A),
proteins involved in the cell cycle (CDKN1A, CDKN2A, TBX2,
and CDK2) and in cell survival (e.g., BCL2, BIRC7, HIF1A, and
MET) (Levy et al., 2006; Cheli et al., 2010; Vachtenheim and
Borovanskı , 2010), DNA replication and repair, cell proliferation,
and mitosis (Strub et al., 2011; Webster et al., 2014). This well-
known role in melanocyte development led MITF nicknaming
as the “master regulator” of melanocytes (Levy et al., 2006).
Despite MITF acts together with many transcription factors as
SOX10, YY1, TFAP2A, LEF1, RB1, IRF4, and PAX3 (Seberg et al.,
2017), its activity level determines the phenotype adopted by
melanoma cells, whether invasive, proliferative, or differentiated
according to the MITF rheostat model (Goding, 2011). MITF
locus is amplified in 7.9% of skin melanomas, while in
our dataset, MITF somatic mutations are quite rare, with a
frequency of 1.7% (Figures 2, 3 and Supplementary Figure
S7D). MITF amplification is more prevalent in metastatic
melanomas and correlates with decreased overall patient survival.
It is responsible for resistance to conventional chemotherapy
and BRAF inhibition (Garraway et al., 2005). Recently, Wang
et al. provided evidence that p300/CBP inhibition suppressed
the melanoma-driven transcription factor, MITF, and could
be utilized as a potential therapy for treating melanoma
(Wang R. et al., 2018; Kim et al., 2019). To date, no
clinical trials are attempting to target MITF directly; on the
other hand, MITF-mediated pathways targeting through histone
deacetylase inhibitors (HDACi) has been investigated with
disappointing results. Indeed, despite HDACi showed the ability
to silence MITF promoter in vitro and in vivo (Yokoyama
et al., 2008), this ability was not observed among treated
patients in a phase I trial performed between 2010 and 2012.
A total of 16 patients affected by unresectable stage III or
IV melanoma received panobinostat, a potent HDACi that
previously showed promising results among preclinical studies in
melanoma samples and hematologic malignancies (Giles et al.,
2006). Results from this phase I clinical trial were published
in 2016: among 15 evaluable patients, four achieved stable
disease, with an ORR of 0% and a disease control rate of
27%. Due to the absence of partial or complete response,
and the heavy toxicity of study drug, the trial was stopped
(Ibrahim et al., 2016).

OTHER GENES

TERT
TERT gene needs to be addressed separately from the other genes,
since the most common mutations in TERT are localized in
TERT promoter and have not been systematically investigated in
most of the studies included in our dataset. TERT gene codes for

a telomere reverse transcriptase catalytic subunit, the principal
mechanism of telomere maintenance in cancer cells.

Most of human cancers re-activate telomerase (Kim et al.,
1994). The first studies that identified cancer related TERT
promoter mutations were performed in melanoma patients.
The most common TERT promoter mutations are −57A/C,
−124C/T, −146C/T, upstream the TERT gene ATG (Horn et al.,
2013). From TCGA dataset of 9,127 patients and 31 cancer types
emerged that 27% of all analyzed samples harbored one of these
promoter mutations (Barthel et al., 2017), placing them among
the most frequent cancer mutations (Lorbeer and Hockemeyer,
2020). In particular, 73 out 115 SKCM melanoma samples
(frequency of 63.4%) harbored TERT promoter mutations (The
Cancer Genome Atlas Network, 2015). Interestingly, WGS
studies analyzed TERT promoter reporting a frequency of 81.2%
in acral and cutaneous melanomas (Supplementary Figure S9)
(Hayward et al., 2017).

Then, a discordancy on the mutational status between the
primary and metastatic lesion was found in a cohort of 194
primary nodular melanomas matched with 72 loco-regional
metastases, while TERT protein expression was found to correlate
with reduced patient survival (Hugdahl et al., 2018). A frequent
TERT promoter polymorphism at −245 was associated with an
increased rate of metastasis in melanoma (Nagore et al., 2019)
and inversely correlated with BRAF mutation (Bruno et al., 2018).
Moreover, mutations of the TERT promoter are more frequent in
fast-growing melanomas rather than slow-growing ones and this
characteristic could be used to identify more aggressive tumors
that might benefit from adjuvant therapy (Nagore et al., 2016).
Recently, CNV was found in 61.5% of acral melanoma which is
consistent with a previous study that reported rates from 44.9
to 75% (Liang et al., 2017; Yu et al., 2018, 2020). In our skin
melanoma dataset, TERT coding mutations (3.9%) and CNVs
(5.5%) are described in Figures 2, 3 and Supplementary Figure
S8A. Specifically, the 42 TERT coding variants found in our
dataset were all not-pathogenic variants in melanoma, underlying
TERT as a polymorphic gene.

