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20-O-methylation of eukaryotic ribosomal RNA (r)RNA,

essential for ribosome function, is catalysed by box C/D

small nucleolar (sno)RNPs. The RNA components of these

complexes (snoRNAs) contain one or two guide sequences,

which, through base-pairing, select the rRNA modification

site. Adjacent to the guide sequences are protein-binding

sites (the C/D or C0/D0 motifs). Analysis of 42000 yeast box

C/D snoRNAs identified additional conserved sequences in

many snoRNAs that are complementary to regions adjacent

to the rRNA methylation site. This ‘extra base-pairing’ was

also found in many human box C/D snoRNAs and can

stimulate methylation by up to five-fold. Sequence analysis,

combined with RNA–protein crosslinking in Saccharomyces

cerevisiae, identified highly divergent box C0/D0 motifs that

are bound by snoRNP proteins. In vivo rRNA methylation

assays showed these to be active. Our data suggest roles for

non-catalytic subunits (Nop56 and Nop58) in rRNA binding

and support an asymmetric model for box C/D snoRNP

organization. The study provides novel insights into the

extent of the snoRNA–rRNA interactions required for

efficient methylation and the structural organization of

the snoRNPs.
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Introduction

Three of the four eukaryotic ribosomal RNAs (rRNAs), the

18S, 5.8S and 25/28S rRNAs, are co-transcribed as a single

precursor rRNA (pre-rRNA) in the nucleolus (Henras et al,

2008). The rRNAs undergo extensive covalent modification,

including 54 20-O-methylation and 45 pseudouridylation

events in yeast. Modified nucleotides are clustered at func-

tionally important sites in the rRNA, such as the peptidyl

transferase domain, and are important for rRNA folding and

ribosome function (Decatur and Fournier, 2002). The two

major classes of small nucleolar RNA (snoRNA), H/ACA and

C/D, guide the pseudouridylation and 20-O-methylation of

rRNA, respectively (Kiss, 2002). A few snoRNAs, including

U3 and U17/snR30, do not direct modification but are im-

portant for rRNA processing and may aid rRNA folding

(Hughes, 1996; Fayet-Lebaron et al, 2009).

Each box C/D snoRNA contains highly conserved boxes C

and D, generally located at the 50 and 30 ends of the RNA,

respectively (Reichow et al, 2007). Boxes C and D interact

forming a stem-internal loop-stem structure known as a kink-

turn (k-turn) motif. Most box C/D snoRNAs contain a sec-

ond, less well-conserved copy of the C/D motif, termed the

C0/D0 motif. To guide rRNA methylation, the region adjacent

to the D or D0 box in the snoRNA base-pairs with the rRNA

and the nucleotide 5 base-pairs from the D or D0 box is

targeted for modification (Kiss-Laszlo et al, 1996, 1998).

Box C/D snoRNAs function as small nucleolar ribonucleo-

protein particles (snoRNPs) and are associated with four

common core proteins, Snu13 (15.5K), Nop56, Nop58

(Nop5) and the methyltransferase Nop1 (fibrillarin)

(Reichow et al, 2007). Snu13 binds directly to the box C/D

motif, recognizing highly conserved G:A base-pairs, and is

the primary RNA-binding protein that triggers recruitment of

the remaining snoRNP proteins (Watkins et al, 2000, 2002).

The human orthologue of Snu13, 15.5K, directly binds the

C/D motif but not the C0/D0 motif in vitro even though the

motifs share the same consensus sequence (Cahill et al, 2002;

Szewczak et al, 2002). It is thought that many C0/D0 motifs

cannot form the k-turn structure. An asymmetric distribution

of core proteins was revealed through the use of a site-

specific crosslinker, 4-thiouridine, inserted at specific sites

in the box elements (Cahill et al, 2002). It was proposed that

Snu13/15.5K, Nop58 and one copy of fibrillarin/Nop1 bound

the C/D motif, while the C0/D0 motif was contacted by Nop56

and a second copy of fibrillarin/Nop1 (Cahill et al, 2002;

Szewczak et al, 2002).

Box C/D snoRNP-like complexes (sRNPs) are also present

in Archaea, but have symmetrical structures (Dennis and

Omer, 2005). Both the sRNA C/D and C0/D0 motifs in archaeal

sRNAs form k-loops, and each bind one molecule of the

Snu13 orthologue, L7Ae, fibrillarin and the Nop56/58 ortho-

logue, Nop5 (Kuhn et al, 2002; Omer et al, 2002; Tran et al,

2003). Three structural models have recently been proposed

for in vitro assembled archaeal box C/D sRNPs. One, based
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on a crystal structure, proposes a monomeric complex con-

taining a single sRNA and two copies of the proteins, L7Ae,

Nop5 and fibrillarin (Ye et al, 2009). The other models, based

on a single-particle electron microscopy structure (Bleichert

et al, 2009), and another crystal structure (Xue et al, 2010),

propose that the sRNP is a dimer, containing two molecules

of sRNA and four molecules each of the three proteins.

Unfortunately, the RNA was not visible in the single-particle

electron microscopy structure and both crystal structures

used partial sRNAs. Therefore, the structural organization

of these complexes has not been completely resolved.

Furthermore, it is also unclear at present how this informa-

tion relates to the eukaryotic complex.

