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1  | INTRODUC TION

Breast cancer is one of the most common types of cancer worldwide, 
particularly among women, with incidence and mortality rates of 24.2% 
and 15%, respectively,1 despite being targeted by multipronged thera-
pies. Breast cancer is diverse and heterogeneous with respect to the 

expression of genes, receptors and intracellular signalling proteins, 
thereby exhibiting a complex disease aetiology and varied response 
to therapy. Three major growth factor receptors implicated in breast 
cancer are progesterone receptor (PR), oestrogen receptor (ER) and 
human epidermal growth factor receptor 2 (Her2/neu). Based on inter- 
tumour heterogeneity recognized by molecular characterization, breast 
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Abstract
Breast cancer has a diverse aetiology characterized by the heterogeneous expres-
sion of hormone receptors and signalling molecules, resulting in varied sensitivity 
to chemotherapy. The adverse side effects of chemotherapy coupled with the de-
velopment of drug resistance have prompted the exploration of natural products 
to combat cancer. Lactoferricin B (LfcinB) is a natural peptide derived from bovine 
lactoferrin that exhibits anticancer properties. LfcinB was evaluated in vitro for its 
inhibitory effects on cell lines representing different categories of breast cancer and 
in vivo for its suppressive effects on tumour xenografts in NOD- SCID mice. The dif-
ferent breast cancer cell lines exhibited varied levels of sensitivity to apoptosis in-
duced by LfcinB in the order of SKBR3>MDA- MB- 231>MDA- MB- 468>MCF7, while 
the normal breast epithelial cells MCF- 10A were not sensitive to LfcinB. The peptide 
also inhibited the invasion of the MDA- MB- 231 and MDA- MB- 468 cell lines. In the 
mouse xenograft model, intratumoural injections of LfcinB significantly reduced tu-
mour growth rate and tumour size, as depicted by live imaging of the mice using in 
vivo imaging systems (IVIS). Harvested tumour volume and weight were significantly 
reduced by LfcinB treatment. LfcinB, therefore, is a promising and safe candidate that 
can be considered for the treatment of breast cancer.
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cancers are categorized as follows: luminal A (ERhigh, Her2low), luminal B 
(ERlow, Her2low), Her2- enriched (Her2+, ER- ), basal- like or triple- negative 
(ER- , PR- , Her2- ) and claudin- low (ER- , Claudinlow, E- cadherinlow) types, 
most of which are associated with a poor short- term prognosis.2

Her2- positive breast cancer is characterized by Her2 receptor 
overexpression and dependence on Her2 pathway for survival. The 
prognosis of Her2- positive breast cancers improved dramatically fol-
lowing the use of monoclonal antibodies such as trastuzumab and 
kinase inhibitors for therapy.3 Luminal B type is more aggressive and 
has worse prognosis than luminal A type.4 Triple- negative breast 
cancer (TNBC) is highly aggressive, heterogeneous and the most dif-
ficult type of breast cancer to treat, with a 10 year survival rate of 
60%- 70%. TNBC responds only to chemotherapy due to the absence 
of hormone receptors.5,6 Antibody- drug conjugates, adjuvant and 
neo- adjuvant therapies have significantly increased patient outcome 
although toxicity, relapses and drug resistance are also reported.3 
Chemotherapy is often accompanied by the development of drug 
resistance facilitated by multiple resistance mechanisms leading to 
serious side effects. This has prompted research into the develop-
ment of natural agents that might help overcome these issues. Many 
studies have focused on anticancer peptides to explore their poten-
tial to kill cancer cells, but most were found to be highly toxic.

