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Abstract

Motivation: Determining the methylation state of regions with high copy numbers is challenging

for second-generation sequencing, because the read length is insufficient to map reads uniquely,

especially when repetitive regions are long and nearly identical to each other. Single-molecule

real-time (SMRT) sequencing is a promising method for observing such regions, because it is not

vulnerable to GC bias, it produces long read lengths, and its kinetic information is sensitive to DNA

modifications.

Results: We propose a novel linear-time algorithm that combines the kinetic information for neigh-

boring CpG sites and increases the confidence in identifying the methylation states of those sites.

Using a practical read coverage of �30-fold from an inbred strain medaka (Oryzias latipes), we

observed that both the sensitivity and precision of our method on individual CpG sites were

�93.7%. We also observed a high correlation coefficient (R¼ 0.884) between our method and bisul-

fite sequencing, and for 92.0% of CpG sites, methylation levels ranging over [0,1] were in concord-

ance within an acceptable difference 0.25. Using this method, we characterized the landscape of

the methylation status of repetitive elements, such as LINEs, in the human genome, thereby reveal-

ing the strong correlation between CpG density and hypomethylation and detecting hypomethyla-

tion hot spots of LTRs and LINEs. We uncovered the methylation states for nearly identical active

transposons, two novel LINE insertions of identity �99% and length 6050 base pairs (bp) in the

human genome, and 16 Tol2 elements of identity>99.8% and length 4682 bp in the medaka

genome.

Availability and Implementation: AgIn (Aggregate on Intervals) is available at: https://github.com/

hacone/AgIn

Contact: ysuzuki@cb.k.u-tokyo.ac.jp or moris@cb.k.u-tokyo.ac.jp
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1 Introduction

There has been a great deal of interest in identification of genome-

wide epigenetic DNA modifications in recent years, because DNA

modifications play an essential role in cellular and developmental

processes (Anway et al., 2005; Miller, 2010; Molaro et al., 2011;

Schmitz et al., 2011; Smith et al., 2012; Weaver et al., 2004;

Zemach et al., 2010). Some of human transposable elements (TEs),

such as long interspersed nuclear elements (LINE), transpose ac-

tively within somatic cells along differentiation of neural tissues and

are partly regulated by DNA methylation (Muotri et al., 2005,

2010). Each family of human TEs exhibits a variety of methylation

statuses in different tissue types, which was found by looking at the

mixture of methylation information on the consensus sequence of

TEs in the same family (Xie et al., 2013). Many human diseases are

also associated with DNA methylation state of TEs. In particular,

unmethylation of repetitive elements (REs), such as LINE-1 (L1)

elements, has been related to some cancers (Ross et al., 2010;

Wilson et al., 2007). Although only a few L1 elements exhibit activ-

ity in the human genome (Beck et al., 2010), it has been reported in

various cancer genomes (Goodier, 2014; Lee et al., 2012), and im-

portantly, transposition is correlated with unmethylation in the pro-

moter region of L1 elements (Tubio et al., 2014). Therefore, it is

essential to develop an experimental framework that can character-

ize the methylation state of REs in a genome-wide manner.

The advent of second-generation sequencing technology has

increased the efficiency of the generation of precise genome-wide

methylation maps at a single-base resolution using bisulfite treat-

ment (Cokus et al., 2008; Lister et al., 2008, 2009; Harris et al.,

2010; Meissner et al., 2008); however, these sequencing-based tech-

nologies have difficulty in characterizing the methylation status of

CpGs in regions that are highly similar to other regions. Bisulfite-

treated short reads from these regions often fail to map uniquely to

their original positions; instead, they are likely to be aligned ambigu-

ously to multiple genomic positions. Especially, the younger and

more active transposons retain higher fidelity and are therefore diffi-

cult to address using short reads.

The PacBio RS II sequencing system uses DNA polymerases to

perform single-molecule real-time (SMRT) sequencing (Eid et al.,

2009; Korlach et al., 2008), and is able to sequence reads of an aver-

age length of >10 kb. It is also able to sequence genomic regions

with extremely high GC content. A striking example is the sequenc-

ing of a >2-kb region with GC content of 100% (Loomis et al.,

2012), indicating that SMRT sequencing is less vulnerable to se-

quence composition bias than first/second-generation sequencing is.

SMRT sequencing of bisulfite-treated DNA fragments may allow

identification of DNA methylation; however, this approach is un-

likely to process long, highly identical repeats because bisulfite treat-

ment breaks DNA into fragments of <1500 bp (Miura et al., 2012;

Yang et al., 2015). Instead, we explored another advantage of

SMRT sequencing to detect DNA modifications directly.

2 Approach

In SMRT sequencing, we observe the base sequence in a single DNA

molecule as the time course of the fluorescence pulses which reflect

the incorporation processes of nucleotides. From this time course in-

formation, we define the inter-pulse duration (IPD), the time interval

separating the two pulses of consecutive bases. Importantly, the IPD

of the same genomic position varies and has a significant and pre-

dictable response to the presence of DNA modifications and dam-

ages (Flusberg et al., 2010).