In yeast, 36 of the 54 20-O-methylation events are directed

by sequences adjacent to a C0/D0 motif, several of which

diverge significantly from the consensus (Kiss-Laszlo et al,

1996; Lowe and Eddy, 1999). Initial identification of the C0

box was predominantly based on analyses of the primary

sequence and in most cases the accuracy of these predictions

has not been tested. It was generally assumed that the only

conserved elements in the snoRNA are the guide regions and

box motifs, but we considered that other conserved, func-

tional elements might exist in the snoRNAs. To address these

points, we have taken a global approach to examine the

sequence conservation and RNA–protein interactions within

the S. cerevisiae box C/D snoRNPs.

Results

Identification of unusual C0/D0 motifs in yeast box C/D

snoRNAs

It has been proposed that snoRNA C0/D0 and C/D motifs are

based on the same core consensus sequences, even though

C0/D0 elements are generally less well conserved (Kiss-Laszlo

et al, 1998). Surprisingly, analysis of the primary sequence

failed to clearly identify C0 and/or D0 boxes in many

S. cerevisiae box C/D snoRNAs. We, therefore, compared

the sequence of each S. cerevisiae box C/D snoRNA across

multiple yeast species (Figure 1A; Supplementary Figure S1).

This enabled the identification of C0/D0 motifs in all snoRNAs

(Figure 1B; Supplementary Figure S1). There was a surprising

amount of variation in C0/D0 sequences between individual

Figure 1 Sequence alignments of box C/D snoRNAs. (A) Homologues for each of the S. cerevisiae box C/D snoRNAs were retrieved from the
fungal genomic sequence databases and aligned. Two example alignments, using a limited subset of the sequences for snR74 and snR75, are
shown. The sequence is shown 50–30 and the position of the box sequences are indicated, with the consensus sequence shown at the bottom.
The rRNA target (30–50) is shown in white on a red background. The extra base-pairing target of snR75 is shown in white with a blue
background. Identical sequences: white with a black background; conserved sequences: black with a grey background. Brackets indicate
possible intra-molecular base-pairing. Scer: Saccharomyces cerevisiae; Cgla: Candida glabrata; Klac: Kluyveromyces lactis; Lelo: Lodderomyces
elongisporus; Wano: Wickerhamomyces anomalus (Pichia anomala); Sjap: Schizosaccharomyces japonicas; Tree: Trichoderma reesei (Hypocrea
jecorina); Tsti: Talaromyces stipitatus; Acla: Aspergillus clavatus; Nfis: Neosartorya fischeri; Cpos: Coccidioides posadasii; Pans: Podospora
anserine. (B) The D0 and C0 sequences of the S. cerevisiae box C/D snoRNAs are shown. Insertions in the C0 boxes are indicated in red. The
snoRNAs containing box C0/D0 motifs that do not appear to direct methylation are indicated in grey. (C) A schematic representation of the
conservation of the sequences of the C, D, C0 and D0 boxes of the S. cerevisiae box C/D. The diagram was prepared using the WebLogo software
(Crooks et al, 2004).
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snoRNAs; ranging from poorly (e.g., snR51) to highly con-

served (e.g., snR53) motifs. Some snoRNAs harbour se-

quences that are highly conserved in yeast evolution but

quite distinct from the accepted consensus, for both D0

(e.g., snR73, snR70, snR51 and snR87) and C0 (e.g., snR68

and U24). Surprisingly, nine C0 boxes in S. cerevisiae aligned

better to the consensus with between one or two nucleotide

insertions (Figure 1B; e.g., snR50 and snR69). In some cases,

insertions were present in a subset of the orthologues of a

single snoRNA (e.g., snR71) and in some snoRNAs there

could be up to nine nucleotides inserted in the split C0

boxes (Supplementary Figure S1; snR190 and snR76). One

or two nucleotide insertions were apparent in C0 boxes from

vertebrate snoRNAs (e.g., rodent U15B, HBII-234, HBII-82

and mgh28S-2411; data not shown), indicating that this is not

specific to yeast. C0/D0 motifs were also highly conserved in

snoRNAs that do not appear to use this motif to direct

methylation (Figure 1B); the ‘guide’ region adjacent to the

D0 motif in each of these RNAs was not conserved and no

target has been identified (Supplementary Figure S1). Indeed,

some of these ‘inactive’ motifs show better sequence con-

servation than active motifs, suggesting that the C0/D0 motif

has a key role in the overall architecture of the snoRNP. The

identification of many unusual C0/D0 motif sequences raised

questions about the validity of the original consensus se-

quence. Re-evaluation of the C0 and D0 sequences confirmed

that, while the original consensus sequence was correctly

identified, significant divergence is tolerated in this motif

(Figure 1C). The alignments also identified highly conserved

regions present in several snoRNAs (e.g., snR75 and snR70;

Figure 1A; Supplementary Figure S1), which do not corre-

spond to either the box or guide regions. We speculated that

these could assist in snoRNA function through providing a

protein-binding site or additional base-pairing potential (see

below).