Bovine lactoferrin is an iron- binding glycoprotein present in cow 
milk with antimicrobial, anticancer, and immunomodulatory proper-
ties.7 Administration of lactoferrin in vivo is safe and well- tolerated, 
and is effective against some cancers.8 Lactoferricin B (LfcinB) is a 
25- amino acid peptide released from lactoferrin by acid- pepsin hy-
drolysis. Similar to other cationic antimicrobial peptides, LfcinB ex-
hibits antibacterial and antifungal properties.9,10 as well as anticancer 
properties. Interference with cell cycle, induction of apoptosis, inhibi-
tion of cell migration and immunomodulation are proposed to be the 
mechanisms of action of lactoferrin and its peptide derivatives against 
cancer cells.8 LfcinB and a core peptide derived from Lfcin have been 
found to induce apoptosis of leukaemic T cells, B lymphoma cells and 
a gastric cancer cell line.10- 13 LfcinB also exerted an inhibitory effect 
against neuroblastoma cells and B lymphoma cells both in vitro and 
in vivo.15,16 In MDA- MB- 435 cells, LfcinB- induced DNA fragmenta-
tion was enhanced by C6 ceramide.17 Several peptides derived from 
LfcinB have also been shown to exert anticancer effects.17- 19

While these reports confirm the anticancer effects of LfcinB, a 
focused exploration of the ability of LfcinB to inhibit diverse breast 
cancer subtypes has yet to be undertaken. The present study found 
that the inhibitory effects of LfcinB peptide on cell lines represent-
ing different categories of breast cancer were varied. LfcinB also had 
antitumorigenic effect in an in vivo xenograft model of breast cancer 
in immunodeficient mice.

2  | MATERIAL S AND METHODS

2.1 | Cell lines and cell culture

The MDA- MB- 231, MDA- MB- 468, SKBR3 and MCF7 breast cancer 
cell lines, and the MCF- 10A human mammary gland cell line, were 

purchased from the American Type Culture Collection. MDA- MB- 
231- GFP- luc2 cells previously transduced with lentiviral GFP- luc2 
(kindly provided by Dr Marco Herold from Walter and Elisa Hall 
Institute of Medical Research, Australia) were used for the in vivo 
experiments. The cancer cell lines were cultured in Dulbecco's 
modified Eagle's medium (DMEM) supplemented with 10% foetal 
bovine serum (FBS) and 1% penicillin- streptomycin (Thermo Fisher 
Scientific, Inc), and maintained in a humidified incubator at 37˚C with 
5% CO2. The MCF- 10A cell line was cultured in DMEM/F12 supple-
mented with 5% horse serum, 0.02% epidermal growth factor, 0.05% 
hydrocortisone, 0.1% insulin, 1% non- essential amino acids, 1% glu-
tamine and 1% penicillin- streptomycin and maintained at 37˚C with 
5% CO2. All the components were purchased from Thermo Fisher 
Scientific, Inc.

2.2 | Peptide

LfcinB peptide (FKCRRWQWRMKKLGAPSITCVRRAF) was synthe-
sized by Mimotopes Pty. Ltd. The peptide was dissolved in incom-
plete DMEM to a working concentration of 1 mg/ml.

2.3 | Apoptosis assay

The assay was carried out using the Annexin V- FITC early apop-
tosis detection kit from Cell Signaling Technology, Inc., following 
the manufacturer's instructions. The cells were cultured in 6- well 
plates and treated with various concentrations of LfcinB peptide for 
48 h. The cells were detached using PBS containing 10 mM EDTA, 
stained and analysed using a flow cytometer (BD FACSCalibur; BD 
Biosciences).

2.4 | Cell invasion assay

Boyden chambers (8 μM pore size) were pre- coated with fibronec-
tin and placed in 24- well companion plates. In the upper chamber, 
2 × 104 cells were placed in serum- free medium containing vari-
ous concentrations of LfcinB peptide. Complete DMEM (600 µl) 
was placed in the lower chamber. After 12 h of incubation, the cells 
that had invaded into the fibronectin- coated lower surface of the 
membrane were fixed with methanol, stained with 1% crystal violet 
and counted using Nikon Eclipse Ti- S inverted microscope at 200X 
magnification.