No clinical trials for TERT mutated patients or with TERT
inhibitors are ongoing.

MTOR
The MTOR gene encodes a protein belonging to the
phosphatidylinositol kinase-related kinases family, which
regulates cell growth, proliferation, motility and survival, protein
synthesis and transcription (Wullschleger et al., 2006). mTOR
is regulated and responds to growth factors, energy metabolites
and/or levels of nutrients (Vogt, 2001). mTOR is the catalytic
subunit of two different multiprotein complexes, mTORC1
(highly sensitive to rapamycin) and mTORC2 (relatively
insensitive to rapamycin) with different functions. AKT regulates
the mTORC1 complex by phosphorylating and inhibiting the
TSC-2 gene (Tuberous Sclerosis 2), which is a GTP-ase activating
protein (GAP) that binds to TSC-1 (Tuberin) forming a complex
and blocking the G Rheb protein. The inhibition of TSC-2
allows the Rheb protein to accumulate in a GTP-bound state
and to activate mTORC1. mTORC1 regulates several key steps
of protein synthesis, controlling the expression of proteins
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that promote cell proliferation and survival. The mechanism
controlling mTORC2 is not yet well known; the activation of
this complex, however, is linked to the PI3K signaling (Pópulo
et al., 2012). mTOR, as key protein of the PI3K/AKT pathway,
acts both upstream and downstream of AKT, and aberrant
mTOR activation of promotes survival and proliferation of
tumor cells in several human cancers (Saxton and Sabatini, 2017;
Chamcheu et al., 2019). Nonsynonymous MTOR mutations
are present in about 3.61–12% of melanoma patients (The
Cancer Genome Atlas Network, 2015; AACR Project Genie
Consortium, 2017). In a Chinese cohort of 412 melanoma
patients, nonsynonymous MTOR mutations were found by NGS
analysis in acral, mucosal, cutaneous melanomas (with and
without chronic sun-induced damage), and unknown primary
subtypes, with a frequency of 11.0, 14.3, 3.4–6.7, and 11.1%,
respectively (Kong et al., 2016). In this study, H1968Y, P2213S
and S2215Y were established as gain-of-function mutations
sensitive to specific inhibitors (Kong et al., 2016). Similarly to
P2213S and S2215Y, the same authors found another gain-of-
function mutation (H2189Y) that was sensitive in heterozygous
at the AKT inhibitor (AZD5363) and the phosphoinositide
3-kinase inhibitor (LY294002), and in homozygous at the mTOR
inhibitor (everolimus) and the AKT inhibitors (AZD5363)
and (MK-2206 2HCL), and the phosphoinositide 3-kinase
inhibitor (LY294002) (Wu et al., 2018). Interestingly, analyzing
31 candidate genes existing in either the PI3K or MAPK pathway
in 105 metastatic melanoma patients, the researchers found two
novel nonsynonymous mutations (R2443∗ and L552F) in MTOR
gene (Shull et al., 2012).

In our dataset, mutations and CNVs in MTOR are found in 7.9
and 2.3% of the samples, respectively, as shown in Figures 2, 3
and Supplementary Figure S8B. However, among the 78 MTOR
coding mutations found in our dataset, only five were pathogenic
(6.4%; 2 E1799K, 2 S2215F, and 1 I2500F). Interestingly, these
mutations have previously been identified as activating mutations
in cancer patients using publicly available databases of cancer
genome sequencing data (Grabiner et al., 2014). This study
found 33 MTOR mutations that confer pathway activation, not
by reducing sensitivity to mTOR inhibitors, but by altering the
response of mTORC1 signaling pathway to nutrient deprivation
(Grabiner et al., 2014).

Regarding melanoma therapy, MTOR may be targeted by
selective inhibitors (Chamcheu et al., 2019). Rapamycin, a specific
mTORC1 inhibitor, inhibits the cell growth and proliferation in
several melanoma cell lines (Buscà et al., 1996; Molhoek et al.,
2005; Karbowniczek et al., 2008). Two other rapamycin analogs,
everolimus, and temsirolimus, also showed promising results
in preclinical studies but failed the clinical experimentation in
melanoma patients (Table 2).

