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Abstract

Despite decades of research in economics and psychology attempting to identify ingredients that make up successful teams,
neuroscientists have only just begun to study how multiple brains interact. Recent research has shown that people’s brain
activity becomes synchronized with others’ (inter-brain synchrony) during social engagement. However, little is known as to
whether inter-brain synchrony relates to collective behavior within teams. Here, we merge the nascent field of group neu-
roscience with the extant literature of team dynamics and collective performance. We recruited 174 participants in groups
of 4 and randomly assigned them to complete a series of problem-solving tasks either independently or as a team, while
simultaneously recording each person’s brain activity using an electroencephalography hyperscanning setup. This design
allowed us to examine the relationship between group identification and inter-brain synchrony in explaining collective per-
formance. As expected, teammates identified more strongly with one another, cooperated more on an economic game, and
outperformed the average individual on most problem-solving tasks. Crucially, inter-brain synchrony, but not self-reported
group identification, predicted collective performance among teams. These results suggest that inter-brain synchrony can be
informative in understanding collective performance among teams where self-report measures may fail to capture behavior.
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Introduction

One of the distinctive features of humans is our ability to iden-
tify and cooperate with groups, and to leverage this ability
for collective success. Decades of research has explored group
dynamics, attempting to understand what makes teams suc-
cessful (e.g. Kozlowski and Bell, 2003; Kozlowski and Ilgen, 2006).
This research has identified factors such as a group’s shared
identity (Hogg et al., 2004; Hertel and Solansky, 2011), psycholog-
ical safety (Edmondson, 1999), emotional intelligence (Druskat
and Wolff, 2001; Jordan et al., 2002) or a group’s collective intel-
ligence, a latent factor that predicts collective performance
across a range of tasks (Woolley et al., 2010). Yet predicting team
success has remained an area of ongoing research for both

scientists (Cooke andHilton, 2015)1 and industry leaders (e.g. see
Google’s quest to identify markers of successful teams in which
they were unable to find strong patterns; Duhigg, 2016).

Despite humans evolving and living in a world of groups
and teams (Caporeal, 1997; Dunbar, 1998; Wuchty et al., 2007),
most previous work studying the neuroscience of human psy-
chology has focused on individuals in isolation, responding to
static images or words. As a result, scientists still know very

1 The 2015 report from the National Academy of Sciences studied how
to enhance the effectiveness of collaborative research in science teams
(Cooke and Hilton, 2015). According to some, it has been one of their most
downloaded reports in history.
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little about how the brain supports dynamic group interactions.
The study of real-world social exchanges was thus dubbed the
‘dark matter of social neuroscience’ (Schilbach et al., 2013) and
deemed ‘hot topics for future study’ (Stanley and Adolphs, 2013).
In the current research, we target this gap and examine the
psychology andneuroscience underlying collective performance
and group cooperation.

Neuroscientists have recently emphasized the importance
of studying how multiple brains interact (Hasson et al., 2012;
Redcay and Schilbach, 2019; Wheatley et al., 2019) in more
ecologically valid social contexts (Matusz et al., 2019; Shamay-
Tsoory and Mendelsohn, 2019) with more naturalistic stimuli
(Sonkusare et al., 2019). Incorporating these methods can shed
light on the neural processes associated with dynamic social
interactions and coordinated action. Research examining the
brain-to-brain dynamics underlying social interactions across a
variety of tasks (e.g. mimicry, joint button pressing, coopera-
tive computer games, economic games, musical performances,
shared attention, verbal communication; see Czeszumski et al.,
2020 for review) has revealed that people’s brain activity exhibits
greater inter-brain connectivity with others during face-to-face
interactions when there is joint action (e.g. Dumas et al., 2010) or
shared attention and a common goal (e.g. Dikker et al., 2017). In
keeping with much of the literature, we will use the term inter-
brain synchrony to describe this phenomenon. Little is known,
however, about how inter-brain synchrony is related to collective
performance in groups.

Some research has found that cooperation increases inter-
brain synchrony. For example, dyads show greater inter-brain
synchronywhen cooperatingwith a partner on a button pressing
task than when working competitively (Cui et al., 2012; Cheng
et al., 2015; Pan et al., 2017; Reindl et al., 2018) or independently
(Funane et al., 2011; Mu et al., 2016 2017; Hu et al., 2017).2 These
effects are not fully explained by shared motor movements and
are often concentrated in brain areas or frequencies associated
with attention andmentalizing, suggesting that inter-brain syn-
chrony may arise, at least in part, from the mutual recognition
of a partner’s role and actions or perception-action coupling
(Preston andDeWaal, 2002; Sadato, 2017; Schippers andKeysers,
2011; though see, Jacob, 2009). Indeed, the social awareness and
increase in inter-brain synchrony that arises when coordinating
with a partner may reflect an aspect of how social facilitation
impacts team performance (Szymanski et al., 2017) and collab-
orative learning (Antonenko et al., 2019). Taken together, inter-
brain synchronymight reflect the sharing of attention or psycho-
logical states necessary for coordinating actions (Mu et al., 2018;
Minagawa et al., 2018; Dikker et al., 2019), which could facilitate
collective performance.

Understanding collective performance requires moving
beyond dyads to groups, where social identities and group pro-
cesses (e.g. process loss, groupthink) are relevant. Identification
with one’s group may activate different norms (Bicchieri, 2002)
and may therefore influence group cooperation (Brewer and
Kramer, 1986; De Cremer and Van Vugt, 1999; Pärnamets et al.,
2020). For instance, compared to dyads, groups exhibit different
patterns of non-verbal behaviors (e.g. eye gaze) and commu-
nication (Solano and Dunnam, 1985; Herrera et al., 2011), as

2 When cooperating on these button pressing tasks, participants are
attempting to minimize the time difference between their respective but-
ton presses. When competing, participants are attempting to press the
button faster than their partner. Note, some research has found inter-
brain synchrony during competition as well, see Liu et al. (2015) and Liu
et al. (2017).

well as different motivations to trust and cooperate with others
(Zhou and Zhang, 2006; Wildschut and Insko, 2007; Pereda et al.,
2019). Indeed, groups of four may be the optimal group size for
everyday collaborations as it maintains individual responsibil-
ity and efficacy (Kameda et al., 1992), while enhancing collective
action on behalf of a shared group identity (Baumeister et al.,
2016). Yet the role of inter-brain synchrony has rarely been
studied beyond 1:1 interactions: only a handful of such stud-
ies investigate groups of three or more people simultaneously
(Jiang et al., 2015; Nozawa et al., 2016; Dikker et al., 2017; Müller
et al., 2018; Bevilacqua et al., 2019) compared to over 100 stud-
ies and counting that investigate dyadic interactions. As such,
there is a need to examine the relationship between social iden-
tification and inter-brain synchrony on collective performance
in groups.

