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Large gap electron-hole 
superfluidity and shape resonances 
in coupled graphene nanoribbons
M. Zarenia1, A. Perali2, F. M. Peeters1 & D. Neilson2

We predict enhanced electron-hole superfluidity in two coupled electron-hole armchair-edge 
terminated graphene nanoribbons separated by a thin insulating barrier. In contrast to graphene 
monolayers, the multiple subbands of the nanoribbons are parabolic at low energy with a gap between 
the conduction and valence bands, and with lifted valley degeneracy. These properties make screening 
of the electron-hole interaction much weaker than for coupled electron-hole monolayers, thus boosting 
the pairing strength and enhancing the superfluid properties. The pairing strength is further boosted by 
the quasi one-dimensional quantum confinement of the carriers, as well as by the large density of states 
near the bottom of each subband. The latter magnifies superfluid shape resonances caused by the 
quantum confinement. Several superfluid partial condensates are present for finite-width nanoribbons 
with multiple subbands. We find that superfluidity is predominately in the strongly-coupled BEC and 
BCS-BEC crossover regimes, with large superfluid gaps up to 100 meV and beyond. When the gaps 
exceed the subband spacing, there is significant mixing of the subbands, a rounding of the shape 
resonances, and a resulting reduction in the one-dimensional nature of the system.

Superfluidity of spatially separated electrons and holes was predicted nearly half a century ago1 but up to now 
experimental observation of this exotic state has been elusive at zero magnetic field, notwithstanding multiple 
attempts on very different systems. The discovery of the wonder material graphene in conjunction with the large 
band gap insulator hexagonal boron nitride (h-BN) has raised new hopes for realization of this new collective 
many body state. Recently, superconductivity at temperatures above liquid Helium has been reported in doped 
monolayer graphene by four groups, amplifying interest in quantum coherent phenomena in graphene2.

Monolayer graphene is an atomically flat, gapless semiconductor with near identical conduction and valence 
bands. Spatially separated electron-doped and hole-doped monolayers can be completely insulated from each 
other with just a few atomic layers of h-BN3,4. With such small spatial separations, electron-hole pairing by direct 
Coulomb attraction is expected to be strong5–7. However the linear dispersion of the monolayer graphene energy 
bands results in very strong Coulomb screening of the electron-hole pairing attraction, and this suppresses 
superfluidity in coupled electron-hole graphene monolayers3,8. To overcome the strong screening, refs 9 and 10 
proposed using coupled electron-hole graphene multilayers. Using multilayers takes advantage of the nonlinear 
dispersion of their energy bands11,12, and the existence of a gap between the conduction and valence bands when 
a gate potential is applied.

Here we propose a new design to boost electron-hole pairing and the onset of superfluidity using nanorib-
bons etched in monolayer graphene. Monolayer sheets of graphene are promising candidates for applications in 
transparent conductive films, electronic and opto-electronic devices, actuators, sensors, composites, and more. 
However a serious limitation of graphene monolayers is that field-effect transistor (FET) devices are not possible 
because the massless nature of the electrons prevents electron confinement in graphene. Quasi-one-dimensional 
graphene nanoribbons with tuneable band gaps resolve this issue, with important implications for the fabrication 
of novel and ultrafast electronic nanodevices. For example, FET devices with 100 GHz switching frequencies 
have been fabricated using graphene nanoribbons13. The nanoribbon edges can be terminated using a variety of 
different atoms, which opens up application opportunities, in particular for nanoribbons in polymer hosts for fab-
rication of novel composite materials14,15. Finally, graphene nanoribbons are showing great promise as electrode 
materials for batteries and supercapacitors16.
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The electronic properties of graphene nanoribbons depend on the type of edge termination17. We focus on 
armchair-edge terminated nanoribbons since (i) their subbands are parabolic around their minima (Fig. 1(a)), (ii) 
there is a sizeable semiconductor-like energy gap between the conduction and valence bands, and (iii) the valley 
degeneracy of monolayer graphene is lifted. These properties combine to greatly reduce the strength of screening 
of the electron-hole pairing interaction. Note that uniform armchair graphene nanoribbons of widths W 10nm 
have recently been fabricated18.

Figure 2 shows the device we are proposing. It consists of two armchair-edge terminated monolayer graphene 
nanoribbons, one electron-doped and the other hole-doped, separated by a few atomic layers of a h-BN insulating 
barrier. The nanoribbons are independently contacted, and top and back metal gates control the carrier densities.

