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SUMMARY

A habitual gaze is critical to efficiently identify and exploit valuable objects. How-
ever, it is unclear what salience components drive the habitual gaze choice. Here,
we trained subjects to assign positive, neutral, and negative values to objects and
found that motivational salience guided habitual gaze choices over 30 days of
memory retention. The habitual preference for negatively valued objects
emerged during memory retention. This habitual choice was not explained by a
general model with salience components driven by physical features of objects
and the rank of learned values. Instead, this is better explained by a model that
contains an additional component driven by motivational salience. In a simulated
value-forgotten condition, these motivational salience-based habitual choices
facilitated re-learning. Our data indicate that after long-term retention, habitual
gaze results from increased motivational salience, potentially facilitating the re-
learning of forgotten values.

INTRODUCTION

Animals often compete to maximize rewards in the face of limited resources. A strategy for maximizing

reward is to find valuable objects associated with the rewards more quickly than other competitors. This

first-find, first-earn strategy requires efficient pathways that can quickly and accurately identify valuable ob-

jects even when clustered with other objects.

Habitual movement can help to efficiently identify a valuable object (Hikosaka et al., 2013; Land et al., 1999).

This behavior can be modified or newly generated by long-term learning of object value. Indeed, habitual

movement produces fast and accurate movements with little attentional control that efficiently locates

valuable objects (Ghazizadeh et al., 2016a; Kang et al., 2021; Land et al., 1999; Navalpakkam et al., 2010;

Yasuda et al., 2012). Primates depend on visual cues, and habitual eye movement is thus a particularly effi-

cient mechanism for making rapid, accurate choices when seeking a valuable object (Kang et al., 2021;

Tatler et al., 2011). Imagine a situation where you are walking down the beer aisle. Although you walk

into the beer section without much thought, you often quickly identify your favorite brand, allowing you

to quickly make a favorite choice. This example shows that habitual eye movement automatically and

quickly draws attention to valuable objects.

In primate studies, habitual gaze drawn to highly valued objects is known to be guided by long-term

learning of object-value association (Kang et al., 2021; Kim, 2021; Kim and Hikosaka, 2013, 2015; Kim

et al., 2015; Yamamoto et al., 2013). When previously learned objects were presented under free-viewing

conditions, monkey and human subjects habitually gazed at objects that were previously associated with

high reward. This gaze occurred based on learned value association even when a reward was not received

in the later free-viewing paradigm.

However, long-term memory, which is the basis of this habitual gaze, is susceptible to forgetting over time

(Davis and Zhong, 2017; Ebbinghaus, 1913). Thus, habitual gaze behavior may inevitably be lost by forget-

ting. However, it is not clear if the habitual gaze behavior is maintained over time or is lost by forgetting.

Although forgetting has been investigated in neuroimaging, behavioral, and molecular studies, little is

known about how it affects habitual behavior (Davis and Zhong, 2017; Ebbinghaus, 1913; Liu et al., 2016;

Oehrn et al., 2018). In addition, forgetting is known to be positively correlated with retention time after
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learning, but most studies on habitual behavior were conducted using a limited retention period, making it

difficult to demonstrate the effects on longer-term behavioral changes (Averell and Heathcote, 2011; Murre

and Dros, 2015; Squire, 1989). It is therefore unclear how changes in long-term value memory occur during

the retention period, and how these changes affect habitual preference.

Visual objects have physical features, and some of these are more distinct than others, which causes a dif-

ference in perceptual salience (Itti and Koch, 2000). These conspicuous features automatically capture our

gazes (Berg et al., 2009; Tatler et al., 2011). However, gaze behavior is affected not only by the exogenous

features of objects, but also by previous experiences with objects. These experiences are represented inter-

nally in the brain and generate cognitive salience of the experienced objects (Caduff and Timpf, 2008; Schütz

et al., 2012; Tatler et al., 2010; Towal et al., 2013). Habitual gaze behavior may be informed by the learned

positive, neutral, and negative values of objects (Ghazizadeh et al., 2016a; Kang et al., 2021). Taken together,

habitual gaze can be driven by both perceptual and cognitive salience, such as feature salience, learned

salience and motivational salience (MS). However, there is still the question of what salience components

drive habitual gaze choices during retention time. The link to salience allows us to quantitatively examine

the change in contribution of each salience component to habitual gaze choices over time.

To investigate what salience components drive the habitual preference for visual objects over time, human

subjects were trained to learn positive, neutral, and negative values of visual fractal objects, and their

habitual gazes were examined under free-viewing conditions without outcome after a short and long reten-

tion time. In simulated conditions where learned values were forgotten and relearned, we further examined

the potential benefit of habitual preference based on MS after long-term retention.
RESULTS

Learning the values associated with visual fractal objects

To examine changes in habitual gaze preference with retention time after learning, we set up an experi-

mental paradigm consisting of two sessions: Learning and Retrieval (Figure 1A). Subjects acquired value

information associated with objects during the Learning session. We then tested habitual gaze preference

based on value memory in the Retrieval session. During the Learning session, subjects performed an ob-

ject-value associative learning task in which they learned the positive, neutral, and negative values of visual

fractal objects (Figure 1B). Each object was pre-assigned a monetary gain (+₩100; positively valued ob-

jects), a monetary loss (-₩100; negatively valued objects), or neither a gain nor a loss (₩0; neutral objects).

Subjects were instructed to choose one of two objects by a saccadic eye movement and received monetary

feedback following their choice (Figure 1C). The learning task was performed on five consecutive days.

To examine how learning has progressed, we analyzed the percentage of object choice in bins of eight tri-

als (Figure 1D). Subjects showed a gradual increase in choice of positive value objects as learning

proceeded, whereas the percentage of times that negative value choices were made decreased (two-

way ANOVA with day and bin as factors for the positively valued and negatively valued objects, respec-

tively, F(1.773,101.083) = 122.868, p = 3.931 3 10�41 for day effect of the positively valued objects;

F(1.932, 110.421) = 66.771, p = 2.552 3 10�37 for day effect of the negatively valued objects) (Figures 1D

and S1A). A post-hoc Bonferroni pairwise comparison revealed significant differences in choice perfor-

mances between the first and the last learning day (p = 9.9217 3 10�9 for positively valued objects,

p = 9.9218 3 10�9 for negatively valued objects). In addition, on the last day of learning, subjects showed

significant differences between choice percentage of valued objects (one-way ANOVA with value as factor;

F(2,1389) = 1725.97, p = 2.2 3 10�16 for value effect). These results indicate that value memory for objects

was successfully acquired during the 5-day learning period.