Recent methodological developments have afforded the
opportunity to study brain activity during real collective deci-
sions (Liu et al., 2018). For instance, recent work used portable
electroencephalography (EEG) headsets in a school classroom
and found that student-to-group inter-brain synchrony was
highest when students watched videos or engaged in group
discussion, relative to when the teacher read aloud or lec-
tured (Dikker et al., 2017; Bevilacqua et al., 2019). Moreover,
student-to-group inter-brain synchrony was associated with
individual differences in group affinity, trait empathy and social
dynamics. In the present study, we applied the same methods
to examine whether inter-brain synchrony predicts collective
performance.

Specifically, we merged work on inter-brain synchrony with
team dynamics and collective performance by using group
problem-solving tasks shown to capture a group’s collective
intelligence (Woolley et al., 2010 2015; Engel et al., 2014). While
previous inter-brain synchrony research has used novel tasks
(e.g. mental time counting and joint button pressing) during
cooperative vs competitive conditions, our tasks are designed
to assess collective performance directly: some tasks lend
themselves to teamwork while others expose group fallibilities
(e.g. process loss). Moreover, we included a control condition of
groupswho experience similar sensory input but who lacked the
group cohesion and interdependency found among teammates,
addressing a common critique of inter-brain synchrony research
(Szymanski et al., 2017). We also measured economic coopera-
tion using a one-shot public goods game, which is an established
decision-making task mimicking collaborative social dilemmas
(Olson, 1965; Hardin, 1968). Using these collective performance
and cooperation tasks allowed us to test whether inter-brain
synchrony adds predictive validity for ecologically valid group
decisions and outcomes above and beyond self-report measures
(e.g. social identification). As such, our research builds on the
brain-as-predictor approach, which has proven useful in pre-
dicting the success of health campaigns, consumer choices and
responsiveness to therapy (Berkman and Falk, 2013).

Overview

This research examines the role of inter-brain synchrony in col-
lective performance. We studied cooperative and competitive
groups and simultaneously recorded EEG from groups of partici-
pants as they completed a wide range of problem-solving tasks.
We included groups where individuals worked on the same set
of tasks as teams but did so independently and competitively
as a control condition. Given previous research linking inter-
brain synchrony to social coordination and cooperation, we
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hypothesized that if people are part of a team and there is group
cohesion and interdependence between them to reach a shared
goal that we would see higher inter-brain synchrony among
cooperative teams relative to competing individuals. Moreover,
we hypothesized that group identification and inter-brain syn-
chronywould each predict collective performance: past research
has shown that group identity is important for team success (e.g.
Hogg et al., 2004; Frings et al., 2008; Hertel and Solansky, 2011),
and inter-brain synchrony has been linked to shared attention
and effective social coordination (e.g. Dikker et al., 2017; Hu et al.,
2017). Finally, we examined if inter-brain synchrony would pre-
dict performance during collective decision-making over and
above traditional self-report measures of group cohesion as well
as behavioral indices of cooperation and empathic traits such as
accurate emotion perception.

Methods

Participants

During the spring and fall of 2017, we recruited 174 under-
graduates in groups of 4, forming 44 groups (Mage =19 years,
SDage =1.3 years, 70% female; see supplement Figure S1 for
further demographic details),3 which well exceeds the median
sample size for inter-brain synchrony studies (33 participants;
Reinero, Unpublished manuscript). Our stopping rule was deter-
mined by recruiting as many groups as possible by the end
of that fall academic semester. We formed groups based on
scheduling availability, and as a result, groups could be either
mixed-sex or same-sex.4 The majority of participants within a

3 Due to last minute no-shows, two of our groups consisted of 3 people
instead of 4.
4 Reflecting our subject pool’s population of undergraduates within the
psychology department, the majority of groups were either all female or
mostly female: 11 groups were all female, 18 groups had three females
and one male, 1 group had two females and one male, 8 groups had two
females and two males, and 6 groups had one female and 3 males.

group were strangers, though a small fraction (approximately
9% of participants) were casual acquaintances because they
had previously taken the same class. One group was excluded
from inter-brain synchrony analyses due to noisy EEG data.
All participants had normal or corrected-to-normal vision and
no history of neurological or psychiatric disorders. Written
informed consent was obtained from each participant prior to
the experiment. The study procedures were approved by the
University Committee on Activities Involving Human Subjects.
We report how we determined our sample size, all data exclu-
sions, all manipulations and all measures in the study. All
data and materials are publicly available on OSF: https://osf.io/
5u7hm/.

Materials & procedure

Setup. Participants were instructed to wait in a common wait-
ing area until all four people in their group arrived. Once the full
group had arrived, participants were taken to our testing room
and were seated across from each other at a rectangular table
with a laptop in front of each participant (Figure 1A). We fit all
participants with a 14-channel portable EMOTIV EPOC wireless
EEG headset (Figure 1B for technical specifications; see Debener
et al., 2012; Dikker et al., 2017, for validation). Signal quality and
electrode connectivity were determined based on visual inspec-
tion using the EMOTIV’s TestBench software program (supple-
ment Figure S2A). Although data quality from these portable and
wireless EMOTIV EPOC EEG headsets may be lower compared
to standard wired laboratory-grade equipment (Krigolson et al.,
2017), they have been used in other studies and proven suitable
for hyperscanning and shown to detect meaningful inter-brain
synchrony (e.g. Dikker et al., 2017 2019; Bevilacqua et al., 2019).
Moreover, they offer important ecological validity benefits as
they are less intrusive on a participant’s experience and allow
for a more natural social interaction. As noted later in the Meth-
ods, we took various steps to ensure that our data met rigorous
standards.