Since the IPD tends to be perturbed systematically when DNA

modifications are present, SMRT sequencing has been used to detect

5-hydroxymethylcytosine (Flusberg et al., 2010), N4-methylcytosine

(Clark et al., 2012), N6-methylademine (Fang et al., 2012; Feng

et al., 2013; Flusberg et al., 2010; Greer et al., 2015) and damaged

DNA bases (Clark et al., 2011) in bacteria and mitochondria.

Though the sequence motifs with modifications can be detected

with very low coverage (Beckmann et al., 2014), estimation of 5-

methylcytosine (5-mC) residues using low-coverage reads is chal-

lenging. It requires extensive coverage (�500�) at each position to

clarify the base-wise 5-mC state and therefore becomes costly (Fang

et al., 2012; Flusberg et al., 2010; Schadt et al., 2012). Clark et al.

(2013) attempted to improve the detection of microbial 5-mC in the

Escherichia coli and Bacillus halodurans genomes using Tet1-

mediated oxidation to convert 5-mC into 5caC in SMRT reads of

�150� coverage per DNA strand. Therefore, kinetic information

from low-coverage SMRT reads at a single CpG site is not reliable

for predicting the methylation status.

In this study, we exploited the facts that unmethylated CpG di-

nucleotides are rare (�10%) in vertebrates and generally do not

exist in isolation but often range over long hypomethylated regions

(Bock et al., 2008; Eckhardt et al., 2006; Gifford et al., 2013;

Nautiyal et al., 2010; Qu et al., 2012; Shoemaker et al., 2010; Xie

et al., 2013). Su et al. (2012) reported that the average length of

hypomethylated regions in five human cell types is �2 kb. Thus, esti-

mating regions with unmethylated CpG sites is informative in most

cases. Moreover, integrating kinetic information over many CpG

sites in a long region can increase the confidence in detecting methy-

lation when the status of those sites is correlated. Therefore, it

shows promise for predicting the methylation status in a block using

low-coverage SMRT reads. In the rest of this article, we examine the

feasibility of the approach and present a novel computational algo-

rithm that integrates SMRT sequencing kinetic data and determines

the methylation status of CpG sites.

3 Methods

3.1 Outline of our method AgIn
Figure 1A shows a schematic representation of the basic concept of

our method. To eliminate the context-dependent fluctuation of the

IPD values, we calculated the IPD ratio (IPDR) on each genomic

position as previously described (Flusberg et al., 2010). This normal-

ization is essential to compare the IPD values from different genomic

positions with various sequence contexts. Then, we defined the

IPDR profile of a CpG site as an array of IPDR measurements of

21 bp surrounding the CpG site because these neighboring positions

have proven to be effective in predicting 5-hydroxymethylcytosine,

N4-methylcytosine and N6-methylademine in bacteria genomes in

previous studies (Clark et al., 2011, 2012; Fang et al., 2012;

Flusberg et al., 2010). With low coverage, the IPDR profiles at indi-

vidual CpG sites are noisy and insufficient for determining whether

each CpG site is methylated or not. However, if we could somehow

identify the boundaries of hypomethylated/hypermethylated regions

and take the average of the IPDR profiles for the CpGs within each

region, then it would allow better prediction of the methylation state

of each region from its average IPDR profile, which has less noise

than the profile of a single CpG site. Averaging the IPDR profiles is

also expected to alleviate the possible confounding effect from other

types of modifications found in DNA. An example of our prediction

for the human genome is shown in Figure 1B. Our method was able

to estimate hypomethylation of long duplicated regions while the
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bisulfite sequencing provided little information. Supplementary

Figure S1C illustrates another example in which both methods were

consistent in showing hypomethylation in the gene promoters.

3.2 Estimating the methylation status at each CpG site
Suppose that the focal genome has n CpG sites. We denote the gen-

omic position of C of the ith CpG site by piði ¼ 1; . . . ; nÞ. For ex-

ample, if the C of the second CpG site is at the 10th genomic

position, .” ‘p2 ¼ 10.’ Our goal is to predict the methylation status,

unmethylated or methylated, at pi using information of the read

coverage and the IPDRs at positions surrounding pi. 21 neighboring

positions are denoted by pi þ j for j ¼ �10; . . . ;þ10 in the plus

strand. For example, the positions 5 bases upstream and down-

stream of pi are pi � 5 and pi þ 5, respectively.