Asymmetric distribution of proteins in box

C/D snoRNPs

We were next interested in defining how the core box C/D

proteins contact the box C/D snoRNAs. In particular, we were

interested in how the proteins interacted with some of the

more divergent C0/D0 motifs and with the additional con-

served regions. We therefore performed CRAC, an RNA–

protein crosslinking approach, followed by Illumina/Solexa

sequencing, with Nop56, Nop58 and Nop1 to identify sites

within the snoRNAs that crosslink to the core box C/D

proteins (Granneman et al, 2009). Briefly, snoRNP proteins

were C-terminal tagged with a His6-TEV-Protein A (HTP) tag

(Granneman et al, 2009) and the fusion proteins were ex-

pressed from the genome under control of the endogenous

promoter. Cells were UV irradiated at 254 nm to induce RNA–

protein crosslinks. RNAs associated with HTP-tagged pro-

teins were partially fragmented, purified and identified by

linker ligation, cDNA synthesis and Illumina/Solexa sequen-

cing. Analysis of the derived data revealed that 70–90% of the

reads for each protein corresponded to box C/D snoRNA

sequences. Reads were identified for every snoRNA, but U3

(snR17), U14 (snR128) and snR4 sequences were particularly

enriched (Figure 2A). The different proteins showed signifi-

cant variation in the number of reads recovered for each

individual box C/D snoRNA (Figure 2A). Low-level hits were

also recovered for the H/ACA snoRNAs. The highest number

of hits for this class of snoRNA were recovered for snR37,

which was used as a baseline for background hits

(Figure 2A). Note, however, that these reads may reflect

genuine interactions taking place within pre-ribosomes.

For each of the proteins, many reads were mapped to 30

regions of the snoRNAs, near box D, presumably reflecting

protein organization on the snoRNA (see Discussion). The

average sequence length of the reads in the Solexa data was

between 22 and 33 nts, resulting in significant overlap of

individual reads. To better localize the binding sites, we

generated heatmaps (Figure 2B) and graphs (Figure 2C) of

reads smaller than 19 nucleotides. Comparison of the read

distribution revealed differential protein localization. Nop58

primarily crosslinked to the 50 and 30 ends of the snoRNA,

which include boxes C and D (Figure 2B). Nop56 preferen-

tially crosslinked to the C0/D0 motif and the guide regions, in

addition to binding near the 30 end of the snoRNA. Nop1

frequently crosslinked to the guide adjacent to the D box and,

occasionally, to the C0/D0 motif and associated guide

(Figure 2B). The proteins, in particular Nop56, also make

contacts outside the C/D and C0/D0 motifs. The data also

indicate an asymmetric distribution of the three proteins on

the snoRNAs.

The snoRNAs use either the guide adjacent to the D or D0

box to direct methylation, with some using both guide

regions (Lowe and Eddy, 1999). However, no clear differences

were observed between snoRNAs with one active guide

region or two (Figure 2C; data not shown). The snoRNA

sequence alignments revealed some unusual C0/D0 motifs.

Several contained C0 and/or D0 boxes that, while evolutiona-

rily highly conserved, differed substantially from the con-

sensus. CRAC data confirmed that these unusual C0/D0 motifs

are contacted by core box C/D snoRNP proteins (Figure 2C;

e.g., snR70, snR79 and snR51). The same is true for the

snoRNAs in which the C0 motif contains an insertion or

have poorly conserved C0/D0 motifs (Figure 2C; e.g.,

snR69). The CRAC data further showed that several

snoRNAs with conserved C0/D0 motifs but inactive adjacent

guides (e.g., snR39, snR57, snR72 and snR79) are also bound

by core proteins. Several snoRNAs contain conserved regions

that do not correspond to the box elements or the methyla-

tion guides (Figure 1A; Supplementary Figure S1). As CRAC

Figure 2 Asymmetric distribution of core snoRNP proteins on box C/D snoRNAs. (A) Box C/D snoRNAs are substantially enriched in core
snoRNP protein CRAC Solexa data sets. Total hits for H/ACA and C/D snoRNAs were calculated in each data set, log transformed, clustered and
displayed as a heatmap. Box C/D and H/ACA snoRNAs are indicated by brackets. (B) Heatmaps of average read densities along box C/D
snoRNAs. The positions of C, D, C0 and D0 boxes (black), and the two guide regions (red), are indicated at the top. (C) Distribution of reads
smaller than 20 nucleotides along individual snoRNAs is shown as plots. The Nop1 hits are shown in red, Nop56 hits are shown in green and
the Nop58 hits are shown in blue. The number of hits for Nop58 for both snR57 and snR39 were below those recorded for the H/ACA snoRNA
snR37, the baseline for these experiments, and were therefore represented using a dashed line. snoRNA genes and location of conserved
sequences (blue), guide sequences (red) or C/D snoRNP boxes (black) are indicated below the x axis. Coverage (y axis) indicates a fraction and
was calculated by dividing the number of times a nucleotide in a gene was found in a read by the total number of hits for the gene.
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data resolution is roughly 15–20 nucleotides, we could not

unambiguously determine whether core proteins bound these

additional conserved regions in most snoRNAs. The con-

served regions within snR70 and snR190 are, however, well

over 20 nts away from either the guide regions or the box

motifs. Analysis of the crosslinking data revealed that Nop1

Extended snoRNA–rRNA base-pairing
RW van Nues et al

&2011 European Molecular Biology Organization The EMBO Journal VOL 30 | NO 12 | 2011 2423



crosslinked to these conserved regions (Figure 2C), suggest-

ing that these conserved elements are recognized by at least

Nop1.