In addition to reducing the effect of screening, electron-hole pairing strengths will be further boosted in 
our proposed system by the enhanced density of states near the minimum of each subband (see Fig. 1(b)) that 
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Figure 1.  (a) Lowest single-particle energy subbands εj(ky), j =  1, 2, …  in an armchair graphene nanoribbon of 
width W =  2 nm. (b) Corresponding density of states DOS(E) in nanoribbon. Van Hove singularities are visible 
at bottom of each subband.
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Figure 2.  Proposed device. Upper electron-doped and lower hole-doped armchair-edge terminated graphene 
nanoribbons of widths W separated by h-BN insulator of thickness d. Top and back gates control electron 
and hole densities. Gates are separated from nanoribbons by h-BN layers. Nanoribbons are independently 
contacted.
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arises from the van Hove singularities of the quasi-one-dimensional nanoribbons, and also by the quantum con-
finement of the carriers in the nanoribbons. Enhancement of superconducting gaps and critical temperature in 
striped systems due to shape resonances and quantum confinement at the nanoscale was predicted in refs 19–21. 
Superconductivity has been observed in quasi-one-dimensional systems including Sn and Al metallic nanowires 
and carbon nanotubes, with enhanced transition temperatures as compared with their bulk values22.

Methods
We take the y-direction parallel to the nanoribbons, with the carriers confined in the transverse x-direction. 
Figure  1(a) shows the single-particle energy subbands obtained in the continuum model, 
ε = +k ta k k( ) ( 3 /2)j y y j0

2 2 , j =  1, 2, …  for an armchair graphene nanoribbon of width W =  2 nm. The intra-
layer hopping energy t =  2.7 eV23 and the graphene lattice constant a0 =  0.24 nm. π π= 


 −




k j W a/ 4 /(3 3 )j 0  is 

the quantized wave-number for the j-subband in the x-direction. Figure 1(b) shows the corresponding density of 
states DOS(E). The van Hove singularities coincide with the bottom of each subband.

Not only the finite width of the nanoribbons but also their multiple occupied subbands make the system 
only quasi-one-dimensional. In addition, in the superfluid state the energy gap mixes close-by subbands. The 
quasi-one-dimensionality together with the subband mixing will suppress order parameter fluctuations that are 
responsible for destroying superfluidity in a pure one-dimensional system. For these reasons we can calculate 
properties of the superfluid ground state using mean field theory.

Recently ref. 24 discussed a quasi-condensate of excitons in coupled electron-hole one-dimensional wires 
using the weak-coupled BCS gap equation in the low density limit with only the lowest subband contributing to 
the pairing, and with screening neglected. Since only one channel was considered, there are no shape resonance 
effects. Also, because of the one dimensionality, fluctuations of the order parameter should be severe and would 
strongly suppress superfluidity. Interestingly, ref. 24 argues that even in the one-channel case, the finite size of 
the nanoribbons would allow for short range superfluid correlations. In our case the many available channels due 
to the multiple subbands involved in the pairing allow for a suppression of the critical fluctuations, which would 
favour the observation of conventional long-range superfluidity.

Our calculations are for coupled electron-hole armchair graphene nanoribbons of equal width W and equal 
(two-dimensional) electron and hole densities n =  (r0W)−1, where r0 is the average inter-particle spacing along the 
nanoribbon. The subbands εj(ky), j =  1, 2, …  are identical for the electrons and holes.

Because of the multiple subband structure, the zero temperature mean field equations for the superfluid state 
acquire an additional index for the subband j. The equations for the wave-vector dependent superfluid energy 
gaps Δ j(ky) for subbands j become,
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where Ly is the nanoribbon length, θ θ= + −′ ′′ ′F [1 cos( )]/2k j k j k j k j, , , , ,y y y y
 is the form factor8 coming from the 

overlap of the single-particle nanoribbon wave functions, with θ = − k ktan ( / )k j y j,
1

y
, Ve−h(q) is the effective 

electron-hole pairing interaction, and ε µ= − + ∆E k k k( ) [( ( ) ) ( ) ]j y j y j y
2 2 1/2 is the single-particle energy dis-

persion in the superfluid state for subband j. The wave-vector ′ky is bounded by the Brillouin zone boundary ± kc. 
We truncate the sum over the subband index at j′  =  jc, where jc is the lowest subband with a minimum above the 
graphene nanoribbon work function energy, taken to be ~4.5 eV. The chemical potential μ is fixed by the density 
equation,
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where ε µ= − −v k k E k( ) [1 ( ( ) )/ ( )]j y j y j y
2 1

2
, and the prefactor 2 is the spin degeneracy. There is no valley degen-

eracy for armchair graphene nanoribbons.
We neglect screening in the calculations for the following reasons. Screening is expected to be weak when 

the superfluid state lies in the strongly-coupled BEC or BCS-BEC crossover regimes because the superfluid gap 
in these regimes of pairing is comparable to the Fermi energy, resulting in a large smearing of the Fermi surface, 
and electron-hole pairs that are compact compared with their average spacing. This makes their mutual interac-
tions dipolar and weakly repulsive. Similar arguments suggest in the BEC regime that electron-electron interac-
tions between pairs will be weakened by the compensatory electron-hole interactions25, and so we also neglect 
electron-electron interactions. The expected suppression of screening is confirmed by the following numerical 
calculations.