Fig. 1. Testing room layout and EMOTIV EPOC headset/electrode array. Panel A is a sketch of the testing room layout with the experimenter at the head of the table

and the four participants on either side. Panel B shows the hardware specifications of the EMOTIV EPOC EEG headset. Panel C shows the EMOTIV EPOC EEG headset

and a top view of the electrode locations with those included in analysis marked in green (text).

https://osf.io/5u7hm/
https://osf.io/5u7hm/
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After EEG setup, we connected all four EEG headsets to a
main computer in the testing room, which used custom soft-
ware (developed in C++ and OpenFrameworks, see supplement
Figure S2B for screenshot; https://openframeworks.cc/; see
Dikker et al., 2017; 2019; note that this software is only com-
patible with EPOC and not EPOC+) to record EEG data from all
four headsets simultaneously. One experimenter, who was the
same experimenter for all groups, remained in the testing room
and oversaw the experiment (managing the simultaneous EEG
recordings from the main computer and providing instructions
to participants). All sessions were video- and audio-recorded.

After recording EEG for the initial resting period, we asked
participants to introduce themselves to one another. Partici-
pants were asked to share their name, year in school, where
they lived and their major or intended major. At this point, we
manipulated group cohesion and interdependency by randomly
assigning the group to either the Team (N= 87; 22 groups) or
Individual (N= 87; 22 groups) condition. As noted previously,
we included groups of individuals as a control condition as they
would experience similar sensory input (working on the same
set of time-locked tasks) but would lack the group cohesion and
interdependency found among teammates. Figure 2 outlines the
experimental procedure and is described further below.

Group manipulation

Team condition. we sought to enhance group cohesion and
interdependency by telling groups in the team condition that
they would be working together and competing against other
teams on a series of problem-solving tasks. Rewards were con-
tingent on overall team performance ($200 bonus split equally—
$50/person—if their team was ranked in the top 5% of teams).
We also asked teams to generate a team name (the experi-
menter left the room for 2 minutes during this time to allow
teammates to bond amongst themselves and feel more at ease),
whichwaswritten on aname card andplaced in the center of the
table. Immediately afterward, teams performed a hand-tapping
exercise while facing each other, where they tried to synchro-
nize their hand tapping to an instrumental beat (listen here:
https://osf.io/cf7bj/) that played from the experimenter’s com-
puter. Specifically, we played an instrumental beat and asked

participants to simply listen for 1 min to familiarize themselves
with the beat (‘Listen’ in Figure 2). Then we restarted the instru-
mental track and this time the team attempted to tap to the beat
together with the instrumental track as best they could. Team-
mates faced each other, focused their attention at their team’s
name card in the center and tapped on the table with their hand
that was nearest themiddle. After the instrumental track ended,
teammates continued to tap the beat for one more minute
without the assistance of the instrumental track (‘Tapping’ in
Figure 2). Such physical synchrony and hand-tapping exercises
have previously been shown to increase feelings of similarity
and rapport (Macrae et al., 2008; Valdesolo and DeSteno, 2011;
Nozawa et al., 2019). All of these procedures were done with the
goal of activating a shared social identity and enhancing group
cohesion and interdependency.

Individual condition. In contrast, we removed group cohesion
and interdependency in the individual condition by telling the
group of individuals that they would be working individually
and competing against each other and others in the study.
Rewards were contingent on individual performance ($50 if they
ranked in the top 5% of individuals; thus, keeping the mone-
tary incentive per person the same across conditions). We asked
individuals to generate a personal code name (the experimenter
again left the room during this time), which was written on
a name card and placed in front of each individual. Individu-
als also performed the same hand-tapping exercise as teams,
but they did so while facing away from their competitors and
focusing on their own hand-tapping (i.e. no coordination with
others required). Specifically, each individual turned their chair
such that they were sitting back-to-back with the person that
was next to them. This limited their ability to maintain any eye
contact or engage in other forms of social interaction with their
competitors. Each individual then tapped the instrumental beat
softly on their own leg, which was beneath the table and out of
sight of their competitors. This allowed each person to focus on
their own hand-tapping and not be distracted by the sound of
tapping done by others. All of these procedures were done with
the goal of activating an individual identity and fracturing group
cohesion and interdependency, while still maintaining a similar
procedure between the team and individual condition.

Fig. 2. Experimental Procedure and Timing. Groups were randomly assigned to either the team or individual condition (group manipulation). Groups performed a

hand-tapping exercise and then began their computerized problem-solving tasks. Teams completed these problem-solving tasks together while individuals completed

these tasks individually. EEG was recorded from all four participants throughout the group manipulation and the problem-solving tasks. Interleaved throughout the

experiment were four 2 minute resting periods where participants focused their attention on a fixation cross on their computer screen (indicated by the+ sign in the

figure and referred to as baselines).

https://openframeworks.cc/
https://osf.io/cf7bj/
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Problem-solving tasks

EEG data were recorded from all four participants simultane-
ously during the hand-tapping exercise and during all sub-
sequent tasks. After completing the group manipulation, all
participants individually completed an abbreviated IQ test on
their laptops (Raven’s Advanced Progressive Matrices; a non-
verbal test of abstract reasoning). This was to ensure our use
of random assignment was successful, such that the IQ of par-
ticipants was evenly distributed across each group and was not
a confound when testing collective performance.5 Afterward,
participants used their laptops to complete a series of online
problem-solving tasks previously used to calculate a measure of
collective intelligence (Woolley et al., 2010).