Divergent C 0/D 0 motifs are capable of directing efficient

methylation

Since many C0/D0 motifs diverge from the consensus, we next

compared the activity of several such motifs in directing

rRNA methylation. To perform this, we developed an expres-

sion system for an artificial snoRNA designed to target

methylation of nucleotide S1316 in the 18S rRNA

(Figure 3A) and expressed under the control of a GAL

promoter. This site is not naturally methylated but its mod-

ification does not affect growth (Decatur and Fournier,

personal communication; data not shown). We used the

human U24 C0/D0 sequence as a standard in the artificial

snoRNA as this motif matches the consensus sequence and

was previously used to characterize C0/D0 sequence function

in yeast (Kiss-Laszlo et al, 1998; Qu et al, 2011). Several C0/D0

motifs were cloned into this snoRNA construct, including the

divergent motifs from snR47, snR51 and snR70, the ‘split’

motif from snR78 and ‘inactive’ C0/D0 motifs from snR39,

snR50, snR55 and snR57, that are not naturally adjacent to a

guide sequence. The resulting plasmids were transformed

into S. cerevisiae grown on galactose medium to induce

snoRNA expression, and RNA was extracted. Methylation

status was determined by primer extension (Figure 3B;

Figure 5B (snR70)) and snoRNA levels were monitored by

northern blotting (Supplementary Figure S2).

Expression of the artificial snoRNA containing the con-

sensus hU24 C0/D0 motif resulted in methylation of S1316

(Figure 3B and C). This was not observed in the absence of

the artificial snoRNA. The artificial snoRNAs, containing the

C0/D0 motifs from snR51, snR78, snR50 and snR55, all

methylated the rRNA to approximately the same level as

seen with the hU24 C0/D0 motif. Slightly lower (50%) and

higher (180%) methylation was seen, relative to the consen-

sus motif, with the C0/D0 motifs of snR57 and snR47. This

indicated that divergent C0/D0 motifs, including those with

insertions in the C0 box (snR78), are roughly as active as the

consensus C0/D0 motif (hU24). In contrast, a snoRNA carrying

the C0/D0 motif of snR39 did not direct detectable methylation

activity. The C0/D0 motif of snR39, although very conserved

within the gene family, does not appear to naturally direct

methylation and may be inactive.

The data on the ‘split’ C0 motifs predict that between 1 and

3 nt insertions in the C0 box will not block the function of the

C0/D0 motif. Insertion of a U or G into the hU24 C0/D0 motif

(Figure 3C) directed methylation at site S1316 to 85 and 140%

of the levels seen with the wild-type motif. Insertion of 2 nts

reduced methylation activity of the snoRNA to 60%.

Therefore, inserting 1 or 2 nts into the C0 motif did not

significantly affect the activity of the snoRNA. Several C0

boxes contain only half of the C0 consensus sequence, sug-

gesting that only one half of the sequence element may be

sufficient for methylation, potentially explaining why inser-

tions are tolerated. However, mutation of either the first or

second GA dinucleotide in the C0 box (Figure 3C) reduced

methylation at site S1316 by 5- and 10-fold, respectively.

Thus, both halves of box C0 used in the artificial snoRNA

are essential for modification.

Many box C/D snoRNAs contain conserved elements

that are complementary to sequences adjacent to the

rRNA target site

We have found that many snoRNAs contain conserved re-

gions that do not correspond to C/D or C0/D0 box elements, or

to methylation guides (Figure 1A; Supplementary Figure S1).

In some cases, part or all of the conserved sequence appears

to support secondary structures in the snoRNA (Supplemen-

tary Figure S1; e.g., snR66, snR70 and snR74). However,

highly conserved regions identified in 13 yeast snoRNAs

(snR13, snR39, snR47, snR48, snR61, snR64, snR70, snR73,

snR75, snR76, snR87, snR190 and U18) are complementary

to sequences immediately upstream or downstream of the

rRNA methylation site (Figure 4A and B; Supplementary

Figures S3 and S4). A further 11 yeast snoRNAs (snR38,

snR40, snR54, snR55, snR56, snR60, snR62, snR68, snR69,

snR71 and snR79) contained complementarity to regions

flanking the rRNA methylation site, which was present in

most but not all yeasts. Interestingly, these regions were

mainly located either between the D0 and C0 boxes (e.g.,

snR70), or, where there is only one guide, in the second

guide region (e.g., snR75; Figure 4B; Supplementary Figures

Figure 3 Methylation activity of C0/D0 motifs. (A) Schematic repre-
sentation of the galactose-inducible snoRNA expression cassette.
The positions of the GAL promoter (GALp), ADH terminator
sequence (ADHt) and exons 1 and 2 of the actin gene (E1 and E2)
are shown. The positions of the Nhe I and Mlu I restriction sites,
used in the cloning of the various C0/D0 fragments, are indicated.
The C0/D0 sequences cloned into this cassette are shown in
Supplementary Figure S10. (B, C) snoRNAs containing wild-type
and mutant C0 boxes (as indicated above each lane) were trans-
formed into yeast cells. RNA was extracted from the cells and
analysed by primer extension, using primer Map1316 (upper
panel), to detect rRNA methylation, and by northern hybridization
(Supplementary Figure S2) to detect the expression of the snoRNA.
The position of the stop corresponding to methylation of the target
nucleotide, S1316 in the 18S rRNA, is indicated on the right. The
snoRNA containing the C0/D0 motif from hU24 was used in all
experiments to enable the comparison of the relative methylation
activity of the various C0/D0 motifs.
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S3 and S4). With one exception (snR69), however, the con-