To further confirm whether subjects can explicitly remember the values of fractal objects after the Learning

session, subjects were tested for explicit memory after a retention period of one day and more than 30 days

(Day >30). For each trial in the explicit memory task, subjects were presented with a learned or novel object

and instructed to choose an answer for learned values and novelty of objects with a keyboard (Figure 1E).

After a 1-day retention period, the percentage choice of objects where the value was correctly assigned

was higher than chance in the explicit memory test (Positive value: 97%, Neutral: 79%, Negative value:

88%) (Right-tailed binomial test, p = 9.8133 10�166, p = 1.7163 10�97, and p = 8.6233 10�129 for positively,

neutral and negatively valued objects, respectively), indicating that the subjects were able to explicitly

retrieve the memory of the objects (Figure 1F, left panel). The memory of object values was retained
2 iScience 25, 105104, October 21, 2022
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Figure 1. Overall experimental design, object-value learning task and explicit memory task

(A) The experiment consisted of Learning and Retrieval sessions. The Learning session was conducted for 5 consecutive

days to associate values with objects. In the Retrieval session, the explicit memory task and free-viewing condition were

conducted.

(B) Example set of fractal objects. During the object-value learning task, the subjects were trained to associate fractal

objects with monetary gain (positively valued: +₩100), monetary loss (negatively valued:�₩100), or neither a gain nor a

loss (neutral: ₩0).

(C) Object-value learning task. During each trial of the object-value learning task, subjects were instructed to choose one

of two fractal objects by making a saccadic eye movement. After choosing an object, the associated outcome was shown

on the screen.

(D) Learning curve of object-value learning task. Each graph shows a learning curve for percentage choice data analyzed

in bins of eight trials. There was an increase in the ratio of choosing positively valued objects as learning proceeded, while

the ratio of choosing negatively valued objects decreased. Error bars indicate between-subject standard error (n = 29

subjects, two sets of eight objects for each subject: 58 individual data points for each value).

(E) Explicit memory task. One object among the learned and novel fractal objects was presented, and the participants

were asked to choose one of six possible answers.

(F) Percentages of responses in the explicit memory task on Day 6 and Day >30. Correct answers for each response are

indicated with purple boxes (pos.: positive, neu.: neutral, neg.: negative, score unc.: score uncertain).
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more than 30 days after the initial learning session: the percentage of correct value assignments for posi-

tively, neutral, and negatively valued objects was significantly higher than chance (Positive value: 88%,

Neutral: 49%, Negative value: 63%) (Right-tailed binomial test, p= 8.623 3 10�129, p = 3.956 3 10�30, and

p = 7.5673 10�57 for positively, neutral and negatively valued objects, respectively) (Figure 1F, right panel).

Habitual gaze preference toward positively valued objects one day after long-term learning

Next, to investigate how the habitual gaze preference changes over time, automatic eye movements (sac-

cades) were examined under free-viewing conditions before the learning session (Pre-learning), one day
iScience 25, 105104, October 21, 2022 3
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after four-day learning (Day 5), and more than 30 days after the final learning session (Day >30). Under free-

viewing conditions, nine out of 12 learned objects were pseudo-randomly chosen for each trial and pre-

sented as a three-by-three array on the screen for 8 s without any reward outcome (total 16 trials/session)

(Figure 2A). This procedure allowed measurement of automatic gaze in subjects in the absence of an im-

mediate goal or purpose.

Wemeasured the number of first and overall gazes as well as fixation time on learned objects. On Day 5, we

found significant differences in the number of first gazes when comparing learned objects by value group

(one-way ANOVA, F(2,171) = 15.02, p = 9.7 3 10�7 for value) (Figure 2C). A post-hoc Bonferroni pairwise

comparison revealed that the first gazes to positively valued objects were significantly more frequent

compared to neutral and negatively valued objects (p = 5.43 10�6 for positively valued and neutral objects;

p = 7.0 3 10�6 for positively valued and negatively valued objects). In addition, the number of gazes and

fixation time were significantly different between value groups of the learned objects (one-way ANOVA,

F(2,171) = 32.05, p = 1.5 3 10�12 for value in number of gazes; one-way ANOVA, F(2,171) = 4.43, p =

0.013 for value in stay time per fixation) (Figures 2B and 2C). A post-hoc Bonferroni pairwise comparison

revealed a higher number of gazes toward objects with positive value than neutral and negatively valued

objects (p = 9.5 3 10-10 for positively valued and neutral objects; p = 1.0 3 10-9 for positively and nega-

tively valued objects) and more stay time on positively valued objects than neutral and negatively valued

objects (p = 0.024 for positively valued and neutral objects; p = 0.029 for positively and negatively valued

objects). However, there were no significant differences in habitual gaze preference between neutral and

negatively valued objects on Day 5 (p = 0.990 for the first gaze; p = 0.838 for number of gazes; p = 0.998 for

stay time per fixation). Our data reveal that long-term learning of object-value association generates a

habitual gaze preference for objects previously associated with a positive reward.

Because participants were instructed to choose the higher-valued objects in our learning task, they were inev-

itably more exposed to higher-valued objects as learning proceeded. This may result in a preference for

familiar objects (mere-exposure effect) (Park et al., 2010; Zajonc, 2001). To eliminate this possibility, we con-

ducted a control learning task in which fractal objects were presented with different levels of frequencies

(high, low, and no exposure during control learning task). We found no significant differences in gaze behavior

toward each exposure group of the objects under free-viewing conditions on Day 5 and Day >30 (Figure S2).

These results indicate that the habitual gaze preference is not due to differences in familiarity.
Selective increase in habitual gaze to negatively valued objects after longer retention

We next tested whether habitual gaze preference is sustained more than 30 days after the last learning ses-

sion.We found significant differences in the number of first gazes when comparing learned objects by value

group (one-way ANOVA, F(2,171) = 15.16, p = 8.7 3 10�7) (Figure 2C, left panel). A post-hoc Bonferroni

pairwise comparison showed that the first gaze to positively valued objects was significantly greater

than that to neutral and negatively valued objects after more than 30 days of retention time (p =

1.1 3 10�7 for positively valued and neutral objects; p = 0.025 for positively valued and negatively valued

objects). Additional analyses found significant differences in both the number of gazes and fixation dura-

tion time when comparing value groups (one-way ANOVA, F(2,171) = 26.34, p = 1.0 3 10�10 in number of

gazes, F(2,171) = 3.74, p = 0.025 in stay time per fixation) (Figure 2C, middle and right panels). The number

of gazes and duration of fixation on positively valued objects was also significantly greater compared to

neutral and negatively valued objects (p = 9.5 3 10�10 and p = 2.6 3 10�5 compared with number of gazes

on neutral and negatively valued objects, respectively; p = 1.7 3 10�2 compared with stay time per fixation

to neutral objects). Taken together, the habitual gaze preference for positively valued objects observed on

the last day of learning was maintained more than a month later.