We used the SMRT Analysis pipeline to process raw kinetic data

from SMRT sequencing to obtain the mean IPDR and the read cover-

age at each genomic position. Let ri and r0i denote the mean IPDR

associated with position i of the forward and reverse strands, respect-

ively, and let ci and c0i denote the read coverage at position i of the for-

ward and reverse strands, respectively. To achieve a better prediction,

we derive a modified IPDR vector from the raw read coverage and the

IPDRs within 10 bases around pi. For this purpose, we consider that

the property that any CpG site in one strand is reverse complementary

to the CpG in the other strand, and the methylation status of Cs at a

pair of CpG sites in both strands is consistent in most cases, making it

meaningful to combine IPDR information for both strands to predict

the methylation status. To represent positions in the minus strand, we

note that since we set pi to the position of C of the focal CpG in the

plus strand, the position of C of the CpG in the minus strand is pi þ 1,

and the surrounding positions are pi þ 1� j for j ¼ �10; . . . ;þ10.

We attach more importance to the IPDR values associated with a

higher read coverage and we quantify this as cpiþj � rpiþj in the plus

strand (c0piþ1�j � r0piþ1�j in the minus strand). We then take the sum of

all the products and normalize it by dividing it by the total coverage.

Finally, we obtain the 21-dimensional modified IPDR vector for 21

genomic positions around CpG site pi:

bXðpiÞj ¼
cpiþjrpiþj þ c0piþ1�jr

0
piþ1�j

cpiþj þ c0piþ1�j

ðj ¼ �10; . . . ;þ10Þ:

A

B

Fig. 1. Outline of our integration method. (A) The top three distributions show the typical inter-pulse duration ratio (IPDR) profiles within 10bp of the CpG sites in the

raw data. The IPDR profiles of individual CpG sites were treated as points in the 21-dimensional feature space. Red-colored unmethylated CpGs and blue-colored

methylated CpGs are often difficult to separate using a hyperplane. Therefore, initially, we had little knowledge about the methylation status of each CpG site from the

raw data, as illustrated by the question marks at the CpG sites. Our algorithm predicts the boundary of unmethylated and methylated CpG sites. The average IPDR

profiles of the two regions, which have clearly distinct IPDR profiles, are shown below the two regions separated by the boundary (see the detailed IPDR profiles in

Supplementary Fig. S1B). Red circles and blue boxes represent unmethylated and methylated CpGs, respectively, predicted by our algorithm (annotated as ‘predicted

regions’) and were observed by bisulfite sequencing (labeled ‘answer’). In the feature space, red and blue disks represent the IPDR profiles of predicted regions. (B)

Comparison of our prediction with the available human genome methylome data. From top to bottom, black bars indicate hypomethylated regions predicted from

SMRT sequencing data using our method. Yellow and black bars show the methylation level and read coverage obtained from public bisulfite sequencing data, re-

spectively, and blue boxes show hypomethylated regions predicted from the bisulfite data. Green bars below indicate the alignability of short (100-bp) reads. The bot-

tom row shows repeat masker tracks. Both methods are consistent in showing hypomethylation on the three blue-colored regions. No read counts of the bisulfite

data are available in long duplicated regions where the alignability is quite low, but our method can estimate hypomethylation in these regions
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We are now in a position to define a classifier that uses bXðpiÞ as

explanatory variables and predicts the methylation status at pi. We

attempted to use linear discriminant analysis (LDA) with the dis-

criminant function

FðpiÞ ¼ b � bXðpiÞ þ c;

where we optimized the values of coefficient vector b and variable c

using bisulfite sequencing data as the training dataset to improve the

prediction. Supplementary Figure S1A and D shows the optimized

vector b that we used in this study. We do not claim this vector is

the simplest one since excluding the low-contributing components

from the parameter degraded the accuracy only by a little

(Supplementary Fig. S3G). If the sign of the discriminant function,

FðpiÞ, is positive, the methylation status at pi is defined as ‘methy-

lated’; otherwise, it is defined as ‘unmethylated’. Our goal is to

achieve a higher accuracy using a lower read coverage in order to re-

duce the cost.

3.3 Predicting the methylation status of CpG blocks
In vertebrates, unmethylated CpG dinucleotides are rare (�10%)

and do not always exist in isolation, but they are likely to range over

long hypomethylated regions. This motivates us to integrate low-

coverage reads around CpGs in a region to yield high-coverage for

estimating the methylation status in the entire region, rather than at

a single-base resolution. Let A denote a region. The following for-

mula expresses the average IPDR vector for 21 genomic positions

around all the CpG sites in region A and its associated discriminant

function:

bXðAÞj ¼
X

pi2A
ðcpiþjrpiþj þ c0piþ1�jr

0
piþ1�jÞX

pi2A
ðcpiþj þ c0piþ1�jÞ

ðj ¼ �10; . . . ;þ10Þ:

FðAÞ ¼ b � bXðAÞ þ c

Processing a longer region with sufficient CpG sites can improve

the accuracy of the prediction, although it may overlook smaller re-

gions. In our analysis, we imposed the constraint that each region

contained at least b CpG sites. For example, we can set b to 50 be-

cause the average length of hypomethylated regions in five human

cell types is approximately 2 kb (Su et al., 2012) and the average dis-

tance between neighboring CpG sites in the medaka genome is 53.5

bases, although this constraint should be adjusted according to each

individual situation. The possibility of the hypermethylation (hypo-

methylation, respectively) of A increases with a larger positive

(negative) value of FðAÞ, as well as for a larger total coverage,

wðAÞ ¼
X

pi2A;j¼�10;...;þ10

ðcpiþj þ c0piþ1�jÞ:

A with a larger magnitude of wðAÞFðAÞ is better for prediction.