In the superfluid state, the RPA-like static screening polarization bubble for small qd that is responsible for 
screening the electron-hole pairing interaction is given by the sum,

Π = Π + Πq q q( ) ( ) ( ), (3)n a
0 0

( )
0
( )

where Π q( )n
0
( )  and Π q( )a

0
( )  are the normal and anomalous polarizabilities in the superfluid state. These are con-

structed from pairs of the normal and anomalous Green functions of BCS theory, respectively. The resulting 
expressions are9,
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where ε µ= + −u k k E k( ) [1 ( ( ) )/ ( )]j y j y j y
2 1

2
. For convenience we write qy as q.

The opening of the superfluid energy gap Δ  at the Fermi surface exponentially suppresses particle-hole pro-
cesses with energies less than Δ , and it is precisely these low-energy processes that screen the bare interaction in 
the normal state. As well as a suppression of the screening polarization bubble with diagonal Green functions, 
there is an additional cancelling contribution from the anomalous polarization bubble with off-diagonal Green 
functions8. Figure 3 compares the polarization function ∏ 0(q) in the superfluid state with the corresponding 
Lindhard polarization function for the normal state of a multi-subband graphene nanoribbon of width W =  2 nm 
and separation d =  3 nm. The figure shows that the presence of the superfluid gap strongly suppresses ∏ 0(q) for 
q k2 F. It is at small momentum transfers q where the unscreened electron-hole pairing interaction is peaked, 

and hence this suppression of screening can lead to strong pairing. For this reason we are able, to a good approx-
imation, to neglect screening effects in the pairing interaction.

The results of Fig. 3 contain an additional interesting new phenomenon, that of a competition between super-
fluidity and Coulomb screening at finite momenta. For each 1D subband, the Fermi surface consists of just two 
discrete points k =  ± (kF)i. A consequence of this is that the static charge response in the normal state (Δ  =  0) 
diverges logarithmically when the transfer momentum q connects the two Fermi points, q =  2(kF)i (the perfect 
nesting condition). The polarization bubble in the normal state will have multiple divergences associated with 
subbands successively crossing the Fermi level. This is seen in the three panels of Fig. 3, and is a geometrical effect 
typical of 1D that in the DOS leads to the multiple Van Hove singularities shown in Fig. 1(b). When superfluid 
gaps open in the single-particle excitation spectrum, there are no longer zero energy states available for charge 
excitations, and the singularities in the polarization bubble will be suppressed. The multiple peaks in the normal 
state polarization bubble will be significantly rounded by a sizeable smoothing of the momentum distribution 
that is induced by the large superfluid gaps. This rounding of the peaks is clearly seen in the results in Fig. 3. 
Interestingly, the superfluid state with large gaps shields the system against a Peierls instability typical of 1D mate-
rials. This is primarily due to the fact that the perfect nesting condition is no longer realizable in the presence at 
low energies of sufficiently large pairing gaps.

It should be noted, however, in the weak-coupled BCS regime where the superfluid gap is small compared 
with EF, that screening becomes a strong effect, and in this regime screening suppresses the superfluidity. Thus 
we expect the unscreened approximation will break down for densities at which it predicts BCS superfluidity, and 
that the system will in fact remain in the normal state for those densities9,26. For this reason, we present results 
only in the BEC and crossover regimes.

In Eq. (1) we take the effective electron-hole pairing attraction Ve−h(q) to be the bare Coulomb interaction. For 
electrons and holes confined in nanoribbons of width W, separated by an insulating h-BN barrier of thickness d 
and dielectric constant κ =  3, we obtain27,

(a) (b) (c)

Figure 3.  The polarization function ∏0(q) in the superfluid state for carrier densities n as labelled, compared 
with the corresponding Lindhard polarization function for the normal state of the multi-subband graphene 
nanoribbon, Π∆= q( )0

0  of width W = 2 nm and separation d = 3 nm. The functions are normalized to 
Π =∆= q( 0)0

0 .
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One should in principle include in Ve−h(q), contributions from all inter-subband and intra-subband 
electron-hole scatterings, vijmn(q), where i, j, m, n are the subband indices. However Fig. 1 of ref. 27, which 
plots vijmn(q) for armchair graphene nanoribbons, shows that the intra-subband electron-hole scatterings, 
with i −  j =  m −  n =  0, dominate over all inter-subband scattering terms. In the small q limit, it is only the 
intra-subband scatterings that logarithmically diverge. For this reason, in Eq. (1) we may limit ourselves to the 
intra-subband contributions to the pairing interaction.