Although participants maintained a habitual gaze preference for positively valued objects, the preference for

negatively valued objects selectively changed after 30 days of retention. Participants developed a stronger pref-

erence for negatively valued objects over neutral objects after a long retention time: the number of first and

overall gazes to negatively valued objects were significantly higher compared to those to neutral objects on

Day >30 (two-tailed unpaired t-test, p = 0.01 for the first gaze and p= 0.016 for the number of gazes) (Figure 2C).

To quantify this negatively valued object-selective increase in habitual gaze behavior, we examined the in-

dividual rate of change in the number of first gazes, number of gazes, and fixation duration time from Day 5

to Day >30 (Figures 2D and S1B). Of interest, the habitual gazes to negatively valued objects selectively
4 iScience 25, 105104, October 21, 2022
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Figure 2. Scheme of free-viewing task and habitual gaze changed after long retention times

(A) Free-viewing condition. During each trial in the free-viewing condition, a fixation dot was followed by the fractal

objects. The subjects were instructed to freely view the nine fractal objects without any feedback.

(B) Example heat maps showing the fixation density of a subject on Day 1, 5, and >30. The colored circles around the

fractal objects indicate the learned values of each fractal object (red: positively valued, green: neutral, blue: negatively

valued). Learned values and gaze density are respectively indicated by colored circles and a heatmap without fractal

objects to aid clear visualization; fractal objects were presented in the free-viewing task.

(C) Box-and-whisker plots with individual points for three gaze properties during the free-viewing condition for pre-

learning and after-learning periods (n = 58).

(D) The percentage change of individual subjects in three gaze properties from Day 5 to Day >30 (n = 58). *p<0.05,

***p<0.001.
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Figure 3. Model schematics and comparison between modeled gaze and actual gaze

(A) Model fitting procedure. The nine objects were split into three predictors of PS, RS andMS, and ranked in two levels for

MS or three levels for PS and RS. The rank tuples were used to categorize the objects, and the frequency of choosing each

category across all trials was fitted by the three weights multiplied by each predictor.

(B) Modeled gaze versus actual gaze. Bar graphs show the proportions of each value-learned object being gazed at. The

colored lines represent predictions from the three models. Gray bars indicate the percentages of habitual gaze in the

free-viewing condition. Black dots represent individual bootstrapped data points for percentages of habitual gaze in the

free-viewing condition.

(C) The best model for habitual gaze after short-term and long-term retention times. Each model on Day 1, 5 and >30 was

compared to the AIC value for the RS model. The AIC values of MS and 3SCmodels were subtracted from the AIC value of

RS model.

(D) Changes in weights on PS, RS, and MS components across days. Box-and-whisker plots show weights on PS, RS and

MS components in the 3-SC model across days. ***p<0.001.
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changed after long-term retention: the change rates in numbers of the first and overall gaze to negatively

valued objects were significantly greater than those to positively valued and neutral objects (one-way

ANOVA, F(2,171) = 4.96, p = 0.008 in the first gaze, and F(2,171) = 4.09, p = 0.018 in the overall gaze).

Post-hoc Bonferroni pairwise comparison revealed significant differences between negative value and

other values in both properties (p = 0.008 for positively valued and negatively valued objects, p = 0.04

for neutral and negatively valued objects in the first gaze. p = 0.02 for positively valued and negatively

valued objects in the number of gazes) (Figure 2D). Taken together, habitual gaze preference for negatively

valued objects was selectively increased in long-term retention.
A computational model including themotivational salience component explains the change in

habitual gaze preference over time

Next, we investigated what components might guide the change of habitual gaze over time. The graph-

based visual saliency method (GBVS) with perceptual salience (PS) can predict the innate gaze bias of hu-

man participants from low-level visual features (Harel et al., 2007; Kumar et al., 2019). During free-viewing

conditions, the innate gaze bias to presented objects before learning was successfully predicted using the

GBVS method (Figure S3A). After object-value associative learning, we expected that the habitual gaze un-

der free-viewing conditions was driven by learned values of objects as well as innate gaze preference. We

thus introduced reward salience (RS) to the GBVS model, which is referred to as the RS model consisting of

PS and RS (Figure 3A). However, the RSmodel did not explain either the number of habitual gazes on Day 5

or on Day >30 (Figure 3B). Our data indicate that two types of saliences, PS and RS, were insufficient to

guide the observed habitual gaze behavior after both short-term and long-term retention, suggesting

that another component may be required.

What component might plausibly predict this habitual gaze preference? Previous studies reported that mem-

ory of the highest and lowest values is better retrieved than that of the intermediate ones (Ghazizadeh et al.,

2016b; Madan, 2013; Madan and Spetch, 2012). They suggested that salience can be defined by a quadratic

relationship with value, such that the highest (by monetary gain or reward) and lowest (by monetary loss or

aversion) values are higher in salience than the neutral value, referred to as MS (Madan, 2013; Madan and

Spetch, 2012; Ventura et al., 2007). Furthermore, a single dopamine neuron in the primate brain showed

higher responses to positive and negative values than neutral value, suggesting the brain process of MS (Mat-

sumoto and Hikosaka, 2009). We thus hypothesized that this salience on the positive and negative values of

learned objects is reflected in habitual gaze behavior. To test this idea using a habitual gaze predictionmodel,

we introduced thisMS component into the previous RSmodel, in which the highest rank was assigned to posi-

tively valued and negatively valued objects, (3-salience component model (3SC)) (Figure 3A). Notably, this

new model with PS, RS, and MS successfully predicted the percentage of habitual gaze preference toward

each value group of objects on both Day 5 and Day >30 (Figures 3B and S4C). However, a model with only

PS and MS (MS model) still could not explain the gaze number (Figures 3B,S4A, and S4B).

To quantitatively examine the best-fit model, we next compared the Akaike information criterion (AIC)

values of the MS and 3SC models to that of the RS model (Figure 3C). The subtracted values between

the AIC values of RS and 3SC models were lower than other subtracted values on Day 5 and Day >30, but

not on Day 1 (one-way ANOVA, F(2,297) = 125.14, p = 3.8 3 10�40 for models on Day 5; one-way

ANOVA, F(2,297) = 31.9, p = 2.83 10�13 for models on Day >30) (Figure 3C). A post-hoc Bonferroni pairwise

comparison test confirmed the statistical differences between the subtracted AIC values (p < 4.93 10�7 and
iScience 25, 105104, October 21, 2022 7
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p < 3.2 3 10�12 for 3SC and RS models on Day 5 and Day >30, respectively; p = 6.6 3 10�40 and p =

4.6 3 10�9 for 3SC and MS models on Day 5 and Day >30, respectively). These results reveal that the MS

component is essential to explain not only the habitual gaze preference after a short retention time but

also its change after long-term retention. We also tested an alternative 3SC model consisting of PS, RS,

and variants of MS and found that the 3SC model with MS explains the data better than the one with alter-

natives, suggesting that the explanatory power of the 3SC model is due specifically to the MS component

(Figure S3B). Taken together, our 3-salience component model demonstrates that habitual gaze preference

after long-term learning is guided by reward value salience and MS, in addition to innate PS.