2.5 | Animals

Immunodeficient NOD- SCID- gamma (NSG) mice were bred 
and maintained in the SPF facility of the Institute of Medical 
Research (IMR). Female mice (8 weeks old, weighing 18- 25 g) 
were used in the present study. The mice were housed in groups 
of 5 animals per cage maintained in a barrier facility equipped 
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with HEPA- filtered racks. All the experiments were carried out 
following the guidelines and approval of the Animal Care and 
Use Committee (ACUC) of Ministry of Health (ACUC/KKM/02 
9/2015) (Sept 2015) and Medical Research and Ethics Committee, 
Ministry of Health Malaysia, as well as the IMU Joint Committee 
on Research and Ethics of International Medical University (IMU 
R 142/2014[6/2014]) (June 2014) within the approval period of 
2015- 2017.

2.6 | Breast cancer xenografts

MDA- MB- 231- GFP- luc2 cells (1 × 106 cells in 25 µl of plain DMEM 
mixed with 25 µl Matrigel (BD Biosciences)) were injected into the 
fifth left inguinal mammary fat pad of the female NSG mice. When 
the tumours became palpable, they were measured using callipers 
to assess tumour volume. When the tumour reached a volume of 
~150- 200 mm3, an intratumoural injection of 50 µl of LfcinB peptide 
(4 or 5 mg) or saline was administered for 3 consecutive days. Once 
the tumours in the control group reached a volume of ~700 mm3 or 
a diameter of 11 mm, all mice were killed by an overdose of CO2 
gas in a CO2 chamber (10%- 30% volume/min). The tumours were 
harvested and photographed, and their volume and weight were re-
corded. A flow chart of the in vivo experimental protocol is depicted 
in Figure 1.

2.7 | In vivo imaging systems (IVIS)

For live imaging, the mice were anaesthetized by isoflurane (3% in-
duction dose and 1.5%- 2% maintenance dose via a precision vapor-
izer) and injected with 100 µl of diluted XenoLight D- Luciferin- K+ 
salt, a bioluminescent substrate (PerkinElmer, Inc) intraperitoneally 
(i.p.) at a concentration of 150 mg/kg bodyweight. The mice were 
placed in the imaging chamber for fluorescent imaging using IVIS® 
Spectrum (PerkinElmer, Inc) and imaged ventrally.

2.8 | Histological analysis

The harvested tumours were fixed in 10% formalin and embedded in 
paraffin for histological analysis. The tissue blocks were cut into 4 µm 
sections using a microtome (RM2255; Leica Biosystems, Inc). Slides 
were prepared and stained with haematoxylin and eosin (H&E), and 
images were captured using Nikon Eclipse 80i microscope at 200X 
and 400X magnifications.

2.9 | Statistical analysis

Data were analysed using a Student's t test. Tumour growth curves 
were compared using a one- way analysis of variance (ANOVA) fol-
lowed by post hoc Tukey's honest significant difference (HSD). 
Differences between treatments were considered significant at the 
P < .5 probability level.

3  | RESULTS

3.1 | Varied sensitivity of different breast cancer 
cell lines to LfcinB- induced apoptosis

The different breast cancer cell lines exhibited varying degrees of 
sensitivity to LfcinB- induced apoptosis, with the SKBR3 and MDA- 
MB- 231 cells reaching ~80% cell death at the 100 and 200 µg/ml 
concentrations (Figure 2). In the MDA- MB- 468 cells, LfcinB induced 
only ~60% cell death and in the MCF7 cells, only ~50% cell death 
at the 300 µg/ml concentration. The non- tumorigenic breast epi-
thelial cell line, MCF- 10A, exhibited only ~10% cell death, even at 
the 300 µg/ml concentration of LfcinB. Therefore, the SKBR3 and 
MDA- MB- 231 cell lines were found to be highly sensitive to LfcinB, 
the MDA- MB- 468 and MCF7 cells moderately sensitive and the 
MCF- 10A cells non- responsive to LfcinB. The relative sensitivity 
of the different cell lines to LfcinB following treatment for 48 h is 

F I G U R E  1   Flow chart depicting in vivo tumour induction and LfcinB treatment in NSG mice
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collectively depicted in Figure 2F for comparison. The survival per-
centage was calculated from the apoptosis assay and depicted as a 
line graph in Figure 2G to illustrate the relative survival of the differ-
ent cell lines. Representative graphs from the flow cytometric analy-
sis of apoptosis in the different cell lines using Annexin- FITC and 
propidium iodide are depicted in Figure S1.