Everolimus, as single agent, was tested in a phase II trial
with 53 metastatic melanoma patients: the drug led to obtain
just two clinical responses with a heavy toxicity profile and the
study was terminated for futility (Vera Aguilera et al., 2018).
A combination of everolimus with carboplatin and paclitaxel
as I line treatment for metastatic melanoma was also tested in
a phase II trial. Among 70 enrolled patients, just 12 showed
objective responses, with a median PFS of 4 months and a

median OS of 10 months (Hauke et al., 2013). Bevacizumab and
everolimus were tested in a phase clinical II trial with 57
metastatic melanoma patients and led to a disease control rate of
70%. Unfortunately, median PFS and OS were just 4 month and
8.6 months, respectively (Hainsworth et al., 2010). Lastly, a recent
study evaluated the combination of everolimus, bevacizumab,
carboplatin and paclitaxel (CPB) in a randomized phase II trial.
A total of 149 patients affected by stage IV melanoma were treated
with CPB or with CPB plus everolimus: no differences in terms
of PFS or OS were noted among the two groups, but everolimus
strongly increased toxicity (McWilliams et al., 2018).

A new attempt to bring attention back to everolimus comes
from a recently published phase I study, that evaluated the
safety and the efficacy of vatalanib plus everolimus in patients
with advanced solid tumors, including melanoma. Among 70
evaluable patients, nine achieved a partial response and 41 a stable
disease, with best results obtained in neuroendocrine tumors,
renal cancer, melanoma and NSCLC (Zhu et al., 2020).

Regarding the use of everolimus in mTOR mutated patients,
only two clinical trials exist to date, to our knowledge. The
first one is a phase II clinical trial on everolimus in cancer
patients with TSC1 and TSC2 mutation or activating MTOR
mutation. The second is a single-arm, open-labeled and single-
centered study of everolimus in selective patients with metastatic
melanoma and mutations (Kinase domain) of mTOR. Both
studies are ongoing, and thus results are not yet available.

Temsirolimus was tested in combination with sorafenib in
a phase I (Davies et al., 2012) and in a phase II clinical trials
(Margolin et al., 2012), with disappointing results. Indeed, not
only this combination failed to achieve any clinical response,
but it induced a significant toxicity at higher dose levels.
More encouraging results came from a phase II clinical trial
with temsirolimus and bevacizumab: among 17 treated patients,
three obtained a partial response and nine a stable disease,
with best responses obtained in BRAF wild type population
(Slingluff et al., 2013).

TACC1
TACC1 gene belongs to the TACC gene family that encodes
centrosomal proteins that may play roles in microtubule
regulation and spindle function, and, thus, may be an important
driver of genomic instability in cancer cells (Anafi et al., 2000;
Conte et al., 2003). Moreover, TACC1 proteins play an important
role in transcriptional regulation (Gas41, thyroid hormone
receptor, and retinoid acid receptor α) and mRNA processing
(LSM7 and SmG) (Conte et al., 2002; Guyot et al., 2010). Many
studies reported that TACC1 expression was modified in several
cancers (Line et al., 2002; Rhodes et al., 2002; Nguyen et al.,
2005; Ghayad et al., 2009). TACC1 has been also reported to
stimulate the RAS and PI3K pathways playing an oncogenic role
in tumor formation in the murine mammary gland (Cully et al.,
2005). Finally, FGFR-TACC fusions, including FGFR1-TACC1,
were also described in glioblastomas since 2012 (Di Stefano et al.,
2015; Lasorella et al., 2017).

TACC1 mutations were first reported in a WES study
of 121 melanoma tumor/normal pairs reporting five novel
melanoma candidate genes, including TACC1, with a frequency
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of 7% which was confirmed in a further similar study of 25
metastatic/germline pairs (Berger et al., 2012; Hodis et al., 2012)
(Supplementary Figure S8C). Finally, in a recent study several
key genes involved in melanomagenesis, including TACC1, in 115
human melanoma cell lines, 248 patient-derived xenografts, 31
cell lines derived from PDX, and 68 patient tumors, an overall
frequency rate of 1.47% was reported (Garman et al., 2017). In
conclusion, in our dataset TACC1 mutations and CNVs have
a frequency of 2.9 and 2.3%, as shown in Figures 2, 3 and
Supplementary Figure S8C. No clinical trials are available.