Increase in motivational salience effects on habitual preference with retention time

To further examine the relative contribution of each salience component to the 3SC model (the best-fit

model), we calculated the weight contributed by three free parameters, PS, RS, and MS (Figure 3D). PS

weight decreased after learning (one-way ANOVA, F(2,297) = 7390.312, p = 5.2 3 10�254; post-hoc Bonfer-

roni pairwise comparison, p < 1.53 10�133 and p < 6.73 10�136 for the weight values for PS before learning

compared to the weight on Day 5 and to on Day >30, respectively). In contrast, both weight values for RS

and MS increased after learning (one-way ANOVA, F(2,297) = 2717.291, p < 1.3 3 10�191 for RS; one-way

ANOVA, F(2,297) = 868.872, p < 7.9 3 10�125 for MS) (Figure 3D, middle and right panels). Significant dif-

ferences among the PS, RS, and MS weights were observed after learning (one-way ANOVA,

F(2,297) = 331.46, p < 2.2 3 10�76 on day 5; one-way ANOVA, F(2,297) = 868.872, p < 7.9 3 10�125 on

Day >30). A post-hoc Bonferroni pairwise comparison test confirmed that the weight value for PS was

greater than the weight values for RS and MS on Day 5 (p < 1.5 3 10�62 x 10�10 for RS and

p < 4.3 3 10�67 for MS) and Day >30 (p < 1.0 3 10�57 for RS and p < 6.3 3 10�8 for MS), suggesting that

habitual gaze was still affected by PS even after learning (Figure 3D, left panel).

Of interest, the values of RS and MS weights changed in opposite directions during the post-learning reten-

tion period (Figure 3D, middle and right panels). The weight value for RS increased one day after value

learning, then decreased in retention periods >30 days (a post-hoc Bonferroni pairwise comparison, p =

6.53 10�75 between the RS weights on Day 5 and Day >30) (Figure 3Dmiddle panel). However, the increased

weight value for MS one day after learning showed a greater increase after long-term retention without addi-

tional learning (a post-hoc Bonferroni pairwise comparison, p < 4.93 10�33 between theMSweights on Day 5

andDay >30) (Figure 3D, right panel). These data show that themajor salience components that drive habitual

gaze preference change with longer retention times from reward value salience to MS.

Motivational salience indicates that forgetting drives changes in habitual gaze preference

In our data, the contribution of salience driven by reward value memory (RS) decreased more than 30 days

after the last learning session (Figure 3D, middle panel). It is known that memory degrades over time, and

this forgetting may lead to the observed dynamic changes in the contribution of salience components

(Ebbinghaus, 1913; Graybiel, 2008). We therefore hypothesized that participants who forget more about

the learned value may show fewer RS-based habitual gazes, instead of gaze being based on the other

salience component, MS.

To test this hypothesis, we first divided the boot-strapped samples into two groups: those that fit the RS

model better than the MS model (RS group), and vice versa (MS group). The extent of forgetting the learned

values was calculated with the percent decrease in the correct answer rate from one day (Day 6) to more than

30 days (Day >30) after learning in the explicit memory test (explicit forgetting index). We then compared the

forgetting indices between RS and MS groups. There were no significant differences in explicit task perfor-

mance for the RS and MS groups on Day 6 and Day >30 (Figure S3C). The MS group achieved slightly greater

performance than RS group on day 6, whereas the RS group achieved slightly greater performance than MS

group on day 30, although the differences were not statistically significant. After the subtraction of individual

indices, however, this difference resulted in a significantly different forgetting index.We found that the forget-

ting index in the MS group was significantly, albeit weakly, greater than the RS group (two-tailed unpaired

t-test, p < 2.2 3 10�2, n = 36 and n = 64, boot-strapped samples, for RS and MS groups, respectively) (Fig-

ure 4A). This suggests that participants with a greater extent of forgetting, rather than learning performance,

have habitual gaze behavior that is driven more by MS than RS.

Next, we examined the correlation between the explicit forgetting index and the index for the preferred

model. Since a lower AIC value means better fit to the observed data, the negative correlation in Figure 4B
8 iScience 25, 105104, October 21, 2022
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indicates that the subjects who forgot more about the learned values had habitual eye gazes that were

driven by MS (r =�0.39, p < 5.33 10�5, Pearson correlation). This negative correlation was more prominent

with the indices of subjects in the MS group (r = �0.590, p < 2.8 3 10�7, Pearson correlation) (Figure 4B).

However, there was no significant correlation in the RS group (r = 0.153, p < 3.75 3 10�1). Together, these

results suggest that greater forgetting of learned object values results in the habitual gaze being more

dependent on MS after a long retention period.

Efficient motivational salience-based re-learning strategy through habitual gaze preference

after forgetting

What is the functional advantage of habitual search guided by MS? Greater forgetting of object values

induced more MS-guided habitual gazes. We therefore tested whether the MS-guided habitual search

might be an efficient re-learning strategy after forgetting.

To investigate the functional advantage of MS-guided habitual search, we designed a paradigm that simu-

lated learning, forgetting, and re-learning with three objects each associated with different mean reward

values (-epsilon, 0, and +epsilon) (Figure 5A). During the learning phase, objects were freely chosen based

on prior experience (prior probability in a Bayesian model). The value of the chosen objects was then re-

vealed. The likelihood function based on the value of the chosen object was used for computing posterior

belief over the object’s mean reward distribution. The SD of posterior belief after the learning phase was

added by a forgetting factor, F, to simulate forgetting. In the re-learning phase, the reward gain based on

the updated posterior from four different choice strategies was examined. Two of the four strategies were

based on our previous model components: MS-guided choice strategy (2:1:2 for positively valued, neutral,

and negatively valued objects) and RS-guided choice strategy (3:2:1). We also added two additional alter-

native strategies (2:2:1 and 1:2:2) to the simulation. We first tested these strategies in situations where the

values were completely forgotten (Figures 5A and 5B). The rates at which reward gain increases under the

four strategies were significantly different (one-way ANOVA, F(3,396) = 95.22, p < 2.045 3 10-464 for

comparing exponentials in a log-fitted curve to regard gain across re-learning steps) (Figure 5B). Notably,

the post-hoc Bonferroni pairwise comparison revealed that reward gain through MS-guided choice (2:1:2;

positively and negatively valued objects are chosen more than neutral objects) exponentially increased at a

greater rate than that by the other three strategies (p < 6.099 3 10-36, p < 1.918 3 10-28, and

p < 2.0173 10-38 for comparing to 2:2:1, 1:2:2, and 3:2:1 strategies, respectively). There were no significant

differences among the remaining three strategies. To further examine the step at which this difference
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arises, we directly compared the reward gain from the four strategies. We observed significant differences

among the four strategies in their reward gains starting from re-learning step 2 (one-way ANOVA,