3.2 | Inhibition of the invasion potential of breast 
cancer cell lines by LfcinB

LfcinB inhibited the invasive potential of the highly invasive cell lines 
MDA- MB- 231 and MDA- MB- 468 in the Boyden chamber assay. The 
MDA- MB- 231 cells treated with 200 µg/ml of LfcinB exhibited only 
20% cell invasion, whereas the MDA- MB- 468 cells exhibited ~50% 
cell invasion at the same concentration (Figure 3). The MDA- MB- 231 

F I G U R E  2   LfcinB induces apoptosis in different breast cancer cell lines. Percentage of apoptotic cells present in the breast cancer cell 
lines (A) MDA- MB- 231 (B) SKBR3 (C) MDA- MB- 468 (D) MCF7 and the normal breast cell line (E) MCF- 10A treated with 100- 300 µg/mL 
of LfcinB for 48 hours, stained with Annexin V- FITC/PI and analysed by flow cytometry. Percentage of apoptotic cells include Annexin- 
FITC/PI single positive as well as double- positive cells. (F) Graph depicting the overall response of the different cell lines to LfcinB (G) Line 
graph depicting the comparative survival of the different cell lines treated with LfcinB, calculated from the apoptosis assay. The results are 
significant at *P < .05 or **P < .01

F I G U R E  3   LfcinB inhibits invasion of breast cancer cell lines. 
Graph depicting the fold- change in the relative number of invasive 
cells in MDA- MB- 231 and MDA- MB- 468 cell lines treated with 
100- 300 µg/mL of LfcinB for 12 h as determined by Boyden 
chamber invasion assay. **The results are significant at P < .01
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cells were more sensitive to LfcinB than the MDA- MB- 468 cells. The 
numbers of invading MCF7 and SKBR3 cells were non- significant. 
The normal MCF- 10A cells were non- invasive (data not shown).

3.3 | Impairment of tumour growth by LfcinB

The tumour growth rate was slower in mice that received intra-
tumoural injections of LfcinB peptide compared to control mice 
treated with saline (Figure 4A). The difference in size was appar-
ent from day 7 post- injection, and over time, the gap between the 
treated and control groups (5 mice/group) became wider. By day 16, 
while tumour size in the control group reached ~1,000 mm3, that of 
the treatment group remained <500 mm3. Throughout the experi-
mental period, the bodyweight of the mice was found to be stable in 
all the groups (Figure 4B).

Imaging of live mice using the IVIS® Spectrum revealed that 
tumour size and density increased over time in the control group, 
as depicted by an increasingly intense red colour compared to the 
LfcinB- treated groups that exhibited a decrease in tumour size, as 
well as in density. The LfcinB- treated mice had smaller tumours with 
lower density, as indicated by the shift towards blue colour coupled 
with a decrease in red colour by day 16 (Figure 5).

Excised tumour volume and weight exhibited the same decreasing 
trend. The control group had a mean tumour volume of 1,272 mm3, 
whereas the treatment groups had mean volumes of 319 and 291 mm3, 
respectively (Figure 6A). Similarly, tumour weight decreased from a 
mean of 0.81 g in the control group to ~0.23 g in the LfcinB- treated 
groups (Figure 6B). Images of the excised tumours revealed a marked 
difference between the control and treated groups (Figure 6C).

3.4 | Induction of apoptosis in tumours treated 
with LfcinB

H&E staining of tumour sections from the LfcinB- treated mice re-
vealed an increased number of apoptotic cells compared to the con-
trol mice (Figure 7). This indicated that the intratumoural injection 

of LfcinB induced the apoptosis of the tumour cells, causing the tu-
mours to shrink.

The current findings confirm the inhibitory effects of LfcinB on 
cancer cell lines in vitro as well as in vivo, and its ability to induce 
apoptosis and inhibit cancer cell invasion without affecting normal 
cells. These characteristics are the prerequisite for targeted therapy 
and indicate that LfcinB may be a valuable candidate for breast can-
cer treatment.