CNOT9
CNOT9, also known as RQCD1, encodes for the CCR4-
NOT transcription complex subunit 9 that plays a role as
transcription cofactor in multiple biological processes including
cellular differentiation and RNA processing (Mathys et al., 2014).
Several NGS studies revealed the presence at low frequency of
recurrent mutations in RQCD1/CNOT9 (P131L) in melanoma
samples (Dutton-Regester et al., 2014). Interestingly, Wong SQ
et al. found that melanoma tumors harboring RQCD1/CNOT9
P131L mutation were associated with increased thickness, head
and neck and upper limb location, lentigo maligna melanoma
subtype, and BRAF V600K but not V600E or NRAS Q61
mutations (Wong et al., 2015). CNOT9 alterations in our dataset
are shown in Figures 2, 3 and Supplementary Figure S8D
(frequency mutations and CNVs of 2.9 and 1.3%, respectively).

The functional oncogenic role of CNOT9/RQCD1 in
melanoma remains currently unknown although limited
studies revealed RQCD1 implication in AKT activation and
cell proliferation (Ajiro et al., 2009, 2010). In particular,
the CNOT9/RQCD1 mutant has demonstrated to stimulate
stronger immune responses than the wild type, implicating
the formation of a neoantigen that could be a potential
therapeutic target although no drugs or clinical trials are
available (Wong et al., 2015).

YAP1
YAP1 encodes for transcriptional coactivators belonging to the
Hippo pathway. The core of the Hippo pathway in mammals
consists of a kinase cascade, MST1/2 and LATS1/2, as well
as downstream effectors, transcriptional coactivators YAP and
TAZ (Ma et al., 2019). The Hippo pathway plays a crucial
role in organ size control by regulation of cell proliferation,
apoptosis, cell differentiation, and cell migration. Moreover,
the upregulation of the Hippo pathway downstream effectors,
such as YAP and TAZ, are common across various cancers
since mutations and altered expression of its core components
promote the migration, invasion, malignancy of cancer cells
(Moroishi et al., 2015; Yu et al., 2015; Han, 2019). Very recently,
9,125 tumor samples were profiled revealing a widespread
dysregulation of Hippo pathway components in multiple human
cancer types, including melanoma (Sanchez-Vega et al., 2018).
In particular, a strong interaction between Hippo pathway and
GNAQ and GNA11 oncogenes was observed. Several studies
reported the functional role of YAP in uveal melanoma cells
carrying GNAQ/11 mutations (Feng et al., 2014; Yu et al.,
2014). In uveal melanoma ATCG samples, only one among 80

uveal melanoma patients revealed a missense mutation in YAP
(G369R) co-occurring with GNAQ R183Q and GNA11 R183C
(Bakhoum and Esmaeli, 2019). Moreover, no YAP CNV was
shown in uveal melanoma samples by a comprehensive molecular
characterization of the Hippo core genes in 9,125 tumor samples
(Wang Y. et al., 2018). In our skin melanoma dataset, YAP1
alterations are reported in Figures 2, 3 and Supplementary
Figure S10, with an overall frequency mutation and CNVs of 1.4
and 2.6%, respectively.

Although the central role of YAP in uveal melanomagenesis is
deeply investigated, the role of Hippo/YAP signaling in cutaneous
melanoma is less understood. Zhang et al. (2019) proved for the
first time that YAP hyperactivity is elevated in invasive melanoma
cell lines, induce invasion in normally non-invasive melanoma
cells, induces spontaneous melanoma metastasis in vivo and
promotes melanoma cell invasion by regulating expression
of AXL, CYR61 and CRIM1. Moreover, they did not found
association between YAP activity and the BRAF/NRAS mutation
status. Of note, they found for the first time somatic activating
mutations in YAP gene by WES. Indeed, they identified seven
independent serine to alanine substitutions in YAP gene (called
YAP-7SA) from a primary cutaneous melanoma patient carrying
BRAF V600E and RAC1 P29S mutation. In vitro study confirmed
that YAP-7SA encodes a hyperactive version of the YAP protein
(Zhang et al., 2019). Despite the great interest of scientific
community toward the role of Hippo pathway in cancer, no drugs
and clinical trials direct to YAP in melanoma are described.