F(3,396) = 3.43, p < 1.710 3 10�2). Bonferroni pairwise comparison further revealed that MS-guided

habitual gaze attains significantly different reward gain than all three other strategies at re-learning step

3 ((p < 2.966 3 10�5, p < 6.463 3 10�3, and p < 4.731 3 10�3 for comparing to 2:2:1, 1:2:2, and 3:2:1

strategies, respectively) (Figure 5B). Thus, these results demonstrate that MS-guided habitual gaze results

in a functional advantage compared to other strategies early in their re-learning.

To investigate whether the MS-guided choice strategy is best for identifying valued objects in different

states of forgetting, cumulative reward gains were calculated during re-learning with different degrees
10 iScience 25, 105104, October 21, 2022
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of forgetting (Figures 5C and S5). We found significant differences among the reward gains achieved by the

four strategies when the forgetting index was at 100 and above (one-way ANOVA, F(3,396) = 54.84,

p < 1.148 3 10-29 for Forgetting index = 100) (Figure 5C). A post-hoc Bonferroni pairwise comparison re-

vealed significant differences between the reward gain with MS-guided choice strategy and the gains with

all other strategies (p < 5.591 3 10-6, p < 1.1943 10-29, and p < 1.110 3 10-3 for comparing to 2:2:1, 1:2:2,

and 3:2:1 strategies, respectively). We confirmed that this difference persisted when the forgetting index

was greater than 100. In contrast, when the forgetting index is 50, we found that simulated choices with

the RS-guided (3:2:1) or 2:2:1 strategy resulted in the greatest reward gain compared to MS-guided

(2:1:2) or 1:2:2 strategies. This result suggests that RS-guided choice maximizes the reward gained when

memory is relatively intact (one-way ANOVA, F(3,396) = 127.35, p < 9.3833 10-58 for Forgetting index = 50)

(Figure 5C). A post-hoc Bonferroni pairwise comparison revealed that choices with 3:2:1 and 2:2:1 result in

significantly greater reward than 1:2:2 or 2:1:2, but there were no significant differences between 3:2:1 and

2:2:1 strategies (3:2:1 strategy: p < 8.028 3 10-39, and p < 5.081 3 10-35, compared to 1:2:2 and 2:1:2,

respectively; 2:2:1 strategy: p < 1.314 3 10-34, and 6.676 3 10-31 for 2:2:1, comparing to 1:2:2 and 2:1:2,

respectively). Thus, our simulation results show that when value memory is degraded, habitual choice

based on MS helps the subject to strategically re-learn the forgotten values of fractal objects to maximize

reward gain.

DISCUSSION

We have demonstrated how habitual gaze preference changes during memory retention period. A month

after learning, gaze preference for positively valued objects changes into a preference for both positively

valued and negatively valued objects, but not neutral objects. This change in gaze preference is best

explained by dynamic changes in the reward value salience (RS) and MS across time. We observed that

the goodness-of-fit of MS model to habitual gaze behavior increased while that of RS decreased, depend-

ing on the extent of forgetting. Our follow-up simulation further showed that the change in salience

contribution supports re-learning of object values after forgetting, thus maximizing reward given a limited

exploration time.

3-Salience component model to guide habitual preference: Implications for learning and

different rates of forgetting

We suggest a 3-salience component model in which the contribution of each salience component changes

to control the habitual gaze in different phases of learning and retention. Before learning of object value,

habitual gaze is primarily guided by PS favoring low-level features such as colors, shapes, and sizes. In the

days following learning sessions the salience components RS andMS drive habitual gaze behavior together

with PS (3-salience component model) (Figure 6). The changes in weights of salience components support

this model. Before learning, the PS weight was significantly above 0, but others were not (Figure 3D), indi-

cating that PS mainly contributes to guide habitual gaze behavior. After learning, the contribution of PS

decreased, but the weights of RS and MS increased. This suggests that learned salience components

take part in driving our habitual gaze after learning.

Furthermore, habitual gaze behavior after a retention period of one month shows that the contribution of

each salience component changes at a different rate over time. The contributions of the RS and MS
iScience 25, 105104, October 21, 2022 11
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components to habitual gaze changed in opposite directions after a long retention period: the RS contri-

bution decreased, whereas the MS contribution increased (Figure 3D). However, the contribution of PS to

gaze behavior was sustained after long-term retention.

These changes in the contribution of salience components indicate that some components are more sus-

ceptible to forgetting than others. During the long-term retention period, learned salience components

could decay at different speeds. The most likely explanation for our data is that RS fades much faster

than MS across retention time. This suggests a sequential forgetting model where salience components

decay sequentially from RS to MS (Figure 6). With this successive forgetting, habitual gaze behavior is

guided mainly by a remaining salience component. Indeed, we found that habitual gazes of participants

who showed more forgetting of object values were guided by MS rather than RS (Figure 4).

The origin of motivational salience

An obvious next question is what generates MS, given that it is such an important component of habitual

gaze behavior. Previous studies suggest that emotional valence might drive MS linked to habitual

gaze (Costanzi et al., 2019; Lang et al., 1998; Ohgami et al., 2006; Russell, 1980). For example, gain and

loss of themonetary reward also increases the positive and negative valence levels of emotion, respectively

(Costanzi et al., 2019; Ohgami et al., 2006). These positive and negative valences can evoke similar levels of

arousal (Lang et al., 1998; Russell, 1980). This emotional arousal is known to affect various cognitive pro-

cesses including salience and memory performance (Canli et al., 2000; Costanzi et al., 2019; Dolcos and

Cabeza, 2002; Kensinger et al., 2006). In addition, the objects with the highest and lowest values

are remembered better than the objects with intermediate values (Madan, 2013; Madan and Spetch,

2012). Given our data on habitual gaze preference for positively and negatively valued objects persists

over long retention times, it is conceivable that the objects associated with positive or negative rewards

induce greater emotional arousal compared than those associated with no reward, thereby generating

MS. Future research will examine the relationship between the values of objects, emotions, and MS.