4  | DISCUSSION

The development of peptides as anticancer agents is aimed at in-
creasing the target specificity to cancer cells while decreasing 
toxicity and undesirable side effects. Anticancer peptides are gen-
erally cationic and exert their toxic effects by interacting with the 
anionic cancer cell membrane.21,22 LfcinB is a cationic peptide rich 
in basic amino acids with a net positive charge of 7.84,23 and its 
selective targeting of cancer cells might be attributed to their el-
evated negative membrane potential.22 The differential sensitivity 
of breast cancer cell lines to therapeutic agents has been reported 
with the antimicrobial peptide Tempoprin- 1CEa, while a similar ob-
servation with bladder cancer cell lines was made with the peptide 
Magainin.21,24 The MCF7 cell line is luminal A type and the SKBR3 
cell line is Her2- positive; the two triple- negative cell lines, MDA- 
MB- 468 and MDA- MB- 231, are basal type and Claudin- low type, 
respectively.25,26 Chemotherapeutic drugs targeting Her2 have ex-
hibited a sensitivity ranking in breast cancer cell lines as follows: 
SKBR3>MDA- MB- 468>MCF7>MDA- MB- 231.27 The SKBR3 cells, 
which lack functional p53, but have functional caspase- 3 were 
the most sensitive to the drugs used in the present study. In con-
trast, the MCF7 cells which have functional p53, but not functional 
caspase- 3, were relatively resistant. While the MCF7 cells are re-
sponsive to hormone therapy and are associated with the most fa-
vourable prognosis, they are relatively resistant to other drugs as 
well as LfcinB.28,29

Smaller peptide derivatives of LfcinB have been synthesized and 
have exhibited anticancer properties. A study using the core peptide 

F I G U R E  4   Intratumoural injection of LfcinB reduces tumour volume but not mice body weight. (A) Graph depicting the average tumour 
volume in mice that received intratumoural injections of saline or LfcinB (4 mg or 5 mg/mouse) monitored over time. (B) Graph depicting the 
average bodyweight of mice recorded over the corresponding period. *The result is significant at P < .05



7186  |     RAHMAN et Al.

of LfcinB found that a net positive charge of +7 facilitated antitu-
mour activity.30 The modification of the LfcinB peptide to cluster the 
cationic residues into a single region caused it to be 9.6- fold more 
cytotoxic to the HL- 60 leukaemic cell line.31 Lactoferrin- derived 
peptides have been reported to have weak cytotoxicity against 
MDA- MB- 231 cells, while synthetic peptides in dimeric and tetram-
eric forms designed with the canonical motif RRWQWR of LfcinB 
are highly cytotoxic to the MDA- MB- 468 and MDA- MB- 231 breast 
cancer cell lines.19,20 Even MCF7 cells, which are only moderately 
sensitive to LfcinB, have been found to be highly sensitive to the lac-
toferricin core peptide, RRWQWR.32 LfcinB causes no cytotoxicity 
to several normal cell lines tested,14,32 has immunomodulatory and 
anti- inflammatory properties33,34 and does not elicit adverse side 
effects.

A variety of mechanisms have been proposed to underlie the 
anticancer effects of lactoferrin, LfcinB and its derivatives. A com-
mon mechanism proposed by many is the induction of apoptosis, 
membrane disruption and cell cycle arrest in cancer cells treated 
with lactoferrin or its derivatives.35,38 Human lactoferrin was found 
to arrest the cell cycle at the G1 to S transition phase in MDA- 
MB- 231 cells by inhibiting cyclin- dependent kinases.36 In another 
study, lactoferrin was reported to induce cell cycle arrest and in-
hibit the mTOR signalling pathway, thereby inducing stress, but not 
apoptosis of breast cancer cell lines.37 Both lactoferrin and LfcinB 
were found to induce apoptosis by modulating the expression of 
pro- apoptotic and anti- apoptotic proteins and caspases in different 
cancer cell lines, as well as in implanted tumours in animal mod-
els.13,15,16,31,34- 36 The induction of reactive oxygen species (ROS) 