served regions were not found adjacent to a D or D0 box and

would not be predicted to guide methylation. Occasionally,

the regions were found in the spacer region between the

guide and C or C0 box (e.g., snR47 and snR60). The potential

base-pairing interactions ranged from 4 to 11 base pairs

(Figure 4A). While some of these interactions are relatively

short, these regions are likely functioning as an extension

of the normal guide region. For snR87, this potential inter-

action is highly conserved in evolution and the human

orthologue, U16 could form 11 consecutive base pairs with

the rRNA (Figure 4C). Further analysis revealed an additional

Figure 4 Extra conserved snoRNA sequences are complementary to rRNA target sites. (A) rRNA (upper) and snoRNA (lower) sequences, with
both conventional guide-rRNA interactions (red) and novel extra base-pairing (blue) interactions for S. cerevisiae snoRNAs, are shown. Where
sequences are shaded both red and blue, this indicates an overlap between the conventional and extra base-pairing. The D or D0 sequences are
shown in white with a black background. (B) Schematic representations of S. cerevisiae snoRNA secondary structures with rRNA target
sequence interactions. The regions base-paired to the guide and the extra base-pairing region are indicated using a red and blue background,
respectively. Conserved boxes are indicated and the sequence shown in white on a black background. (C) Human snoRNA–rRNA interactions
are schematically represented as in (A).
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17 potential snoRNA–rRNA base-pairing interactions for

human box C/D snoRNAs that were evolutionarily conserved

in higher eukaryotes (Figure 4C; Supplementary Figures

S5–S7; U15, U21, U46, U49, U56, U103, snR39b, HBII-180,

HBII-202, HBII-429, HBII-142, HBII-210, HBII-99, HBII-296,

HBII-316, HBII-82 and mgh28S-2411). Interestingly, in both

yeast and human snoRNAs, some of the extra potential base-

pairing interactions overlap with the canonical target-

snoRNA interaction by one or two nucleotides. In the case

of HBII-316, however, the overlap is five nucleotides (Supple-

mentary Figure S6). The data, therefore, suggest that the

additional base-pairing might either enhance or regulate

rRNA methylation.

Extra base-pairing stimulates rRNA methylation

The proximity of the base-pairing to the methylation target

site suggests a role in rRNA methylation, either stabilizing or

facilitating formation of snoRNA–rRNA interactions. To test

this possibility, we generated a yeast strain in which the

snR72–snR78 cluster was deleted. This strain was then trans-

formed with a plasmid expressing the wild-type snoRNA

cluster, or a cluster in which the additional base-pairing

region of either snR75 or snR76 was mutated (Figure 5A).

RNA was extracted from each strain and the methylation

levels were monitored by site-specific RNase H cleavage

(Yu et al, 1997) directed by chimeric 20-O-methyl RNA/DNA

oligonucleotides to sites L2288 (snR75) and L2197 (snR76).

This approach was used as primer extension analysis of

methylation at site L2197 proved unreliable. The snoRNA

expression levels were analysed by northern blotting (Supple-

mentary Figure S2). In the absence of snR75 and snR76, both

oligonucleotides directed RNase H-mediated cleavage of

490% of the 25S rRNA (Figure 5B). Each oligonucleotide

also resulted in the non-specific cleavage of 18S rRNA

(Figure 5B; asterisk). Importantly, this was not affected by

the presence or absence of the snoRNAs. Expression of wild-

type snR75 and snR76 rendered the 25S rRNA resistant

to RNase H cleavage at the two methylation sites (o5%

cleaved). In contrast, significant levels of cleavage were

seen at sites L2288 and L2197 in 25S rRNA derived from

cells expressing mutant snR75 (snR75mut) and snR76

(snR76mut), respectively. Mutation of the conserved extra

base-pairing region of snR76 resulted in a 2–3-fold reduc-

tion in methylation (35–50% 25S rRNA uncleaved). Similarly,

mutation of the conserved region of snR75 resulted in a

4–5-fold reduction in methylation (20–25% 25S rRNA un-

cleaved). A similar reduction in rRNA methylation was ob-

served for the snR75mut, relative to the wild-type snoRNA,

when the RNA was analysed by primer extension

(Supplementary Figure S8). The data, therefore, indicate

Figure 5 Extra base-pairing sequences are important for efficient methylation. (A) snR75 and snR76 interactions with the 25S rRNA are
shown. The regions bound by the guide and extra base-pairing sequence are indicated using a red and blue background, respectively.
Conserved boxes are indicated and shown in white on a black background. The sequence of the mutated extra base-pairing regions is shown in
lower case. (B) A S. cerevisiae strain, in which the snR72–snR78 cluster was deleted, was transformed with plasmids expressing the snR72–
snR78 cluster containing the wild-type (wt) or mutant (mut) snR75 and snR76 snoRNA-coding sequences or the vector alone (�). RNA was
extracted from the cells and analysed by site-specific RNase H cleavage, to detect rRNA methylation, and by northern hybridization
(Supplementary Figure S2), to detect the expression of the snoRNA. The cleaved RNAs were separated on a glyoxal/agarose gel, stained
with ethidium bromide and visualized using a transilluminator. The positions of the full-length rRNAs and the 25S (arrows) and 18S (asterisk)
cleavage products are indicated on the right. Reactions were performed in the presence (þ ) or absence (�) of RNase H as indicated. The
oligonucleotides used for the analysis of the snR75 (upper panel) and snR76 (lower panel) modification sites are indicated on the left. (C) The
region between the D0 and C0 boxes of the snR70 snoRNA was cloned into the artificial snoRNA (Figure 3A) to target the site S1315 in the 18S
rRNA (snR70C0/D0). The extra guide region was then mutated (sequence shown in lower case) so that it was complementary to the region just
upstream of the 18S rRNA target site. (D) Plasmids expressing the snoRNAs and a snoRNA containing the human U24 C0/D0 motif (targeting
S1316) were transformed into yeast. RNA was extracted and analysed by primer extension using primer Map1316 and by northern blotting
(Supplementary Figure S2). The positions of the stop corresponding to methylation of the target nucleotides, S1316 and S1315 in the 18S rRNA,
are indicated on the right.