The next question about MS is why this component increases specifically during the retention period. Our

model fit analysis showed that the weight of MS increased after 30 days of retention whereas that of RS

decreased during same time. One possibility is that people tend to forget the specific values (positive

or negative) of the objects over long periods of time, but still retain their importance, or magnitude. In

this situation, choosing the objects with greater importance can reduce the uncertainty toward the value

of objects and maximize reward gain and facilitate re-learning, as our simulation data suggests. Thus,

the increase in the MS component can be interpreted as the appropriate strategy in uncertain situations.

However, it should be noted that this strategy may not be adequate in every situation. In situations where

the value of a bad object is extreme, choosing an object with larger magnitude can lead to critical conse-

quences, such as death. Thus, this explanation of MS should be considered in the context of relatively mod-

erate levels of values.

Brain substrates for motivational salience that guide habitual eye movement

The gaze preference driven by MS after long-term retention suggests specific brain areas that may pro-

cess MS to guide habitual eye movement. Previous studies showed that a distinct group of dopamine

neurons in the midbrain selectively processes information related to both aversive (air puff) and appetitive

(liquid reward) stimuli (Matsumoto and Hikosaka, 2009). Notably, the activity of dopaminergic neurons is

increased by the presentation of aversive stimuli as well as appetitive stimuli, suggesting that these dopa-

mine neurons may send MS-related information to brain regions linked to habitual gaze. Because

dopamine neurons are thought to be involved in learning and memory processing, these target structures

plausibly receive MS information from the dopamine neurons. These brain regions may both learn positive

and negative object values and process MS-driven habitual eye movement (Kim and Hikosaka, 2013; Mat-

sumoto and Hikosaka, 2009).

It has been reported that caudal regions of the basal ganglia, including the ventral striatum, caudate

nucleus, globus pallidus, and substantia nigra selectively represent the long-term value memory of visual

objects to guide the habitual gaze preference toward positively valued objects (Kang et al., 2021; Kim and

Hikosaka, 2013; Kim et al., 2017; Yasuda et al., 2012). Inactivation of the caudal part of the caudate nucleus

(caudate tail) selectively impaired habitual gaze but not controlled eye movements, indicating a selective

role of the caudal basal ganglia in habitual eyemovement (Kim and Hikosaka, 2013). Two groups of neurons
12 iScience 25, 105104, October 21, 2022
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have been found in the caudate tail: positive value-coding neurons that respond more to positively valued

objects, and negative value-coding neurons that respond to the opposite information (Kim and Hikosaka,

2013). These two types of neurons are generally thought to guide positively valued object choice and nega-

tively valued object rejection through the direct and indirect basal ganglia pathways, respectively (Amita

et al., 2020; Kim et al., 2017). However, it is still possible that the positive value-coding and negative

value-coding neurons together drive the habitual gaze preference for both positively valued and negatively

valued objects a month after learning (Vicente et al., 2016). These positive-coding and negative-coding

neurons are also found in value-coding brain regions including the orbitofrontal cortex and amygdala,

possibly driving opposite and similar behaviors according to the retention period (Barberini et al., 2012).

In addition, the caudal structures in the basal ganglia receive inputs from the dopamine neurons in the

midbrain region (Kim et al., 2015). However, it is not known whether these dopamine neurons processing

MS information project to caudal regions in the basal ganglia related to habitual eyemovement. This dopa-

minergic projection to the caudal basal ganglia may generate MS to drive approach responses to both

positively valued and negatively valued objects automatically.

Given the possible sources of MS, what accounts for the temporal dynamics in the extent to which MS and

other salience components drive habitual gaze behavior? A plausible explanation is that each salience

component may be processed in different brain areas with different time courses for dynamic changes,

such as different time courses for value learning in different brain regions (Morrison et al., 2011). How brain

regions process each salience component is an important question for the future.
Implication of motivational salience-guided gaze behavior in re-learning after forgetting

It is natural that when the memory is vague, animals make choices based on what is best remembered to

maximize the reward. A month after learning under free-viewing conditions, subjects gazed more at posi-

tively and negatively valued objects than neutral objects, suggesting that gaze was automatically decided

based on the memory that was best remembered. Indeed, subjects explicitly remembered positively

valued and negatively valued objects better than neutral objects after a long retention time (Figure 1F).

We further demonstrated the advantage of habitual gaze based on this vague memory: Gaze preference

toward objects previously associated with the highest and lowest reward values can maximize the reward

gain under simulated conditions of forgetting (Figure 5C). TheMS-guided gaze preference observed in this

study and its advantage in simulated conditions where values are forgotten suggests how animals can effi-

ciently maximize reward with this gaze choice strategy, even after forgetting previously learned values.

Therefore, future studies with human participants will be needed to demonstrate whether MS-guided

gaze preference results in this benefit in re-learning.

Our data andmodel indicate that dynamic changes in 3-salience components drive habitual eyemovement

to learned objects. However, the contribution of salience components differs depending on how ambig-

uous the memory of an object value is. We also demonstrate that a MS component is critical to predicting

habitual gaze preference when memory decays. Our 3-salience model provides a paradigm for under-

standing how perceptual and cognitive salience components are organized to achieve optimal behavior

when automatically selecting valuable objects.
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MATLABR2020b MathWorks Inc. https://www.mathworks.com/products/matlab.html

BLIP NIH www.cocila.net/blip

Affinity Designer Affinity https://affinity.serif.com/en-us/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Hyoung F. Kim (hfkim@snu.ac.kr).

Materials availability

Visual fractal stimuli used in this study are available from the lead contact on request.

Data and code availability

The original/source data are available from the lead contact on request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Thirty healthy adults (mean age 23.1 G 3 years; range 18–28; 13 male) participated in the experiment.

Among the 30 subjects, 29 individuals visited again more than 30 days after the last learning session and

performedmemory retrieval tasks. Therefore, the data from 29 of the subjects were used for behavioral an-

alyses. All subjects provided informed consent for the procedure. The experiments received approval from

Seoul National University’s Institutional Review Board.

METHOD DETAILS

Stimuli

We used images of fractal objects created using fractal geometry (Miyashita et al., 1991) (Figure 1B). Lumi-

nance was equalized in the images using the SHINE (Spectrum, Histogram, and Intensity Normalization and

Equalization) toolbox written with MATLAB (www.mapageweb.umontreal.ca/gosselif/shine). Among 72

objects, 24 fractal objects were selected based on a behavioral attractiveness test taken by a different

10 participants (six females, four males). In this attractiveness test, the participants rated the subjective

attractiveness of each object on a scale of 1–7 (1, most attractive; 7, least attractive). Objects that scored

between 3.6 and 4.6 were chosen for the main experiments and randomly assigned to two different sets

(12 fractal objects per set). For each set, four objects were associated with a monetary gain (positively

valued; + ₩100), another four objects were paired with a monetary loss (negatively valued; - ₩100), and

the remaining four objects were associated with neither a gain nor a loss (neutral;₩0) in main experiments.