3.4 Decomposing the genome into

hypomethylated/hypermethylated CpG blocks
Now, we must consider how to decompose n CpG sites in the whole

genome into hypermethylated regions fMk2Kg and hypomethylated

regions fUl2Mg such that all regions are disjoint from each other,

their union covers all CpG sites, and the two types of regions occur

alternatingly along the genome. We calculate the optimal decompos-

ition of regions that maximizes the following objective function:X
k2K

wðMkÞFðMkÞ þ
X
l2M

�wðUlÞFðUlÞ:

To simplify this problem, we here mention one important char-

acteristic of SMRT sequencing, that is, read coverage is not affected

by the sequence composition (Bashir et al., 2012; English et al.,

2012; Koren et al., 2012; Loomis et al., 2012; Zhang et al., 2012).

Thus, the average coverage in A is constant at any position within

10 bp relative to CpGs. Technically, we can assume that the average

of coverages at the jth position around all the CpG sites in region A

is a constant �c that is dependent of A but is independent of j:X
pi2A
ðcpiþj þ c0piþ1�jÞ
jAj ¼ �c for j ¼ �10; . . . ; 10;

where jAj denotes the number of CpG sites in A. This allows us to

transform w(A) into a simpler form:

wðAÞ ¼
X

pi2A;j¼�10;...;þ10

ðcpiþj þ c0piþ1�jÞ ¼ 21�cjAj

Subsequently, we simplify the objective function:

wðAÞFðAÞ ¼wðAÞðb � bXðAÞþ cÞ

¼ 21�cjAj cþ
X

j

bj

X
pi2A
ðcpiþjrpiþjþ c0piþ1�jr

0
piþ1�jÞ

�cjAj

0@ 1A
ð�10 � j � þ10Þ

¼ 21 c�cjAjþ
X

j

bj

X
pi2A

ðcpiþjrpiþjþ c0piþ1�jr
0
piþ1�jÞ

 !

¼
X
pi2A

21 c�cþ
X

j

bjðcpiþjrpiþjþ c0piþ1�jr
0
piþ1�jÞ

 !
¼
X
pi2A

si;

where si denotes 21ðc�cþ
X

j

bjðcpiþjrpiþjþ c0piþ1�jr
0
piþ1�jÞÞ:

Finally, the objective function is a linear combination of si:X
k2K

wðMkÞFðMkÞ þ
X
l2M

�wðUlÞFðUlÞ ¼
X
k2K

X
pi2Mk

si þ
X
l2M

X
pi2Ul

ð�siÞ

Although we set si to a score calculated from weighted IPDR in-

formation, we can set si to a log-likelihood function of the form �
logQi for some likelihood function Qi. This simple form motivates

us to design an O(n)-time dynamic programming algorithm for cal-

culating the optimal value efficiently. We consider the sub-problem

involving the first i CpG sites among all n sites, and let SM
i and SU

i be

the maximum values of the objective function when the last ith CpG

site is methylated and unmethylated, respectively. SM
i and SU

i meet

the following recurrences:

SM
iþ1 ¼ max SM

i þ siþ1; SU
i�bþ1 þ

Xiþ1

k¼i�bþ2

sk

( )

SU
iþ1 ¼ max SU

i � siþ1; SM
i�bþ1 þ

Xiþ1

k¼i�bþ2

ð�skÞ
( )

The first max term implies extension of the running region by

one CpG site, while the second term means a switch from the previ-

ous methylation status and the initiation of a new region with � b

CpG sites. For example, we can set b to 50, but one can change the
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requirement for the minimum number of CpG sites in a region by

making an appropriate adjustment to the second term. OfSM
n andSU

n ,

the larger value gives the maximum value, and tracing back the opti-

mal path from the maximum value provides all the boundaries be-

tween neighboring methylated and unmethylated regions. To

calculate regions satisfying the constraint on the minimum number

of CpG sites, we generalized the dynamic programming idea pro-

posed by Cs}urös (2004). One might wonder if the hidden Markov

Model (HMM) can be used for computing hypomethylated and

hypermethylated regions; however, it is not obvious that using

HMM guarantees the requirement that each range has � b CpG

sites.