F I G U R E  5   LfcinB reduces tumour size 
and density as depicted by live imaging 
of mice by IVIS. Photographs depicting 
tumour size and density taken using the in 
vivo imaging systems (IVIS, Perkin Elmer) 
to detect the luminescence of MDA- MB- 
231- GFP- luc cells in the tumours. Images 
were taken on the day of first injection 
(day 0) followed by day 10 and day 16 
post- treatment

F I G U R E  6   LfcinB reduces excised tumour volume and weight. Graphs depicting (A) the average volume and (B) the average weight of 
excised tumours from mice that received intratumoural injections of saline or LfcinB (4 or 5 mg/mouse). *The result is significant at P < .05. 
(C) Photographs of tumours excised from the different groups of mice
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was implicated by some studies in the apoptotic pathway induced 
by LfcinB.11,12,40 Mitochondrial death pathways and caspases have 
been proposed to be involved in apoptosis induced by LfcinB.14,31,41 
JNK signalling pathway, which is implicated in mitochondria- 
mediated apoptosis, was induced by LfcinB in oral cancer cells.42 
Anti- angiogenic properties have also been attributed to LfcinB as 
evident by its anti- VEGF effect and decreased expression of matrix 
metalloproteases (MMPs).43

Both lactoferrin and lactoferricin have tumour- suppressing 
functions. The expression of lactoferrin cDNA effectively reduced 
tumours derived from breast cancer as well as cervical cancer.44,45 
The direct tumour- suppressive effects of LfcinB have been observed 
in in vivo studies using animal models.39- 42 In melanoma and colon 
carcinoma tumours, disruption of cell membrane, lysis and haem-
orrhagic necrosis was observed.46 Administration of LfcinB dendri-
plexes intravenously suppressed the growth of A431 and B16- F10 
tumour xenografts in mice and prevent tumour metastasis.47,49 The 
intratumoural injection of a 9- mer peptide, LTX- 302, which is a de-
rivative of LfcinB, caused tumour necrosis and tumour infiltration by 
inflammatory cells followed by complete regression of tumours in 
a T lymphocyte– dependent manner in immunocompetent BALB/c 
mouse tumour model.48 LTX- 315, an oncolytic peptide derived from 
LfcinB, was shown to exert an additive effect when used along with 
chemotherapy as a combination therapy against triple- negative 
breast cancers in a mouse model.50 It was also able to modulate im-
mune response and reprogram the tumour microenvironment, and is 
being evaluated in clinical trials.51

Our study has shown that LfcinB is effective against different 
breast cancer cell lines including triple- negative types and is capable 
of inducing apoptosis, and inhibiting cell invasion. Intratumoural ad-
ministration of LfcinB caused significant reduction in tumour burden 
in vivo. Furthermore, it specifically targeted cancer cells without af-
fecting the normal cells. These properties make LfcinB a promising 
natural product to be safely considered as a candidate for combi-
nation therapy against breast cancer. It can help minimize the dose 
of chemotherapeutic drugs thereby mitigating the side effects and 
reduce the overall cost of cancer treatment by serving as a cheaper 
alternative. Further studies are to be undertaken to evaluate this 
peptide for treatment of human breast cancer.

ACKNOWLEDG EMENTS
This study was funded by the Ministry of Higher Education under 
Fundamental Research Grant Scheme (FRGS) project FRGS/1/2014/
SKK01/IMU/03/1 awarded to the corresponding author.

The authors wish to thank the Director General of Health 
Malaysia for his permission to publish this article. The authors wish 
to acknowledge Dr Saint Nway Aye, Pathologist, International 
Medical University, for her help with the interpretation of histopa-
thology slides, as well as Ms Nurul Ashikin Mohamed Shahrehan, 
Mr Md Noor Shuhada and Ms Christine Ricky of the Molecular 
Pathology Unit, Cancer Research Centre, Institute for Medical 
Research, for their technical help and Prof. Anthony Rhodes, 
International Medical University, for critically reading through the 
manuscript.

F I G U R E  7   LfcinB induces apoptosis in excised tumour sections as depicted by histochemical analysis. Representative sections 
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