Task design

Object-value learning task

The object-value learning task (Learning session) was conducted on five consecutive days. In these ses-

sions, the subjects learned the association between each object and its pre-assigned value (either posi-

tively valued, neutral, or negatively valued) (Figures 1A and 1B). Each trial started with the presentation

of a white fixation square at the center, upon which the participants were required to fixate on for

300–500 ms. If the fixation was successful, two fractal objects associated with different values were simul-

taneously presented at a visual angle of 10� left and right of the central fixation square, respectively.

The subjects selected one of the two presented objects by making a saccade. After they selected an
16 iScience 25, 105104, October 21, 2022
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object, the selected object remained on the screen for 400–600 ms, followed by a feedback phase showing

the outcome (gain, loss, or nothing). This object-value learning task was conducted with two object sets.

For each set, all possible object pairs associated with different values were presented on the screen (96 tri-

als in each set). The order of the object pairs was pseudo-randomized. The order of the two object sets for

each subject was randomized across days.

Free-viewing condition

To investigate memory retrieval, the subjects were tested one day after four days of learning andmore than

30 days after the last learning session. The interval between the last learning day and last retrieval day was

33.93 G 1.07 days.

The free-viewing task was performed on days 1 and 5 before the learning task (Figure 1A). During each free-

viewing trial a fixation square was initially presented at one of four possible locations (a visual angle of 5� to
the left, right, above, and below the central point of the screen) pseudo-randomly. After 200–600 ms, nine

fractal objects (three objects for each value) were simultaneously presented in a three-by-three array for 8 s

(Figure 2A). The subjects were instructed to observe the nine objects freely. Each free-viewing condition

consisted of 16 trials. Each three-by-three array of nine fractal objects was set before the experiment

such that the number of times a specific object was presented across all 16 trials was equal. Each array

contained three positively valued, three negatively valued, and three neutral objects. The order in which

the 16 arrays were presented to each participant was randomized.

Explicit-memory task

In the Retrieval session, the participants went through both free-viewing conditions and the explicit mem-

ory task, which was conducted one day after the last learning session (day 6). At least 30 days after last

learning, both the free-viewing session and explicit memory task were conducted, and the order of the

two tasks was randomized across participants. In the explicit memory task, each object was presented

with choices at the bottom (Figure 1E). The subjects were instructed to answer whether they had seen

the object, and if the learned object was presented, the subjects had to choose the value of the learned

object by moving the arrow with the keyboard. Among 48 fractal objects presented in the task, 24 objects

were associated with value in the Learning session. Another 12 objects were from the control experiment

and the other 12 objects were newly presented. We used different sets of newly presented objects on day

6 and day >30. The subjects had six choices (‘‘+100,’’ ‘‘0,’’ ‘‘-100,’’ ‘‘not sure,’’ ‘‘new,’’ and ‘‘score uncertain’’).

If the subjects thought they knew the object value from the learning session, they were instructed to

respond with the exact value of the object by choosing from ‘‘+100,’’ ‘‘0,’’ and ‘‘-100’’ options. However,

if they thought they recognized the previously learned object but were unsure of its value, they answered

with ‘‘score uncertain.’’ If the object was newly presented, the subjects selected ‘‘new.’’ If the subjects did

not even know whether the object was newly presented, they chose ‘‘not sure.’’

Control learning task

To rule out the possibility that gaze preference toward positively valued objects results from a higher expo-

sure level as learning proceeds, we also conducted a control experiment with a different set of objects

(Figure S2). In this experiment, the same subjects performed the control learning task. For this task, the

12 fractal objects were classified into high-, low-, and no-exposure categories. In each trial of the task,

one fractal object was presented on the left or right side of the screen. The subjects were asked to

make a saccade to the presented object, which remained on the screen for 400–600 ms.Each object

from the high-exposure category and the low-exposure category was presented 16 times and 8 times,

respectively. The objects in the no-exposure category were never presented during the control learning

task. Each object appeared an equal number of times in the left and right positions on the screen.
Apparatus

Eye position data were acquired using the Oculomatic Pro 1000 eye tracker (Bio-Signal, Texas, USA) at a

sampling rate of 1,000 Hz. The output of the eye tracker was recorded with a data acquisition board

(PCIe-6353, National Instruments, USA) interfaced through a shielded I/O connector block (SCB-68, Na-

tional Instruments, USA). The visual images were presented via a 27-inch monitor (1920 3 1080 resolution,

240 Hz refresh rate). All behavioral tasks were controlled by a custom behavior controlling system (Blip;

available at www.cocila.net/blip).
iScience 25, 105104, October 21, 2022 17

http://www.cocila.net/blip


ll
OPEN ACCESS

iScience
Article
Computing perceptual saliency during the free-viewing task

The perceptual saliency for each object was computed using the GBVS algorithm (Harel et al., 2007). Pre-

vious research reported that when observers view scenes presented on monitors, they tend to look more

frequently to the center of their eye field than to the periphery (Foulsham and Underwood, 2008). GBVS

automatically implements weights on the center of the screen to account for this central bias in fixation.

However, because the initial fixation point in our task is not in the center of the screen, and our analysis

requires an accurate computation of saliency for each saccade, we needed to implement weights around

the fixation point before each saccade rather than the center of the screen. Therefore, we deactivated the

default center bias algorithm in the GBVS and fitted the Gaussian kernel at each saccade to account for

central bias in fixation as shown in

Saliencyj; adjusted = Saliencyj; pre� adjusted � e
� 1

2

�
dðxj ; xkÞ

s
ffiffiffi
2p

p

�2

(Equation 1)

where Saliencyj, adjusted denotes the saliency value of object j with the central bias, Saliencyj, pre-adjusted de-

notes the saliency value of object j computed by the GBVS, and d(xj, xk) denotes the 2D Euclidean distance

between locations of an object j and an object k before each saccade. The s corresponds to standard de-

viation (SD) of the Gaussian kernel.