4 Results

4.1 SMRT sequencing and bisulfite data benchmark
We collected 31.06-fold coverage SMRT subreads from the testes of

medaka Hd-rR (assuming an estimated genome size of 800 Mb)

using P6-C4 reagents (Supplementary Methods). We also collected

22.45-fold and 13.06-fold coverage SMRT reads from human per-

ipheral blood of two Japanese individuals. Thus, we have three data-

sets in total, 1 for medaka and 2 for human. For sequencing two

human samples, we employed the P6-C4 reagents and the P4-C2 or

C2-C2 reagents, respectively (Supplementary Methods). In total

2848641, 7279594 and 19115712 subreads mapped to the medaka

genome and the human genome, respectively. The mean mapped

sub-read lengths were 8722 bases for medaka and 9254 and 2049

bases for 2 human samples (Supplementary Table S1).

As CpG methylation status reference data, we used the testes

methylome of the medaka Hd-rR inbred strain by way of Illumina

bisulfite sequencing (Qu et al., 2012). In this dataset, most of the

CpG sites in the medaka genome are either unmethylated or methy-

lated, and methylation at non-CpG sites is very rare (�0.02%),

allowing us to focus on CpG sites only. We evaluated the prediction

accuracy of our integration method using the methylation scores cal-

culated from bisulfite-treated Illumina reads as the answer set. Let S

be the set of bisulfite-treated Illumina reads covering the ith CpG

site, x be the number of methylated CpGs in S at i, and y be the

coverage of S at i (the size of S). We then defined the methylation

status as ‘unmethylated’ if the score x/y was less than 0.5; otherwise,

it was defined as ‘methylated’. We need to carefully constrain the

value of the coverage y. Allowing a lower value of y is likely to pro-

duce more erroneous methylation scores, while using y greater than

a higher threshold would reduce the number of CpGs associated

with their methylation scores. The average coverage was 9.40-fold

in our bisulfite-treated reads collected from testes of the Hd-rR me-

daka inbred strain; however, the coverage at individual CpG sites

varied to some extent. We defined the methylation score only when

the CpG site was covered by 10 or more reads (i.e. y � 10) in order

to make sure the scores were robust enough.

4.2 Computational performance
Our linear-time algorithm allows us to handle vertebrate-scale gen-

omes with millions of CpG sites in a reasonable amount of time. It

took 2.265 s on average to process 1 Mbp (1191 s to handle

525.7 Mb of medaka genome v.1) using a laptop PC (Intel i7-

3612QM processor with a clock rate of 2.10 GHz and 7.8 GB of

main memory).

4.3 Predicting the methylation state from kinetic data
We implemented our method using linear discrimination of the vec-

tors of (average) IPDR profiles around the CpG sites. We repre-

sented the vectors as points residing in the Euclidean space of the

appropriate dimension and attempted to separate the points by a de-

cision hyperplane (Fig. 1A). For better accuracy, we optimized two

parameters of the decision hyperplane, the orientation and the inter-

cept. Supplementary Figure S1A (for P6-C4 reagents) and D (for P4-

C2 reagents) shows the optimized orientation. Our method divides

the genome into regions containing � b CpG sites, such that each re-

gion is either hypomethylated or hypermethylated. While setting

lower bound b to 50 is supported by the plausible heuristics with

biological grounds, a looser bound (b<50) allows us to detect

shorter regions. We, therefore, examined when we could use a

smaller value of b ð¼ 30;35;40;45Þ without degrading the accuracy

of prediction.

We predicted the methylation status of each CpG site by check-

ing whether the CpG site was located in an hypomethylated or

hypermethylated region output by our method. We measured the ac-

curacy of the prediction by checking the consistency between the

prediction and the methylation score associated with each CpG site.

CpG sites without methylation score (due to the lack of bisulfite-

treated reads) were ignored. We treat an unmethylated status as

positive and a methylated status as negative because we are more

interested in identifying rare hypomethylated regions accounting for

a small portion (e.g. �10%) of CpG sites.

To evaluate the accuracy of our method, we used the chromo-

some 1 of length 34 959 811 bp in the medaka genome (version 2)

that we assembled from SMRT sub-reads. For predicting CpG

methylation accurately, we guaranteed that each CpG site was cov-

ered by at least three sub-reads, and set the coverage to 0 otherwise,

which slightly reduced the original average read coverage, 31.06-

fold, to 29.9-fold on the chromosome 1. We calculated various ac-

curacy measures, such as sensitivity (recall), specificity (1–false-posi-

tive rate) and precision by comparing our prediction on each CpG

site with the methylation level determined in a bisulfite sequencing

study (Qu et al., 2012). As most CpG sites in the medaka genome

are methylated consistently, there are only a small number of posi-

tive examples of unmethylated CpGs, and therefore, precision is

more informative than specificity in evaluation. We made the trade-

off between sensitivity and precision through the selection of the

intercept of the decision hyperplane (�8:0 � c � 5:0) (Fig. 2A and

Supplementary Figs. S2–S3). When we used 100% of 29.9-fold sub-

reads, setting b to 35 outperformed the other values (Fig. 2A). Our

prediction achieved 93.7% sensitivity and 93.9% precision, or 93.