Tasks ranged across the McGrath Task Circumplex (Straus,
1999) in terms of skills required to complete them (e.g. Gener-
ating, Choosing, Negotiation and Executing), and included the
following tasks in this order: answering questions about a photo-
graph from memory (Photo/Memory; 3.5 min), typing a passage
of text (Typing; 6.5 min), brainstorming creative uses of a brick
(Brainstorm; 2 min), unscrambling words (Unscramble; 4 min),
completing a sudokupuzzle (Sudoku; 3.5min) and rank-ordering

5 All groups completed the IQ test (an individual activity) after our group
manipulation simply because this test was already attached to our battery
of problem-solving tasks in our online platform. For sake of continuity, we
kept this IQ test where it was. Fortunately, the IQ test’s placement likely
did not affect any differences we observed: it was standardized for all par-
ticipants, IQ scores did not differ between conditions, and IQ is more of a
trait measure.

items needed for survival in a wintery plane crash scenario
(Winter; 10 min). See supplement ‘Section 3: Task descriptions
and scoring’ for detailed descriptions of each task. Some tasks
lend themselves to teamworkmore so than others. For example,
brainstorming creative uses of brick likely benefit from team-
work whereas typing a passage of text is much easier as an
individual as you do not have to waste time coordinating with
others, and are not distracted by the real-time writing of others.

Participants in the team condition completed these problem-
solving tasks together in a shared document where each team-
mate’s edits could be seen in real-time by all team mem-
bers. Although participants were not allowed to talk out loud
(to avoid additional noise in the EEG data), participants in the
team conditionwere able to communicatewith their teammates
via an online chat built into the online task system. In con-
trast, participants in the individual condition completed each
problem-solving task individually. The online chat was disabled
for individuals, though they were told they could use that text-
box space as a ‘think-aloud’ tool to jot down any thoughts or
ideas they had while working on the problem-solving tasks.
Figure 3 shows an example team condition screenshot from the
online system used to administer the tasks.

The online system guided participants through the tasks
together, ensuring that all participants worked on the same
tasks at the same time in the same order, regardless of
whether they were working as a team or independently. This
was done in an attempt to standardize the sensory input for
participants across conditions, such that the key difference
between the conditions was a shift in the psychological expe-
rience from one of a collective team (social identity) to one

Fig. 3. Example screenshot of online system used to administer problem-solving tasks. The right-hand chat window allowed teammates to communicate (for compet-

ing individuals, the chat was disabled and was simply a ‘think-aloud’ window). The middle task panel is where answers could be entered. The left-hand instructions

panel contained instructions and other stimulus materials for the task. Time remaining for a given task was displayed in the top right corner.
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of a competitive individual (personal identity). In this way,
our individual condition acted as a control group, as partici-
pants in this condition would be doing the same tasks at the
same time—matching any possible entrainment to a shared
stimulus that teams might experience—but without any social
coordination.

Each problem-solving task had a fixed duration (ranging
between 2 and 10 min; see Figure 2), after which the next
task would automatically begin. The entire battery of problem-
solving tasks took 36.5 min to complete. In addition, partici-
pants engaged in four 2 min resting periods where they focused
their attention on a fixation cross in the middle of their lap-
tops (indicated by the fixation crosses in Figure 2) while EEG
was recorded. These resting periods occurred at the beginning
of the experiment (pre-baseline), after the group manipula-
tion (post-baseline), midway through the problem-solving tasks
(mid-baseline) and at the end of the problem-solving tasks (end-
baseline). After the problem-solving tasks, EEG headsets were
removed, and participants completed several post-task mea-
sures on their laptops.

Post-task measures

Cooperation: The firstmeasurewas a one-shot public goods game,
which is a common measure of cooperation (Hamburger, 1973;
Fox andGuyer, 1978; Wills et al., 2018). We reminded participants
that if they outperformed others (either as a team in the team
condition or as an individual in the individual condition) that
they would receive a $50 bonus personally, and we asked them
to consider how they would handle $10 of those $50. Thus, all
participants were ‘endowed’ with $10. Each participant could
contribute any amount (or none) of their $10 to their group’s
public pot. The total amount in the public pot would then be
doubled and equally re-distributed to each participant, regard-
less of whether or not that participant contributed. As such,
there is an incentive to be selfish and hope to reap the rewards of
generous others. However, if everyone acts selfishly, the group
forgoes the opportunity to increase their collective earnings. If
instead everyone was prosocial and contributed all $10 to the
pot, participants could double their earnings to $20 (four players
contributing $10 would put $40 in the pot, which would then be
doubled to $80, and then equally re-distributed to the four play-
ers such that each would receive $20). See supplement ‘Section
2: Additional items’ for further methodological details.

Group Identification and Groupiness: Next, we measured partic-
ipants’ group identification using a 3-item measure (I value this
group; I like this group; I feel connected to this group; Van Bavel
and Cunningham, 2012) where each item was on a 100-point
scale going from 0= strongly disagree to 100= strongly agree.
The reliability of this scale for our datawas quite strong (a= 0.88)
and participants’ overall scores, across conditions, were as fol-
lows: M=60.98, SD=22.29. We also measured participants’ trait
disposition toward groups in general, called groupiness, using a
12-item measure (Dunham & Van Bavel, unpublished). Example
items include, ‘An important part of my identity is being a part of
some group’; ‘the social groups we belong to are one of the most impor-
tant things in our lives’; ‘I am happiest when I am onmy own’ (reverse-
scored), and participants made ratings on a 7-point Likert scale
that went from 1= strongly disagree, 2=disagree, 3= somewhat
disagree, 4=neither agree nor disagree, 5= somewhat agree,
6=agree, 7= strongly agree. The reliability of this scale for our
data was satisfactory (a=0.71) and participants’ overall scores,
across conditions, were as follows: M=4.11, SD=0.69.

Emotion Perception: Given past research suggesting that inter-
brain synchrony may be related to attentional focus and
empathic processes (e.g. mentalizing), we measured partici-
pants’ emotion perception abilities using the Reading the Mind
in the Eyes Test (Baron-Cohen et al., 2001). In this test, partic-
ipants are shown the eye region of a person’s face and must
determine which emotion that person is feeling by selecting
among a set of four emotion options. Participants completed
36 trials, with higher scores indicating more accurate emo-
tion perception (M= 27.3, SD=3.6). Our Reading the Mind in
the Eyes Test results are consistent with the student sample
data (N=103) in Baron-Cohen et al., (Baron-Cohen et al., 2001;
M=28.0, SD=3.5).