Extended snoRNA–rRNA base-pairing
RW van Nues et al

The EMBO Journal VOL 30 | NO 12 | 2011 &2011 European Molecular Biology Organization2426



that the putative extra base-pairing regions in both snR75 and

snR76 are important for efficient methylation activity.

If the conserved regions function through base-pairing,

then they should only enhance methylation activity at a

natural target site in the rRNA. Therefore, if the snoRNA is

mutated to modify a new target site, the conserved region

should only enhance methylation when it is mutated to be

complementary to the region adjacent to the new target site.

We, therefore, cloned the C0/D0 region of snR70, including the

intervening stem structure and extra base-pairing region, into

the artificial snoRNA system so that it would direct methyla-

tion at site S1315 in the 18S rRNA (Figure 5C). A construct

was generated in which the conserved loop region, contain-

ing the extra base-pairing sequence, was mutated to be

complementary to the sequence immediately upstream of

the new target site. The snR70 construct directed methyla-

tion at site S1315 in the 18S rRNA (Figure 5D) at a level

comparable to that seen with the hU24 consensus C0/D0

motif (at site S1316). Mutation of the loop sequence to

generate a sequence complementary to the flanking region

immediately upstream of the target site resulted in a repro-

ducible five-fold increase in methylation at site S1315. This,

therefore, provides strong evidence that the conserved regions

can function to enhance methylation through base-pairing

adjacent to the target site.

Discussion

We have used an extensive analysis of the sequence con-

servation of the snoRNAs, together with a high-throughput

analysis of the RNA–protein contacts in the box C/D snoRNPs

to better understand the structure and function of these

complexes. The consensus sequence originally identified for

this motif is, however, generally correct (Figure 1C; Kiss-

Laszlo et al, 1998), but a quite unexpected degree of sequence

diversity in box C0/D0 motifs is tolerated. The first GA

dinucleotide in box C0 (RUGAUGA) and the GA dinucleotide

in box D (CUGA) are the most conserved elements. The

equivalent nucleotides also form the most conserved part of

the box C/D motif (Xia et al, 1997). In both k-turn (C/D) and

k-loop (archaeal C0/D0) structures, these GA dinucleotides

form sheared GA base-pairs and comprise the core binding

site for Snu13 (C/D) and L7Ae (C/D and C0/D0), suggesting

that Snu13 directly binds the C0/D0 motif (Moore et al, 2004;

Oruganti et al, 2005; Suryadi et al, 2005). We were unable to

generate the tagged construct required for CRAC on Snu13 to

determine whether it contacts the C0/D0 motif. It has, how-

ever, recently been shown that Snu13 is recruited to the C0/D0

motif in vivo (Qu et al, 2011). Furthermore, a L7Ae mutant,

which cannot bind alone to the C0/D0 motif but still associates

with the C/D motif, is recruited to the C0/D0 motif of in vitro

assembled archaeal snoRNPs (Gagnon et al, 2010). From, this

it was proposed that protein–protein contacts in the snoRNP

contribute to Snu13 recruitment to the C0/D0 motif.

We have shown that even highly divergent C0 and D0

sequences can bind core snoRNP proteins and direct efficient

20-O-methylation, including C0 sequences with one or two

nucleotide insertions. These changes are obviously tolerated

but in some cases it is hard to rationalize how the proteins

recognize and bind these divergent elements. We were parti-

cularly surprised to observe that the C0 box in snR190 in

some species contained insertions of up to nine nucleotides.

We have not experimentally tested such large insertions and

cannot exclude the possibility that these C0 boxes are inactive.

We were, however, unable to find any good candidates for an

alternative C0 box in these snoRNAs. All C0/D0 elements tested

were functional in our artificial snoRNA system, with the

exception of the motif from snR39. The C0/D0 motif of snR39

does not have a naturally active guide sequence making it

difficult to determine whether this motif has the potential to

direct methylation. It is possible that some C0/D0 motifs are

only active in the context of the parent snoRNA.

Our data indicate that snoRNAs that use only the C/D

motif for methylation, also contain a C0/D0 motif that binds

the core box C/D proteins and, in most cases, can drive

methylation in our artificial snoRNA. This implies that the

methylation guide snoRNPs have a conserved architecture

regardless of whether both motifs function or not. The CRAC

data are consistent with the asymmetric snoRNP model

proposed by Steitz and colleagues; Nop56 and Nop1 contact

the C0/D0 motif whereas all three proteins contact the box C/D

motif (Cahill et al, 2002). Indeed, for all proteins, the

sequences in the CRAC experiments are biased towards the

D box. One possible explanation for this is that the core

proteins form a very stable complex with the box C/D motif

and bind less stably to the C0/D0 motif. This is consistent with

the difference in the sequence conservation between the two.