0% sensitivity and 94.9% precision, depending on the selection of

the intercept. To examine the coverage effect, we used five subread

sets of coverage 20, 40, 60, 80 and 100% of 29.9-fold. For cover-

ages of 20 and 40% of 29.9-fold, setting b to 50 performed best

(Supplementary Fig. S3). Both sensitivity and precision were �90%

for b¼45 even if the coverage is relatively small, 60% of 29.9-fold

(Supplementary Fig. S3C). In selecting b, it was suggested to use a

larger value (b¼50) when the read coverage is small (15–20-fold)

so that the cumulative coverage (750–1000-fold) is large enough.

One can use a smaller value (b¼35) with sufficient read coverage

(�30-fold), and b can be decreased gradually with deeper coverage.

Setting b to 1 corresponds to the case where the methylation state of

each CpG is predicted independently, but it could not achieve a

good accuracy, which confirmed the merit of our aggregating ap-

proach (Supplementary Fig. S3F). The ROC curve, the tradeoff be-

tween false-positive rate and sensitivity, is also shown in Figure 2B.
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Overall, sensitivity and precision of our method are substantially

high using a reasonable coverage of SMRT subreads.

4.4 Handling intermediate methylation states
We have introduced the two-class model of our prediction that as-

signs all of the CpG sites into either hypomethylated or hypermethy-

lated regions; however, such a dichotomous model is rather

unrealistic, and more refined predictions involving multi-level

methylation states or even continuous methylation levels are desir-

able. For example, an intermediate level of CpG methylation could

result from the distinct methylation states of two DNA molecules of

diploid cells, although each cytosine must be either methylated or

unmethylated in a single DNA molecule. More generally, a cell

population can be epigenetically heterogeneous, which would pos-

sibly show a spectrum of methylation levels according to its compos-

ition. Finally, prediction allowing intermediate states can represent

the ambiguity of the prediction, and exclusion of such ambiguous

predictions should improve the overall prediction accuracy.

Thus we extended our method in order to achieve more inform-

ative multi-class prediction and quantify the methylation level of

each CpG, which we call discrete methylation level (DML,

Supplementary Methods). Specifically, DML is calculated as the

average prediction over the set of 10 parameters with different

sensitivity-specificity combinations, thus it measures the robustness

of the prediction. We checked the accordance between our DML

and intermediate or ambiguous methylation level captured by two

other quantitative methods, bisulfite sequencing and Illumina

BeadChip. On the medaka sample, we observed a strong correlation

(R ¼ 0:884) between our DML and methylation level calculated

from bisulfite sequencing (Supplementary Fig. S4C and E), and we

confirmed that measurements on 92.0% of CpG sites were in con-

cordance within an acceptable difference 0.25. We also compared

our DML on the human sample to the beta value (an indicator of

methylation level expressed as a value ranging over [0,1]) obtained

from Illumina BeadChip after normalizing the beta values

(Supplementary Methods). We observed a weaker correlation

(R ¼ 0:816, Supplementary Fig. S4D) and a smaller fraction (75.

4%) of CpG sites in concordance within 0.25 presumably because

the beta value is less quantitative than the methylation level calcu-

lated from bisulfite sequencing (Wang et al., 2015). With the

sequencing depth in our case, CpG sites with intermediate methyla-

tion were more difficult to predict than completely methylated/

unmethylated cases (Supplementary Fig. S4E). Therefore, excluding

the prediction with intermediate levels improved the accuracy of the

binary prediction (Supplementary Table S2). We concluded that

DML serves to reflect the quantitative nature of methylation status

in the samples to some extent, and is informative in achieving more

accurate prediction as well.

4.5 Genome-wide methylation pattern of repetitive

elements in the human genome
We investigated how individual occurrences of repetitive elements

(REs) were methylated in the human genome (Fig. 3A). Since some

occurrences of REs contain no or very few CpG sites, we only con-

sider those occurrences with at least 10 CpGs to exclude less inform-

ative cases. First, we checked whether SMRT reads could address

the repetitive regions in a useful manner for methylation analysis.

Specifically, we considered a repeat occurrence to be covered by

uniquely mapped SMRT reads if the IPD ratio was available on

�50% of CpGs. We found that >96% were covered for every repeat

type. To draw robust conclusions, we further applied a stringent

quality control to each repeat occurrence so that the average read

coverage be >5. Although this step reduced the number of repeat oc-

currences to be analyzed by 3–18%, this could be mitigated simply

by producing more data. Finally, we treated an occurrence as hypo-

methylated if �50% of CpGs were predicted as unmethylated.

Similarly, we considered an occurence as methylated intermediately

if �50% of CpGs were predicted as 0.3–0.7 in DML measurement.

Fractions of hypomethylated repeat occurrences vary considerably

among different classes of REs, from �1% for L1 and Alu to �50%

for MIR and>70% for simple repeats and low-complexity regions.