Demographics & Debriefing: We then collected demographics
including sex, race, age, political orientation, religiosity and
English proficiency. Afterward, we briefly interviewed each par-
ticipant privately to ask how they felt the study went, what they
liked/disliked and if they knew anyone from the group previ-
ously (and if so, what the nature of their relationship was). We
then debriefed and thanked participants as a group.

EEG pre-processing

EEG data were recorded from 44 groups of 4 subjects (N=174)
across 14 separate tasks each, totaling 47.5 min per subject
(Figure 2). EEG data pre-processing was identical to Dikker
et al. (2019).

At acquisition, a double notch filter at 50 and 60 Hz was
applied, which essentially renders any frequency response
above 43 Hz uninterpretable. Data were further demeaned
using the ft_pre-processing function in the Fieldtrip toolbox
(Oostenveld et al., 2011), and high-pass filtered at 0.5 Hz prior to
time-frequency analysis to remove slow fluctuations. Datasets
with intermittent data loss, data repetition or misalignment
between the four headsets were flagged and excluded from fur-
ther processing. We next set out to identify physiological and
hardware artifacts. After removing 50 ms before and 300 ms
after instances in the EEG data that were flagged by the EMO-
TIV algorithms as containing blinks and vertical/horizontal eye
movements, we used the Fieldtrip toolbox (Oostenveld et al.,
2011) to remove data instances with Signal Jumps, EOG-like Arti-
facts, Clipping Artifacts and Head Movements (the latter were
removed using information from a 2-axis gyroscope built into
the EEG headset). Research assistants then manually inspected
the data to identify possible noisy channels. They used EEGLAB
(Delorme and Makeig, 2004) to manually scroll through the con-
tinuous EEG data for each dataset, noting any channels that
appeared flat or drifting (usually representing poor scalp con-
nection). Any channel that was flat or drifting for >33% of the
time was flagged as ‘bad’. They also visually inspected the spec-
tral plots for each dataset, noting any channels that appeared
abnormal. Finally, they also utilized EEGLAB’s auto-channel
rejection to note any channels that exceeded a kurtosis z-score
threshold of 3 s.d. There was often overlap between the ‘bad’
channels identified via these four metrics (visual flat, visual
drifting, visual spectral plot and auto-channel rejection flag).
Any channel that was flagged by two or more of these criteria
was considered ‘bad’ and was removed from further analysis.

The remaining raw data were segmented into 1 s epochs.
Each epoch that overlapped with bad segments as defined
through the procedure described above was removed. Tasks
for which less than 30 s of data remained after this step were
removed from further analysis. These pre-processing steps were
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employed for each task for each participant and resulted in
the preservation of an average of 11 of 14 tasks per group
in both the individual and team condition. While there was
some data loss, there was no significant difference in data
loss between the team and individual condition across tasks,
t(18.94)= 0.82, P=0.421 (supplement ‘Section 5: Group inter-
brain synchrony data loss’, Table S2, and Figure S5). One
group in the individual condition was removed during EEG
pre-processing.

Time-frequency and inter-brain synchrony analysis

Data from each participant were concatenated for the time-
frequency analysis, which was performed using a Hanning-
taper transformation (Maris and Oostenveld, 2007) on each time
point of each cleaned dataset with a window length of five
periods of each frequency (1–40 Hz). Inter-brain synchrony was
quantified following a similar rationale as our previous group
synchronywork (Dikker et al., 2017; Bevilacqua et al., 2019), using
the same computations as Dikker et al. (2019).

Coherence was computed over the spectral coefficients from
each paired electrode, between each pair of participants in a
group, for each ‘overlapping’ 1 s epoch (i.e. EEG data were
preserved for both headsets for that particular time segment),
according to the following procedure: first, the auto spectral den-
sity (power) was computed (Sxx ( f ) and Syy ( f ) in equation (1.1 and
1.2)) over the time-frequency spectral coefficients series X(t, f )
and Y(t, f ) of two separate EEG channels, after which the cross-
spectral density between them was derived (Sxy ( f ) in equation
(1.3)). Then, coherence (equation (1.5)) was computed as the
absolute value of coherency equation (1.4)), a complex number
Cxy (f), for which the phase indicates the average phase differ-
ence between the two series and the magnitude indicates how
consistent this phase difference is.
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)
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(
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This resulted in one coherence value per frequency and elec-
trode pair for each subject pair within the group, in each task.
To match the inter-brain synchrony approach used in Dikker
et al. (2017) and Bevilacqua et al. (2019), we then averaged coher-
ence values across 1–20 Hz over 6 electrode pairs of interest
(‘F3’ ‘F4’ ‘O1’ ‘O2’ ‘P7’ ‘P8’; see Figure 1C), after removing bad
channels that were identified using the visual inspection pro-
cedure described above. These six electrodes were previously
established to be most likely to exhibit decent data quality (Fig-
ure 1C; Dikker et al., 2017), and focusing on these channels

may help circumvent large discrepancies between groups with
respect to the number of channels thatwere considered for anal-
ysis (due to differences in the number of channels considered for
analysis after removing bad channels). For this same reason, we
focused on pairwise comparisons rather than computing syn-
chrony between all possible electrode combinations between
pairs: While many prior studies have found that behaviorally
relevant inter-brain synchrony need not be limited to pairwise
scalp locations across subjects (e.g. Dumas et al., 2010), in our
case (i) electrode placement may vary across participants (e.g.
Dikker et al., 2017), and (ii) there was some variation between
subjects in terms of which channels produced usable data and
which produced noisy data for a given task. This renders any
sensor-specific effects largely uninterpretable.

Pairwise inter-brain synchrony values were then averaged
across the group, providing a measure of group inter-brain syn-
chrony for each task. As absolute synchrony values may depend
on many idiosyncratic factors, all analyses were conducted
over each group’s percent coherence change from baseline (the
pre-baseline task). To avoid undue influence of outliers, we
excluded any normalized group inter-brain synchrony values
that exceeded 3 s.d. from the mean (less than 1% of synchrony
values were excluded). The results are robust to this outlier
exclusion.