However, we cannot completely exclude a bias in the CRAC

cloning protocol. It was recently suggested, from a crystal

structure of an incomplete archaeal box C/D sRNP, that the

fibrillarin bound to the C0/D0 motif catalyses methylation of

the rRNA bound at the D box guide and vice versa (Xue et al,

2010). While we cannot exclude the model proposed for the

archaeal sRNPs, our data strongly suggest that the proteins

bound to the C0/D0 motif direct methylation at the D0 guide. In

addition to contacting the box regions, all three proteins also

made significant contacts to the guide regions in the

snoRNAs. While expected for Nop1, this was somewhat

surprising for Nop56 and Nop58. Interestingly, the novel

extra base-pairing sequences, identified by sequence analysis,

were also contacted by Nop1. These data are consistent with

contacts made by these proteins with the rRNA (Granneman

et al, 2009), and suggest that all three proteins have a role in

substrate binding and/or release. Consistent with our results,

recent analysis of archaeal box C/D sRNPs, using UV cross-

linking analysis (Ghalei et al, 2010) and structure determina-

tion (Xue et al, 2010), identified important contacts between

the protrusion in the NOP domain of the Nop56/Nop58

homologue, Nop5, and the spacer/guide region of the box

C/D sRNA.

Sequence comparisons identified novel, phylogenetically

conserved elements in individual yeast and human box C/D

snoRNAs. Many of these are complementary to the sequence

adjacent to the methylation target site in the rRNA and some

are conserved from yeast to humans (e.g., snR87/U16). These

interactions previously escaped notice, probably because

they are generally more evolutionarily divergent than ‘tradi-

tional’ guide-target regions. We showed that these sequences

can be important for efficient in vivo methylation by two

endogenous yeast snoRNAs and that additional base-pairing

to a region adjacent to the target site stimulates methylation.

Some of these extra base-pairing interactions are quite short

(e.g., 4 bp for snR87) and should be viewed as extensions to

the natural guide base-pairing. Strikingly, snoRNAs with the
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shortest guide-rRNA base-pairing interactions (e.g., snR70,

snR13 and snR87) all contained extra base-pairing, which

likely increases the specificity of the snoRNA–rRNA interac-

tion (Supplementary Figure S9). Of course, these snoRNAs

might have shorter guides because the extra base-pairing

reduces the evolutionary pressure to maintain long guide-

rRNA base-pairing interactions. We found that Nop1 cross-

linked to the extra base-pairing region of snR70 and snR190.

It is possible that Nop1 interacts with other extra base-pairing

regions but due to their proximity to the box regions in other

snoRNAs, we could not clearly determine this. The targets of

the extra base-pairing regions are in close proximity to the

methylation site. If the two guide and extra base-pairing

regions base-pair to the rRNA simultaneously it is possible

that Nop1, which as the catalytic subunit recognizes the

guide-rRNA interaction, also contacts the extra base-pairing

region in the snoRNA.

Not all snoRNAs require additional base-pairing to

function and it is likely that this reflects the nature of the

rRNA target site. The additional base-pairing presumably

stabilizes the snoRNA–rRNA interaction, which could aid

access to highly structured regions of the rRNA—where

snoRNA interactions predominantly occur (see Figure 6).

It might be envisaged that the extra base-pairing assists in

Figure 6 snoRNA base-pairing with the 25S rRNA. A line drawing of the secondary structure of the S. cerevisiae 25S and 5.8S rRNAs is shown
at the top. The three regions containing modifications are shaded grey. The detailed secondary structures (obtained from http://www.rna.ccbb.
utexas.edu/) of the three modified regions are also shown with the methylation (M) and pseudouridylation (C) sites, and modifying snoRNAs,
indicated in red and green, respectively. The methylation guide and extra base-pairing interaction sites in the rRNA are indicated by red and
blue lines, respectively. Grey lines connect the lines for conventional guide and extra base-pairing interactions from one snoRNA.
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opening strong secondary structure at the modification site

(e.g., U18, snR61, snR47 and snR75) by initially docking the

snoRNP close to the modification target, allowing the guide

region to then compete with the local secondary structure. In

addition, extended rRNA base-pairing might aid in competi-

tion between snoRNAs with overlapping target sites (see

Figure 6). This is particularly striking over the inter-subunit

bridge (helix 69) in the 25S rRNA. Other examples include

snR40 and snR55 that modify nucleotides S1269 and 1271 in

the 18S rRNA (Supplementary Figure S3). This situation is

likely to be even more significant in humans where there are

about twice the number of modifications. In several

snoRNAs, for example, snR13, snR76 and snR64, the rRNA

targets for the extra base-pairing region and the methylation

guide region overlap. This may indicate that these two base-

pairing interactions do not occur simultaneously. In the case

of human HBII-316, the overlap is five nucleotides and

includes the methylation target site. It is conceivable that

this extra base-pairing interaction might regulate methylation

activity. Interestingly, snR47 contains a complex series of

antisense sequences (Supplementary Figures S1 and S3) and

modifies sites in both 18S and 25S rRNA. It is, however,

unclear whether the snoRNA simultaneously base-pairs to

both sites. It is likely that the extra base-pairing regions will

also influence the timing of snoRNP association with the

rRNA, the involvement/requirement for RNA helicases, and

rRNA folding.