The fraction of intermediately methylated repeats was 1.4% among

all the repeat classes.

To validate our prediction regarding the repeat occurrences, we

selected 21 regions for bisulfite Sanger sequencing, designed primers

for nested PCR (Supplementary Table S3), and could amplify six re-

gions (Supplementary Methods), indicating the difficulty in observ-

ing DNA methylation of REs using traditional bisulfite Sanger

sequencing. In five (1 L1, 3 LTRs, 1 MIR) among the six amplified

regions, we confirmed the consistency between our prediction and

the methylation state observed by bisulfite Sanger sequencing

(Supplementary Fig. S5). The other one L1 element was predicted

hypomethylated. In this region, however, five unmethylated CpG

sites were followed by five methylated CpG sites, which showed our

method was not reliable in determining the precise boundary and

the individual calls should be interpreted carefully.

We then examined the features for characterizing the differences

between hypermethylated and hypomethylated REs. First, CpG

density was significantly higher in the hypomethylated occurrences

in almost all classes of REs (P < 1%, Fig. 3B). This observation

was consistent with the known association between CpG-rich re-

gions and unmethylation because methylation leads to depletion of

CpG sites through deamination (Cooper and Krawczak, 1989).

Second, sequence divergence from the representative in each repeat

class showed a correlation with methylation status (Fig. 3C). For

most classes, with the apparent exception of simple repeats, low-

complexity regions and MIR elements, hypomethylated occurrences

were significantly more divergent than were hypermethylated occur-

rences (P < 1%, Fig. 3C), presumably because younger copies of a

repeat element are less divergent and are likely to be targets of DNA

methylation. Kernel principal component analysis (PCA) using spec-

trum kernel suggested, for some repeat types, that the methylation

statuses were correlated partly with sequence features

(Supplementary Fig. S6).
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Next, we examined whether the hypomethylated repeat occur-

rences were distributed uniformly or non-uniformly throughout the

entire genome. We selected three major classes (LINE, Alu and

LTR) of REs for this analysis. We calculated the ratios of hypome-

thylated copies to all REs in individual non-overlapping bins 5 Mb

in size (Fig. 3D). The non-random distribution patterns were more

evident for LINE and LTR than for Alu. For example, we found

hypomethylated LINEs to be enriched in the p-arm of chromosome

1 and in chromosomes 17 and 19. There were hypomethylation ‘hot

spots’ of LTR elements, e.g. in chromosomes 6 and 9

(Supplementary Fig. S7). It is intriguing that some of these hypome-

thylation hot spots, such as those in the p-arms of chromosomes 6

and Y, seem to be shared among different classes of REs.

We further investigated the methylation states of LINE/L1 elem-

ents, the only known active autonomous retrotransposons in mam-

mals (Furano, 2000). Although most of LINE/L1 insertions contain

many mutations, Penzkofer et al. (2005) categorize full-length L1

elements into three classes according to the conservation of two

open reading frames (ORFs); namely (i) L1s with intact in the two

ORFs that are likely to exhibit retro-transposition activity, (ii) L1s

with an intact ORF2 but a disrupted ORF1 and (iii) non-intact L1s

with two ORFs disrupted. We obtained the positions of these human

LINE/L1 elements from L1Base (Penzkofer et al., 2005) and ana-

lyzed their methylation stateses (Supplementary Table S4). Although

0.61% of non-intact L1s were hypomethylated, all of L1s with in-

tact in two ORFs and L1s with an intact ORF2 were hypermethy-

lated. We also checked the presence of LINE insertions that were

novel to the hg19 reference genome. We assembled the SMRT reads

using the FALCON assembler and searched the assembly for novel

LINE insertions that matched a hot L1 element (GenBank: M80343.

1) of size 6050 bp with identity > 98:5%. The hot L1 element was

used as the representative according to the procedure of L1Base

(Penzkofer et al., 2005). We identified two novel instances covered

by sufficient depth of SMRT reads that allowed us to call their

methylation statuses confidently. Both of the two LINE insertions

(their locations are in Supplementary Fig. S8) were estimated to be

methylated. These results confirmed putatively active LINE/L1

elements with intact ORFs were preferentially methylated.

4.6 Tol2 transposable element in medaka
Medaka has an innate autonomous transposon known as Tol2,

which is one of the first examples of autonomous transposons in ver-

tebrate genomes and a useful tool for genetic engineering of verte-

brates, such as zebrafish and mice (Kawakami, 2007). The excision

activities of Tol2 are promoted when DNA methylation is reduced

by 5-azacytidine treatment, which suggests that DNA methylation is

one of the mechanisms regulating the Tol2 transposition (Iida et al.,

2006). Nevertheless, observing the methylation status of each Tol2

copy using short reads is difficult, because Tol2 is 4682 b in length,

and �20 highly similar copies of Tol2 exist in the genome (Koga

et al., 2000).