Results

Given the design of our experiment, data existed at the subject
and group level. Individual difference measures of cooperation,
group identification, emotion perception and demographics
were at the subject level (each subject has their own data point;
N=174 participants). For some analyses, we obtain a group
average for these individual differences (e.g. average group iden-
tification). Measures of inter-brain synchrony and performance
were at the group level,6 with a data point for each task (N≈473
for inter-brain synchrony; N=308 for performance).7 All analy-
ses match the level of variables, and we perform mixed mod-
els nesting by group for any analyses that include group level
variables.

Behavioral results

We first examined whether participants’ IQ significantly dif-
fered between the team and individual condition, to ensure it
was not a confound when later examining collective perfor-
mance. As expected, there was no difference in the proportion
of correct answers on this test for participants in the team con-
dition (M=0.30, SD=0.10) compared to the individual condition
(M=0.31, SD=0.09), t(170.38)=−0.55, P=0.579, suggesting that
random assignment was successful.

On the other hand, we expected participants who were
part of a team and whose later performance was interdepen-
dent with their teammates, to be more highly identified with

6 As noted, participants in the individual condition had their own perfor-
mance score for each task. To match the group level of scores for teams,
we averaged performance among the four individualswithin a given group
to construct an average performance score for that group. See supple-
ment ‘Section 4: Alternative scoring methods for groups of individuals’
and Figure S3A/B for details.
7 N≈473 for inter-brain synchrony data, as we had 43 groups x 11 tasks
on average where group inter-brain synchrony was computed. N=308 for
group performance data, as we had 44 groups x 7 tasks with performance
data.
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Fig. 4. Panel A: teams (turquoise) were more highly identified than individuals (red). Panel B: teams cooperated more than individuals. Each dot represents a partici-

pant’s level of group identification (Panel A) or contribution to the public pot (Panel B). Means are indicated by a black dot with error bars representing+/− 1 standard

error.

their group than participants who had competed against one
another. Our manipulation appeared successful. First, par-
ticipants in the team condition were more highly identified
(M=68.4, SD=20.9) than participants in the individual con-
dition (M=53.5, SD=21.2), t(171.97)=4.68, P<0.001, d=0.71
(Figure 4A). Second, our manipulation increased cooperation:
participants in the team condition contributed more money to
their group’s public pot (M=$8.54, SD=2.86) than participants
in the individual condition (M=$7.54, SD=3.21; see Figure 4B),
t(169.79)=2.15, P=0.033, d=0.33. As can be seen from Figure 4B,
most participants were highly cooperative, contributing the full
$10 to their group’s public pot, but a difference emerged between
conditions with 74% of participants in the team condition con-
tributing the full amount compared to only 51% of participants
in the individual condition. Thus, teammatesweremore cooper-
ative, and this finding is notable given that the rational choice in
a one-shot public goods game is to be selfish and not contribute
to the public pot (e.g. there are no future-oriented reputational
concerns as it is a one-shot dilemma, and any teams have
already completed their joint work). There was no significant
interaction between group identification and condition when
predicting cooperation (P=0.883).

We next examined team vs individual performance on the
set of problem-solving tasks. We again found predicted differ-
ences between conditions, with teams outperforming individ-
uals. Performing a linear mixed model estimating a random
intercept for each group with condition predicting z-scored per-
formance across the six main problem-solving tasks (excluding
IQ as that task was done individually by all participants), teams
performed much better on average, b=0.71, SE=0.09, P<0.001,
95% CI [0.52, 0.90]. As seen in Figure 5, teams significantly
out-performed individuals on the memory task, t(34.37)=4.46,
P<0.001, brainstorming creative uses of a brick, t(27.36)=9.41,
P<0.001, unscrambling words, t(33.79)= 7.53, P<0.001, and
sudoku, t(24.08)= 7.06, P<0.001, with a marginally significant
trend for the winter survival task, t(30.84)=1.77, P=0.087. This
was expected, as ‘many hands make light work’ and four
teammates should outperform a single individual (Hill, 1982).
However, teams suffer when they encounter a task prone to pro-
cess loss or groupthink (Janis, 1982). Fortunately, we selected
one of our tasks to provide an instance of process loss and
individuals outperformed teams on this task, t(37.24)=−10.93,

P<0.001 (‘Typing’ in Figure 5, top row, middle panel), providing
discriminant validity.

EEG results

Given past work linking inter-brain synchrony to cooperation
and coordination with social partners, we predicted that
inter-brain synchrony would be higher among teammates than
a group of competing individuals. We conducted a linear mixed
model estimating a random intercept for each group and used
condition to predict group inter-brain synchrony across tasks.
As seen in Figure 6A, we did not find a difference in group inter-
brain synchrony between teams or individuals after correcting
for baseline differences between conditions, b=7.33, SE=7.43,
P=0.329, 95% CI [−7.23, 21.89], N-S-J pseudo R2 =12.42%.8 It
is important to note in this regard that when such a baseline
correction was not applied, individuals showed higher inter-
brain synchrony than teams overall, but as can be seen most
clearly in supplemental Figure S6B, this difference was mostly
driven by differences in synchrony pre-manipulation, which
cannot be attributed to group assignment. This drives home the
well-documented caution that should be taken when interpret-
ing between-subject designs.

In addition, although we manipulated group cohesion and
interdependency between the conditions, we found no evidence
that self-reported group identification was associated with
group inter-brain synchrony, b=0.47, SE=0.48, P=0.335, 95% CI
[−0.47, 1.40], N-S-J pseudo R2 =1.49%. Moreover, neither group
emotion perception, b=2.14, SE=2.28, P=0.354, 95% CI [−2.33,
6.62], nor group cooperation, b=3.67, SE=3.77, P=0.336, 95%
CI [−3.72, 11.06] (nor their interactions with condition), pre-
dicted group inter-brain synchrony.9 As such it appears, group
inter-brain synchrony is not explained by individual measures
of group identification, emotion perception or cooperation.