Results
Figure 4 shows the maximum superfluid gap ∆max as a function of the density n, averaged over the multiple sub-
bands of the nanoribbons, calculated using Eqs (1–5). ∆max is the maximum value of the wave-vector dependent 
∆ k( )y  averaged with respect to the subband index j. The nanoribbon width is W =  2 nm, and d is the thickness of 
the insulating barrier. The densities at which the Fermi energy enters the bottom of a new subband εj, j =  1, 2, … , 
are indicated by the vertical lines. The superfluid gap ∆max is of the order of eV. It is interesting to note that in the 
low-density regime,  −n 10 cm13 2, the maximum superfluid gap lies in the same range 200–20 meV predicted by 
Mohammadzadeh et al.28 for the binding energy of excitons within a single nanoribbon. ∆2 max is a good estimate 
of the exciton binding energy when µ  EF. We note that the separation of the nanoribbons in our system is 
much less than the effective Bohr radius.

In Fig. 4 we notice a local boost in ∆max near the minimum of each subband for barrier thickness d =  5 nm. 
This boost arises from shape resonance effects associated with the van Hove singularities (Fig. 1(b)) and the quan-
tum size effects in the pairing interaction. However, for thinner barriers d 4nm, where the electron-hole pair-
ing becomes progressively stronger, the shape resonance effects are masked by a mixing of the subbands caused 
by the large superfluid gap. As ∆max grows larger than the typical spacing between subbands, the system becomes 
decreasing less one-dimensional in character, thanks to the many channels available both for Cooper pairing and 
for forming the superfluid condensate.

Figure 5(a) shows the maximum superfluid gap ∆j
max for the separate subbands j as a function of n for nanor-

ibbon width W =  2 nm and barrier thickness d =  5 nm. For comparison, the total Fermi energy EF of the 
non-interacting nanoribbon system at density n is also shown. The vertical lines mark the densities at which EF 
enters a new subband. For the lowest conduction subbands, there is a notable local boost in ∆j

max as EF enters a 
new subband. This boost takes the form of a shape resonance in the superfluid gaps associated with a particular 
subband. However even for the lowest subbands, we lose some fine structure of the shape resonances because the 
gap mixes close subbands. Over the density range shown, the ∆j

max remain always of order EF, and hence they lie 
in the strongly coupled regime.

Figure 5(b–d), show the momentum-dependence of the subband gaps Δ j(ky) for densities at which the chem-
ical potential μ enters a new low-lying subband (marked in Fig. 5(a) by the vertical arrows). The peaks in Δ j(ky) 
are broad on the scale of kF =  π/(2r0), the inverse of the average inter-particle spacing, which confirms that we 
are in the BCS-BEC crossover regime of compact electron-hole pairs. In panels (c) and (d) of Fig. 5, the multiple 
peaks of Δ j(ky) are associated with the different Fermi energies of the subbands (kF)j, displaying a remaining fer-
mionic character of the Cooper pairing in the BCS-BEC crossover regime.

Figure 4.  Maximum superfluid gap ∆max averaged over the subbands for different thicknesses d of the 
insulating barrier separating the nanoribbons. Nanoribbon width is W =  2 nm. Densities at which EF enters the 
bottom of a new subband εj are indicated by the vertical dotted lines.
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Figure 6 shows the chemical potential μ as a function of density n for nanoribbon width W =  2 nm and bar-
rier thickness d. The μ is normalized to the corresponding Fermi energy of the non-interacting nanoribbon sys-
tem at density n. The chemical potential is strongly renormalized with respect to the Fermi energy over the full 
range of n and d shown. When EF enters a subband, μ has a dip. This is in contrast to the peak seen in the super-
fluid gap, and it is a shape antiresonance caused by the shape-resonance-generated peak in the gap. As d increases 
the pairing strength weakens, μ increases towards EF and the shape (anti)resonances become sizeable, indicating 
that the system has entered the BCS-BEC crossover regime. This is particularly evident in Fig. 6 for d =  4 −  5 nm. 
In the case of d =  2 nm, µ  EF and the shape (anti)resonances are completely smoothed out. This is a result of 
large superfluid gaps and it signals that the system is in the strong pairing BEC regime. When the density 
increases, the system always evolves towards the weaker pairing BCS regime for all values of d, with μ eventually 
arriving at EF.