To elucidate the methylation status of each Tol2 copy, we

applied our method to a new assembly of the Hd-rR genome ob-

tained exclusively from SMRT reads. BLAST search identified 17

copies of Tol2 contained entirely within this assembly, all of which

were essentially identical (>99.8% sequence identity). We then

called the methylation status of these Tol2. For comparison, we

mapped the publicly available bisulfite-treated reads from the testes

of the Hd-rR strain to these contigs and determined the methylation

level on every 100-bp window using Bismark software.
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Fig. 3. Epigenetic landscape of repetitive elements in the human genome. (A) The table shows a summary of methylation status on repetitive elements (REs) that

we select using the Repeat Library 20140131 (Smit, A., Hubley, R. and Green, P. Repeatmasker open-4.0 at http://www.repeatmasker.org). (B, C) Distribution of CpG

density (B) and sequence divergence from the representative in each repeat class (C) for methylated (lower box) and hypomethylated (upper box) repeat occur-

rences. The asterisks indicate statistical significance (P<1%) determined by the U-test. (D) Genome-wide distribution of hypomethylated REs. The ratio of hypome-

thylated repeat occurrences to all occurrences in each 5-Mb bin is indicated by color shadings. We used the Ideographica web server to generate the image (Color

version of this figure is available at Bioinformatics online.)
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The methylation status of these Tol2, observed by SMRT reads

and bisulfite-sequencing, are shown in Figure 4. While virtually no

Tol2 copies were mapped by bisulfite reads, as expected from their ex-

tremely high fidelity, 16 of 17 copies were anchored by SMRT reads,

and all were predicted to be hypermethylated by our method. For the

regions examined by both SMRT reads and bisulfite-treated short

reads, our prediction was consistent with the methylation level calcu-

lated from the bisulfite-treated reads. For example, one Tol2 copy

was surrounded by hypomethylated regions (number 14). From the

bisulfite data, it appeared that the body of Tol2, from which data

were missing, was hypomethylated. Nevertheless, our prediction esti-

mated this region to be hypermethylated. These results demonstrate

the ability of our method using SMRT reads to clarify DNA methyla-

tion states of highly identical REs such as active transposons.

5 Discussion

In this study, we addressed the problem of uncovering the landscape

of DNA methylation of repetitive elements (REs). To this end, we

developed a unique application of SMRT sequencing to epigenetics.

This direction had been already explored in the research community

for bacterial and viral species. However, this application in large

vertebrate genomes has been largely unexplored because of the sub-

tle cytosine methylation signals in the kinetic information.

Therefore, we proposed a new method to utilize relatively small

amounts of kinetic information by incorporating a model reflecting

our prior knowledge on the regional patterns of CpG methylation of

vertebrate genomes. We confirmed the validity of our strategy by

comparing the prediction to bisulfite sequencing data on medaka

and to BeadChip analysis on human samples. These two datasets

had very different characteristics, which seemed to be partly because

of the methods used (i.e. BeadChip was designed to observe mainly

CpG islands that are often hypomethylated, while bisulfite sequenc-

ing is used for genome-wide methylation analysis) and partly be-

cause of the nature of the samples used (i.e. the medaka samples

were derived from an inbred strain, while the human samples were

from diploid cells). Despite such differences in characteristics, our

method using the same parameters performed almost equally well

for both datasets. These observations suggested that the choice of

parameters is robust for a wide variety of samples, which is a

desirable feature for any method. We also presented an extension of

our method to accommodate intermediate methylation states, the

discrete methylation level (DML) and confirmed a high correlation

(R¼0.884) between DML and bisulfite methylation level.

We explored the epigenetic landscape of REs within the human

genome. Using the hg19 reference genome is an apparent limitation.

By assembling individual personal genomes instead of the reference

genome, new insertions of these REs are expected to be found, and

such active occurrences should be of interest. Indeed, we detected

two novel LINE insertions that were estimated to be methylated.

Importantly, the more recent the insertion event, the less divergent it

would be from the original copy, and therefore, there would be less

likelihood of it being anchored by short reads. In such cases, long

SMRT reads shed new light on the ecosystem of active REs in per-

sonal human genomes.

We demonstrated the use of long SMRT reads can increase the

potential comprehensiveness of the epigenetics study. In addition,

our method can substantially reduce laboratory work. For example,

in the projects of resequencing or de novo assembly using SMRT

sequencing, you can call the methylation statuses of the sample as

well, completely in silico, without any additional experiment. This is

another important strength compared to conventional bisulfite

sequencing or affinity-based assays.

6 Data access

The sequence data (SMRT reads) from the medaka sample are de-

posited at the NCBI Archive (Accession No. SRP020483). Sequence

data from a Japanese individual are available under controlled ac-

cess through the National Bioscience Database Center (NBDC, ac-

cession number JGAS00000000003).
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