Using similar linear mixed models, we next examined
whether inter-brain synchrony varied over time as a function of
condition. Interestingly, as seen in Figure 6B and supplemental

8 R2 values refer to Nakagawa-Schielzeth-Johnson’s (N-S-J) conditional
coefficients of determination for generalized mixed-effect models
(Nagakawa and Schielzeth, 2013; Johnson, 2014).
9 See supplement Table S1 for zero-order correlations of key variables.
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Fig. 5. Teams (turquoise) outperformed the average of individuals within a group (red) across all six problem-solving tasks except the typing task which is prone to

process loss. Each dot represents a group. Means are indicated by a black dot with error bars representing+/− 1 standard error.

Figure S6B, group inter-brain synchrony decreased over time for
both teams and individuals, b=−4.38, SE=0.77, P<0.001, 95%
CI [−5.89, −2.87]. Further, although there was no significant
interaction between time and condition, individuals showed
more inter-brain synchrony decrease than teams between pre-
baseline and end-baseline t(28.14)=2.79, P=0.009 (Figure 6C).
Indeed, the difference in inter-brain synchrony occurs for
the team condition once they begin collective problem-solving
(photo/memory task).

Next, we examined whether inter-brain synchrony was
related to collective performance. We conducted a linear mixed
model estimating a random intercept for each group using group
inter-brain synchrony and condition to predict collective per-
formance across tasks. In addition to the main effect of con-
dition, with teams outperforming individuals, we found a sig-
nificant interaction such that group inter-brain synchrony pre-
dicted performance among teams but not individuals, b=0.35,
SE=0.11, P= 0.002, 95% CI [0.13, 0.56], N-S-J pseudo R2 =14.46%
(Figure 7; full model results in supplement, Table S3 step 1).
Specifically, for every 1 s.d. increase in the percent coher-
ence change from pre-baseline, teams did 0.20 s.d. better
on performance relative to individuals. Thus, teams that
showed higher inter-brain synchrony also performed better on
average.

To ensure this association was not spurious, we randomly
shuffled the inter-brain synchrony data and repeated the mixed
model. Using the shuffled data, the interaction was no longer
significant (P=0.442), suggesting that the original association
was not spurious. In addition, when we removed the process-
loss task (typing) in an attempt to disaggregate tasks that ben-
efited from teamwork from those that suffered from it, the
interaction between inter-brain synchrony and condition on per-
formance remained significant, b=0.27, SE=0.11, P= 0.014, 95%
CI [0.06, 0.48]. This suggests this finding was relatively robust to
how we specified collective performance.

In addition, the extant literature on team performance
suggests that one important factor that contributes to team
success is a group’s shared identity (Hogg et al., 2004). As such,
we next added self-reported group identification as an addi-
tional predictor in our mixed model, including its interaction
with condition. Surprisingly, we found no evidence that self-
reported group identification (nor its interaction with condition)
predicted collective performance, b=0.00, SE= 0.01, P=0.600,
95% CI [−0.01, 0.02], N-S-J pseudo R2 = 14.68%, whereas group
inter-brain synchrony continued to predict collective perfor-
mance for teams, b=0.35, SE=0.11, P=0.002, 95% CI [0.14, 0.57]
(full model results in supplement, Table S3 step 2). In other
words, inter-brain synchrony predicted performance among
teams over and above participants’ self-report of howmuch they
liked or valued their group.

Moreover, given that cooperation and emotional intelligence
have been previously associated with team performance, we
also added our post-task measures of cooperation and emo-
tion perception to our mixed model as predictors, including
their interactions with condition. Neither cooperation, b=0.00,
SE=0.06, P=0.986, 95% CI [−0.11, 0.11] nor emotion perception,
b=0.00, SE=0.03, P=0.987, 95% CI [−0.07, 0.07], N-S-J pseudo
R2 =14.63% (nor their interactions with condition), significantly
predicted collective performance, whereas group inter-brain
synchrony again continued to predict collective performance
for teams (full model results in supplement, Table S3 step 3).
Thus, when attempting to predict collective performance among
teams using both self-report and behavioral indices, the best
predictor was inter-brain synchrony.

Discussion

Although humans are fundamentally social and work in teams
nearly every day, little is known about the neural dynam-
ics underlying such group interactions. Here, we found that
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Fig. 6. Panel A: group inter-brain synchrony was similar between teams (turquoise) and individuals (red) including all tasks with available EEG data. Panel B: group

inter-brain synchrony decreased over time, though as seen in Panel C, this decrease was larger for individuals than teams by end-baseline. The y-axis represents each

group’s percent coherence change from pre-baseline, with each dot representing a group inter-brain synchrony value for a given task. Means (Panel A) are indicated

by a black dot with error bars representing+/− 1 standard error. The black dashed horizontal line (Panel B and C) represents zero change from pre-baseline.

teams were more highly identified, more cooperative and out-
performed a group of individuals on tasks that avoided pro-
cess loss. Critically, inter-brain synchrony predicted collec-
tive performance among teams, but not within members of
a group who were working on the same tasks individually.

Moreover, we found that inter-brain synchrony predicted col-
lective performance among teams over and above self-reported
group identification and behavioral indices of cooperation and
emotion perception. This suggests that inter-brain synchrony
can be informative in understanding collective performance
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Fig. 7. Group inter-brain synchrony predicted performance for teams (turquoise) but not for individuals (red). Synchrony values represent each group’s percent

coherence change from baseline (the pre-baseline task), and each dot represents a group and a given task. Shading represents 95% confidence interval.

among teams where self-report measures may fail to capture
behavior.