Thus, the same object can have different saliency values depending on the fixation point preceding each

saccade. The swas fitted tomaximize Spearman’s correlation coefficient between saliency rank (e.g., 1 to 9)

computed from Saliencyj,adjusted and the total number of saccades to objects corresponding to each of the

nine ranks. To strictly compute perceptual saliency, we only used the data from the free-viewing condition

on the first day. The MATLAB interior-point optimization algorithm was used for the fitting.
The drift-diffusion model (DDM) for the free-viewing condition

To calculate the drift rate in a drift-diffusion model, we computed the rank of three types of objects based

on perceptual saliency (low, medium, and high), reward value (�100, 0, and +100), and both positive and

negative values (0, and 100 from |+100| or |-100|) in ascending order to bin the object category.

Three models were examined: 1) a reward value salience model 2) a motivational salience model and 3) a

3-salience componentmodel (Equation 2). A weighted sumof object ranks was used to compute aj, the drift

of jth accumulator (objectj) as shown in Equation 2. The drift was used to compute the probability of

choosing each object using the closed-form equation described in Towal et al. (2013).

aj = WPSRPS +WRSRRS +WMSRMS (Equation 2)

where RPS, RRS and RMS are the perceptual saliency, reward value and extreme value ranks, respectively, and

WPS, WRS, and WMS are weights to be fitted for each of the ranks.
Model fitting

To fit the DDM model to our data (Figure 3A), we first binned the data into nine groups based on RPS, RRS

and RMS. Data were binned across nine groups (3 RPS x 3 RRS). Note that the RMS does not increase the num-

ber of groups because it is contingent on the reward value rank. Consequently, we computed a frequency

for each group chosen. We fitted the weights WPS, WRS and WMS in Equation 2 to minimize the chi-square

statistics (Equation 3).

x2 =
X

PS;RS;MS

ðOPS;RS;MS � EPS;RS;MSÞ2
EPS;RS;MS

(Equation 3)

where O denotes the observed frequency and E denotes mean expected frequency, which is computed by

the expected percent chosen from the DDM 3 total number of objectPS,RS.MS appearing on the screen.
Model evaluation

We had divided the objects into nine different categories based on PS, RS, andmotivational salience levels.

Model analysis of the individual subjects’ data resulted in empty categories because there were cases in

which the individuals did not look at every object in the free-viewing condition. Our model parameters

were optimized by minimizing the chi-square difference between the expected and empirical number of
18 iScience 25, 105104, October 21, 2022
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saccades to objects in each category. Therefore, themodel analysis was not feasible with empty categories.

To address this issue, we randomly selected five subjects and performed model fitting for 100 iterations.

The training and test sets were designated to prevent the overfitting. We performed 5-fold cross validation

and computed AIC statistics as shown in Equation 4. 5-fold cross validation was performed to secure suf-

ficient data points for a test set. The AIC statistics were also used for computing model fits to divide RS and

MS groups.

AIC = N � ln
�
x2

N

�
+ 2K (Equation 4)

where N denotes the number of data points, c2 denotes the chi-square statistics, and K denotes the num-

ber of free parameters.
Alternative model comparison

Because previous studies (Ghazizadeh et al., 2016b; Madan, 2013; Madan and Spetch, 2012) demonstrated

that intermediate values are more poorly retrieved than extreme values, we reasoned that the most logical

alternative components should also have less weight on one of the three values than the rest. Therefore, we

examined whether models with components with less weight on either the good (1:2:2) or bad (2:2:1)

explains the data better than the 3SC model, in which less weight was assigned to the neutral.
Simulation

Behavioral simulation based on various choice behaviors was performed under a Bayesian belief update

framework (Figure 5A). We set the classical multi-armed bandit problem with objects with deterministic

reward magnitudes of– ε, 0 and +ε for negatively, neutrally, and positively valued objects, respectively.

We adopted deterministic objects to directly address our experimental condition. Different values of

epsilon for the distributions were examined to fit the epsilon to our experimental data. Specifically, we opti-

mized for the epsilon that minimizes the summed squared differences in percent at which subjects choose

positively, neutral, and negatively valued objects on day 5. This was evaluated after the value of each object

was revealed and posterior belief was updated accordingly, as frequently as the average time subjects were

rewarded with each object. The simulation consisted of learning, forgetting, and re-learning phases. Dur-

ing the learning phase, objects were chosen based on the prior, and the values of the chosen objects were

revealed. The likelihood function from the value of the chosen object was multiplied by the prior to

compute posterior belief over the object’s mean reward distribution.

To simulate the varying extent of forgetting, we added the forgetting factor (F) by the SD of the prior dis-

tribution. We defined complete forgetting as when the observer starts to choose positively, neutral, and

negatively valued objects at levels similar to chance. Consequently, we let the observer choose positively

valued, neutral, and negatively valued objects in varying forgetting conditions at a ratio specified in the

choice behaviors to re-learn the distribution of each object.

Choice behaviors after forgetting consisted of four different ratios, through which observers chose posi-

tively valued, neutral, and negatively valued objects in a 2:1:2 (MS-guided choice), 2:2:1, 1:2:2 or 3:2:1

(RS-guided choice) ratio. We hypothesized that the advantages of a particular choice behavior would be

apparent during the earlier phase under limited time. Therefore, we examined the first 50 re-learning steps,

during which the posterior distribution was obtained by the prior updated with likelihood function at each

step. To evaluate the consequences of each choice, we computed the mean reward gain. The mean reward

gain was computed from 300 iterations of sampling from posterior distributions of positively, neutral, and

negatively valued objects. For each iteration we assumed that the hypothetical subject would choose the

object with the greatest sampled values. We computed the mean of these values across the 300 iterations

and refer to it as the mean reward gain at each re-learning step. We did not update the prior during the 300

iterations of sampling to examine the efficiency of each learning strategy during the exploration. This eval-

uation was performed for four difference choice strategies as in Figure 5A. The sum of mean reward gain in

the first 50 re-learning steps was used to compute the cumulative reward gain.
QUANTIFICATION AND STATISTICAL ANALYSIS

For examining the learning progress, repeated-measures ANOVAs were conducted to determine statisti-

cal significance of the value, day, bin, or interaction effects. The ANOVAs were followed by post hoc
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Bonferroni comparisons for multiple comparisons to compare the means of the two datasets. In the t tests,

if any interaction effect was revealed in the ANOVA, we used one-tailed t tests with the assumption of a

predicted direction; otherwise, we used two-tailed t tests. For repeated-measures ANOVAs, we used

the Greenhouse–Geisser correction if sphericity assumptions were not met. For ANOVAs on habitual

behavior andmodel comparisons, one-way ANOVA was followed by post-hoc Bonferroni for multiple com-

parisons. To test the explicit memory performance and group comparison, right-tailed binomial test (based

on 6 choices available) and Pearson’s rank correlation were conducted, respectively. The statistical analyses

were performed using MATLAB.
20 iScience 25, 105104, October 21, 2022
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