The average pair size of the Cooper pairs ξj in subband j is defined as the expectation value of the square of 
the relative coordinate of the Cooper pairs with respect to the square of the BCS wave function projected in the 
subband. This definition was originally introduced in ref. 29 to investigate the different regimes of pairing in 
high-Tc superconductivity in cuprates as a function of density. It has been extended to a multigap superconductor 
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Figure 5.  (a) Maximum superfluid gap ∆j
max for subbands j =  1, 2 …  as function of density n. The dotted line 

shows the total Fermi energy EF. Nanoribbon widths W =  2 nm and barrier thickness d =  5 nm. The densities at 
which EF enters the bottom of a new subband are indicated by the vertical lines. Note that the ∆j

max are all of 
order EF. Right panels (b–d): momentum-dependent gaps Δ j(ky) for subbands j at densities marked by the 
arrows in panel (a) (at which μ =  ε2, ε3, ε4).

Figure 6.  Ratio of chemical potential μ to Fermi energy EF as function of density n for different values of the 
thickness d of the insulating barrier separating the nanoribbons. Nanoribbon width W =  2 nm. The vertical 
dotted lines show the densities at which EF enters the bottom of a subband.
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throughout the BCS-BEC crossover in ref. 30 and to a multigap quasi-one-dimensional superfluid of ultracold 
fermions confined in cigar-shaped traps31. In wave-vector space,
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Figure 7 shows the pair correlation length ξ r/ 0 as a function of density normalized to the average inter-particle 
distance r0. ξ r/ 0 is the partial average pair size for each subband averaged over the subbands. The nanoribbon 
width W =  2 nm. We designate ξ < .r/ 0 250  as the BEC regime, ξ. < <r0 25 / 40  the BCS-BEC crossover regime, 
and ξ >r/ 40  the BCS regime. As discussed, our approximation of neglecting screening is a good one for densities 
lying in the BCS-BEC crossover and BEC regimes. As expected, the density range for the strongly-coupled regime 
contracts with increasing barrier thickness d because the pairing becomes weaker.

We have neglected effects from impurities and disorder. We expect these effects to be small since while there 
is no direct information on impurity and disorder effects in graphene nanoribbons, but based on properties of 
analogous coupled electron-hole graphene monolayers, charge impurities concentrations up to ni <  kF/(πd) are 
not expected to destroy superfluidity32. At graphene-hBN interfaces, the charge impurity density ni ~ 1010 cm−2  
(see Ref. 33) so for d 5nm, the inequality is satisfied provided  × −n 3 10 cm6 2. Since at density ni ~ 1010 cm−2, 
the average spacing between charge impurities is orders of magnitude greater than the average spacing of the 
charge carriers, we do not expect our conclusions on screening to be affected by the presence of such impurities.

Conclusions
The superfluid gaps in our coupled electron-hole nanoribbon systems are large in absolute value and compa-
rable to the Fermi energy. Both the quasi-one-dimensional confinement and the superfluid shape resonances 
due to quantum size effects play an important role here. The van Hove singularities in the density of states act 
non-linearly through the gap equation to significantly enhance the magnitude of the superfluid gaps. In the range 
of nanoribbon densities and barrier separations considered, we find that the electron-hole superfluid is for the 
most part in the strongly coupled pairing regime and that screening is strongly suppressed by the large superfluid 
gaps.

When the superfluid gaps are comparable to the subband energy separations, the gaps mix the subbands and 
this results in a rounding of the shape resonances. This effect is most pronounced for small separations between 
the nanoribbons where the electron-hole coupling is particularly strong. For larger separations, the electron-hole 
coupling is weaker and the superfluid gaps are smaller. This results in weaker subband mixing. When this is the 
case the shape resonances are sharper, which strengthens the local amplification of the gaps.

In our quasi-one-dimensional system there is no direct link between the superfluid transition temperature 
and the size of the superfluid gaps calculated within mean field. In our proposed device we find zero temperature 
superfluid gaps comparable to the Fermi energy, with gaps of order of hundreds of meV. Thus high transition tem-
perature electron-hole superfluidity could be expected, with properties that are tuneable by changing the density. 
The device configurations we propose are experimentally realizable with current technologies. A superlattice 
formed of such nanoribbon devices could further stabilize the electron-hole superfluid phase over large areas.

Figure 7.  Pair correlation length ξ r/ 0 averaged over subbands as function of n, the carrier density for different 
values of the thickness d of the insulating barrier separating the nanoribbons. Nanoribbon width W =  2 nm.
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