Although the precise significance of inter-brain synchrony is
still an active area of research, our results suggest that inter-
brain synchrony may provide a useful implicit, unobtrusive and
continuous measure that captures important aspects of inter-
personal interactions. Specifically, we found that inter-brain
synchrony predicted collective performance among teams but
not among groups of individuals. This finding is related to
results from our prior classroom group studies where inter-brain
synchrony was predictive of social closeness between the stu-
dent and their teacher as the teacher lectured but not while
students were watching videos (i.e. when the teacher was co-
present but not socially engaged with students; Dikker et al.,
2017). In the current research, inter-brain synchrony appears
to better predict collective action rather than the psychological
experience of being in a group. For example, inter-brain syn-
chrony was significantly associated with collective performance
but not self-reported group identification. Moreover, although
inter-brain synchrony decreased over time in both conditions,
this decrease was slightly buffered once collective problem-
solving began in the team condition (i.e. the photo/memory
task; see Figure 6B and supplemental Figure S6B). By the end
of the study, teams were higher than individuals on synchrony
(Figure 6C). This is consistent with previous work which found
that inter-brain synchrony and focus decreased over time, and
that such a decrease can be attenuated by socially relevant
manipulations (Dikker et al., 2019). This suggests that inter-brain
synchronymay capture socially relevant neural information pro-
cessing and may reflect or promote coordinated attention and
action.

Moreover, some groups may be more coordinated than oth-
ers. From anecdotal accounts based on the chat logs and post-
study interviews with the participants, some teams had more
group structure and leadership compared to others, which could
track inter-brain synchrony. Thus, while inter-brain synchrony
is relational, it is possible that inter-brain synchrony may be
an implicit marker that identifies which members of a team
are skilled at drawing the attention of others in a coordinated
and persuasive manner. This is based on previous approaches
which find that a common stimulus—such as a leader among a
group—can be a synchronizer.

Indeed, previous research has found that measures of phys-
iological synchrony (‘linkage’) may track who draws the atten-
tion of others within a group and is thus a persuasive leader
(Thorson et al., 2019). Leader–follower dynamics can emerge
in more complex social exchanges, and inter-brain synchrony
in the left TPJ (an area associated with mentalizing) has been
found preferentially for leader–follower relationships (relative to
follower–follower relationships) and is associated with leader’s
communication skills and competence (Jiang et al., 2015). These
results suggest that effective leaders may be able to entrain oth-
ers to their communications, which can be tracked in real-time
through implicit measures such as neurophysiological synchro-
nization. One speculative interpretation for our finding that
teams did not have higher inter-brain synchrony than individ-
uals, yet inter-brain synchrony tracked performance for teams,
could be that shared entrainment to a stimulus (the time-locked
computer tasks present in both conditions) may provide a basis
for inter-brain synchrony, which can then be either diminished
among uncoordinated teams (e.g. vis-à-vis attentional distrac-
tions or disengagement such as social loafing, Latané et al., 1979)
or enhanced among coordinated teams However, we are unable
to formally corroborate this from our data, and future research
should test these possibilities more directly.

Importantly, we found that inter-brain synchrony predicted
collective performance above and beyond self-report measures
of group identification and behavioral indices of cooperation
and emotion perception. This finding points to the added
value of inter-brain synchrony as an implicit measure that can
predict team success. Although we believe replications and
future research are needed to build confidence in the results,
it is possible that inter-brain synchrony could inform latent
aspects of collective performance, not visible through the myr-
iad explicit individual difference measures or team structures
that researchers typically collect when attempting to predict
successful teams. For example, Google was unable to predict
their best teams despite using a battery of demographic and
personalitymeasures (e.g. how frequently teammates socialized
outside the office, if they had the same hobbies, if their educa-
tional backgroundswere similar, if their personalities weremore
extroverted or introverted, if gender composition mattered, etc,
see Duhigg, 2016). Our work is in keeping with the brain-as-
predictor framework: past work has shown that brain responses
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may be better predictors of smoking cessation relative to self-
report measures alone (Falk et al., 2011). Here, we similarly find
that inter-brain synchrony may be able to predict which teams
will be successful better than self-reported group identification.

Limitations

We originally designed our experiment—and chose our specific
set of problem-solving tasks—with the aim of testing whether
inter-brain synchrony was associated with a group’s collective
intelligence—a latent factor that was shown to predict a group’s
performance across a range of tasks (Woolley et al., 2010). How-
ever, we were unable to compute collective intelligence since
the correlations between each task were not always positive
(supplement Figure S4A/B), which was a prerequisite for com-
puting this factor. We therefore computed a mean score on col-
lective performance. Exploratory analyses also revealed that col-
lective performance’s relationship with inter-brain synchrony
varied across tasks (supplement Figure S7C). Moreover, recent
research found that collective intelligence may be primarily
explained by the summation of individual member’s IQ (Bates
and Gupta, 2017), raising questions around the construct of
collective intelligence. As such, more work should be done to
validate collective intelligence.

In addition, in keeping with our previous work (Dikker et al.,
2017; Bevilacqua et al., 2019), we calculated inter-brain syn-
chrony using only six electrodes and only between identical
electrode pairs, which limits our ability to determine the neu-
ral mechanisms of collective behavior. While there is no a priori
reason to assume that inter-brain synchrony should be concen-
trated in the same electrode pairs, and that in fact inter-brain
connectivity between different electrodes can be stronger and
in fact more meaningful, it is important to note that for the
headsets used in this study, electrode placement may vary con-
siderably between individuals. Therefore, the locations are not
to be interpreted.

Further, while we frame inter-brain synchrony as ‘predicting’
collective performance, our correlational results do not rule out
the possibility that the causal direction is reversed (i.e. collec-
tive performance predicting inter-brain synchrony). In fact, it is
possible that both causal pathways may operate in a dynamic
fashion or that inter-brain synchrony acts as a passive indicator
of coupling at the psychological and behavioral level. Unraveling
these processes is a fruitful area for future research.

Conclusion

Little is known regarding the neural dynamics associated with
group interactions and collective performance. As groups con-
tinue to shape how we achieve our goals in fields ranging from
education (e.g. classrooms) to politics (e.g. parties) to business
(e.g. corporate teams), a gap exists between how people interact
in the real-world and our understanding of the neural pro-
cesses during group interactions. The present work aimed to
help address that gap. We found that teams were more highly
identified, more cooperative and out-performed individuals on
tasks that avoided process loss. Moreover, our results suggest
that inter-brain synchrony may predict successful teams where
self-report measures and behavioral indices may fail to cap-
ture behavior. This represents a step towards understanding the
neuroscience and psychology underlying collective performance
and cooperation.

Supplementary data

Supplementary data are available at SCAN online.
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