Materials and methods

snoRNA alignments
Genomic DNA sequences of Ascomycota (Saccharomycotina,
Schizosaccharomycetes and Pezizomycotina) were searched itera-
tively for homologues using blastn with setting ‘expect 100’ (http://
www.ncbi.nlm.nih.gov/sutils/genom_table.cgi?organism¼ fungi or
http://www.yeastgenome.org/cgi-bin/blast-fungal.pl). Pezizomy-
cotina snoRNAs were also identified by initiating blast searches
with sequences of snoRNAs identified in a Neurospora Crassa cDNA
library (Liu et al, 2009). Searching EMBL EST Fungi cDNA libraries
(http://www.ebi.ac.uk/Tools/sss/wublast/nucleotide.html) yielded
further snoRNAs from Basidiomycota, which were not found in the
systematic blast searches. Sequences were aligned using Clustal W
and annotated on the basis of visually identified conserved motifs
and phylogenetically supported secondary structure. A similar
approach, using just the basic nr/nt nucleotide collection database,
was used to identify and align sequences for vertebrate U15 and
U16 snoRNAs. All other vertebrate snoRNA alignment data were
derived from the snoRNABase database (http://www-snorna.
biotoul.fr/).

CRAC experiments and bioinformatics
Nop1, Nop56 and Nop58 CRAC experiments were described
elsewhere (Granneman et al, 2009). Reads were aligned against the
S. cerevisiae genome using novoalign 2.05 (http://www.novocraft.
com; settings –r Random, -s –h190 –a) and processed using
in-house python scripts (paper in preparation). Heatmaps of log-
transformed data shown in Figure 2A were generated using Java
TreeView and Cluster3.0 with default settings. To calculate the
densities of reads on the snoRNAs, we analysed reads between 15
and 19 nucleotides in length (after trimming linkers). This allows
precise identification of protein-binding sites, but is long enough to
map reads uniquely to the yeast genome. Each snoRNA was divided
into 10 regions: ‘before C box’,‘C box’,‘between C and guide’,‘guide
1’, ‘D0 box’, ‘between D0 and C0’, ‘C0 box’, ‘between C0 and guide 2’,
‘guide 2’ and ‘D box’. For snoRNAs that lacked certain features,
relevant regions were merged. The numbers of hits per million
mapped reads were calculated separately for all nucleotide
positions, and then averaged to yield read densities for each region.
The densities were converted to a heatmap using Java TreeView,

with ‘Contrast’ set to 5.0, 0.7 and 1.5 for Nop1, Nop56 and Nop58,
respectively.

Analysis of rRNA methylation
Methylation activity of various C0/D0 motifs was analysed in vivo in
W303 (MATa/MATá; leu2-3112 trp1-1 can1-100 ura3-1 ade2-1 his3-
11,15; [phiþ ]) using an artificial snoRNA construct inserted in the
intron of the actin gene. The actin/snoRNA cassette (a PCR
amplified 1-kb Bam HI–Xba I fragment derived from pFL45/ACT/
XK; Kiss-Laszlo et al, 1996) was placed under the control of the
GAL1 promoter (amplified as a 1-kb Eco R1–Bam HI fragment from
pBL143; Liu and Fournier, 2004) and cloned into pRS416 in which
the Acc65 I and Xho I sites of the multiple cloning site had been
deleted. Artificial snoRNAs were assembled from oligonucleotides
and cloned in between the unique Xho I and Acc65 I sites present
within the actin intron (Figure 3A; Supplementary Figure S10; Kiss-
Laszlo et al, 1996). C0/D0 regions, and the target site guide, were
subsequently assembled from oligonucleotides and cloned into the
Nhe I and Mlu I sites in the snoRNA-coding sequence (Figure 3B;
Supplementary Figure S10). The target site (S1316 or S1315) was
chosen as a site detectable by reverse transcription that is not
naturally modified. The expression levels of the artificial snoRNA
were confirmed by northern blotting (Supplementary Figure S2).

Wild-type and mutant snR75 and snR76 were expressed in their
natural polycistronic context of the snR72–snR78 gene cluster. The
cluster was PCR amplified using primers snR72r (50-AAAAGG
TACCGTTATCCGTACACTTGACCTC-30) and snR78f (50-AAAACTC
GAGAAGCATGAGGTATTATAGCGAC-30) and was cloned into the
Acc65 I/Xho I sites of pRS416 and transformed into YPH499 (MATa,
ura3-52, lys2-801, ade2-101, leu2D1, his3-D200, trp1-D63) in which
the non-essential snoRNA gene cluster (Qu et al, 1999) was
replaced by a natNT2 cassette (Janke et al, 2004). The snR75 and
snR76 mutants were generated by site-directed mutagenesis.

Methylation activity was determined by reverse transcription
under limited nucleotide and enzyme concentrations (Maden,
2001). In all, 8mg total RNA was annealed to 32P-, 50-end labelled
primer and then incubated with M-MLV reverse transcriptase (40 u,
Promega), 2 ml 5� RT buffer, 0.25 ml superasin and either 12.5 or
1.25 mmol dNTP’s. The reactions were separated on either a 6 or
8% polyacrylamide/7 M urea gel and then visualized using a
phosphorimager. Primers used for mapping were Map1316 (50-
TAGTCCCTCTAAGAAGTGGATAACC-30) and Map75 (50-CTAGATAG
TAGATAGGGACAGTGG-30). In addition, methylation was also
monitored by site-specific RNase H cleavage (Yu et al, 1997)
directed by a chimeric 20-O-methyl RNA/DNA oligonucleotides to
sites L2197 (50-mAmCmUGGGCmAmGmAmAmAmUmCmAmCmA
mUmU-30) and L2288 (50-mUmGmACGAGmGmCmAmUmUmUm
GmGmCmUmAmC-30). Cleaved RNA was separated on a 1.2%
agarose/glyoxal gel, stained with ethidium bromide and visualized
using a transilluminator.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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