CONCLUSION AND PERSPECTIVES

The better definition of the genetic mechanisms underlying
melanomagenesis allowed to synthesize new molecular targeted
drugs that radically changed the prognosis of melanoma patients.

In this review we analyzed more than 30 genes other
than BRAF, that can be or become targets for new molecular
target therapies. We collected mutation data on a total of 992
melanoma samples analyzed by WES or WGS to prove the genetic
heterogeneity of melanoma, beyond the BRAF mutation. Only
11 of them (1.1%) showed no coding mutations, whereas 298
(30%) showed a mutation in one of the RAS genes (mostly
NRAS) and most of the samples studied (698, 70%) showed
mutations in non-RAS genes (Figures 2, 3) suggesting potential
new roads/candidates for targeted therapy.

We also provide an overview of the related clinical trials,
ongoing or completed, to better outline the state of molecular –
derived clinical research (Table 2). Among the 33 selected
established and candidate melanoma driver genes here described,
clinical trials have been performed for 11 genes (33.3%) and
this percentage could be increased if we considered ongoing
trials with immunotherapy although it was not the topic of our
review. Moreover, several preclinical studies are showing that
some drugs could have anti-tumor ability toward melanoma
driver genes opening future clinical studies and new potential
therapeutic perspectives.

In this scenario, we strongly believe that in a near future,
the use of NGS could extend the cohort of patients that
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could benefit by this therapeutic approach. Indeed, at least
two clinical trials including melanoma patients (NCT02465060
and NCT02645149) are currently ongoing to prove this
concept, enrolling hundreds of patients regardless of their
neoplasm, and treating them with the specific drug targeting
the specific identified mutation. Hopefully, the results of these
experimentations will be a milestone in medical oncology because
will allow us to put into practice a real personalized therapy,
tailored on what is written in tumor genome.
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FIGURE S1 | NRAS (A), KRAS (B), HRAS (C), and PREX2 (D) mutations and
CNV frequency in the 10 NGS selected studies. Mutations are indicated in green

and CNV in purple. Only four studies with available CNV information were
considered for CNV analysis.

FIGURE S2 | TP53 (A), NF1 (B), ARID2 (C), and CDKN2A (D) mutations and
CNV frequency in the 10 NGS selected studies. Mutations are indicated in green
and CNV in purple. Only four studies with available CNV information were
considered for CNV analysis.

FIGURE S3 | CDK4 (A), PTEN (B), PPP6C (C), and CTNNB1 (D) mutations and
CNV frequency in the 10 NGS selected studies. Mutations are indicated in green
and CNV in purple. Only four studies with available CNV information were
considered for CNV analysis.

FIGURE S4 | DDX3X (A), RASA2 (B), SF3B1 (C), and RAC1 (D) mutations and
CNV frequency in the 10 NGS selected studies Mutations are indicated in green
and CNV in purple. Only four studies with available CNV information were
considered for CNV analysis.

FIGURE S5 | MAP2K1 (A), MAP2K2 (B), KIT (C), and RB1 (D) mutations and
CNV frequency in the 10 NGS selected studies. Mutations are indicated in green
and CNV in purple. Only four studies with available CNV information were
considered for CNV analysis.

FIGURE S6 | FBXW7 (A), PIK3CA (B), EZH2 (C), and WT1 (D) mutations and
CNV frequency in the 10 NGS selected studies. Mutations are indicated in green
and CNV in purple. Only four studies with available CNV information were
considered for CNV analysis.

FIGURE S7 | SNX31 (A), IDH1 (B), STK19 (C), and MITF (D) mutations and CNV
frequency in the 10 NGS selected studies. Mutations are indicated in green and
CNV in purple. Only four studies with available CNV information were considered
for CNV analysis.

FIGURE S8 | TERT (A), MTOR (B), TACC1 (C), and CNOT9 (D) mutations and
CNV frequency in the 10 NGS selected studies. Mutations are indicated in green
and CNV in purple. Only four studies with available CNV information were
considered for CNV analysis.

FIGURE S9 | TERT promoter mutations in 160 skin melanomas. TERT promoter
mutations were derived by 129 cutaneous melanoma and 31 acral melanomas
(Hayward et al., 2017).

FIGURE S10 | YAP1 mutations and CNV frequency in the 10 NGS selected
studies. Mutations are indicated in green and CNV in purple. Only four studies with
available CNV information were considered for CNV analysis.
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