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Glycosphingolipids (GSLs), the main topic of this review, are a subclass of sphingolipids.
With their glycans exposed to the extracellular space, glycosphingolipids are ubiquitous
components of the plasma membrane of cells. GSLs are implicated in a variety of
biological processes including specific infections. Several pathogens use GSLs at
the surface of host cells as binding receptors. In addition, lipid-rafts in the plasma
membrane of host cells may act as platform for signaling the presence of pathogens.
Relatively common in man are inherited deficiencies in lysosomal glycosidases involved
in the turnover of GSLs. The associated storage disorders (glycosphingolipidoses)
show lysosomal accumulation of substrate(s) of the deficient enzyme. In recent
years compounds have been identified that allow modulation of GSLs levels in
cells. Some of these agents are well tolerated and already used to treat lysosomal
glycosphingolipidoses. This review summarizes present knowledge on the role of GSLs
in infection and subsequent immune response. It concludes with the thought to apply
glycosphingolipid-lowering agents to prevent and/or combat infections.
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INTRODUCTION TO GLYCOSPHINGOLIPIDS

Glycosphingolipids (GSLs) were discovered by the German chemist Johannes Thudichum while
investigating the composition of the human brain in his London laboratory in the late 19th century
(Thudichum, 1884). Thudichum meticulously identified the structure of the encountered novel
class of lipids as consisting of a unique lipid moiety with attached sugar or phosphorylcholine
groups. The hydrophobic moiety of the isolated brain lipids proved to contain as backbone a
hitherto unknown D-erythro-Sphingosine, named after the mythical Sphinx for its “enigmatic
properties to the enquirer.” The value of Thudichum’s findings was initially highly debated and
did not meet recognition during his lifetime. Only 25 years after his death, Otto Rosenheim
confirmed the accuracy of his publications which finally opened the present vast field of GSL
research (King, 1956).

Features of Glycosphingolipids
Structure of Glycosphingolipids
In vertebrates the major form of the sphingoid base of GSLs is d18:1 sphingosine, (2S,3R,4E)-
2aminooctadec-4-ene-1,3-diol. N-acylation of sphingosine results in the lipid ceramide (Cer),
the primary sphingolipid. The attachment of sugars to Cer yields GSLs (Figure 1A). Ubiquitous
in brain is the simple GSL galactosylceramide (GalCer), the major lipid constituent of myelin
insulating axons of neuronal cells and formed as extended plasma membrane of oligodendrocytes.
Following Thudichum’s seminal findings, it became apparent that GSLs are not restricted to the
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FIGURE 1 | Structure and synthesis of glycosphingolipids. (A) Synthesis of complex glycosphingolipids (GSLs) from the simple building blocks L-serine, fatty
acyl-CoA, and UDP-sugars. (B) General structure of glycosphingolipid: indicated are the major globo-, isoglobo-, ganglio-, lacto-, and neolacto-series core
structures.

brain but are common components of cells in various organisms.
In the case of human GSLs, the first monosaccharide linked to Cer
is either glucose or galactose. Additional sugars can be further
attached to glucosylceramide (GlcCer) or GalCer, resulting in a
plethora of lipids of which quantitatively the most abundant are
the ganglio-, globo-, and neolacto-series of GSLs (Figure 1B).
The structural diversity of GSLs and their nomenclature have
been thoroughly reviewed (Wennekes et al., 2009; Merrill, 2011;
Merrill and Sullards, 2017).

Synthesis of Glycosphingolipids
During their life in cells, GSL molecules traverse various
subcellular compartments where specific modifications in their
structure may occur (Wennekes et al., 2009; Gault et al.,
2010; Merrill, 2011; Fabrias et al., 2012; D’Angelo et al., 2013;
Tidhar and Futerman, 2013; Sandhoff and Sandhoff, 2018;
Sandhoff et al., 2018). The synthesis starts at the endoplasmic
reticulum (ER) where the enzyme serine palmitoyltransferase
(SPT) generates keto-sphinganine from serine and palmitoyl-
CoA (Figure 1A). This building block is next converted to
sphinganine by 3-ketodihydrosphingosine reductase (KDSR).

Subsequently, a series of ceramide synthases (CerS 1-6)
form dihydroceramides with amide-linked fatty acyl moieties.
Distinct dihydroceramides are generated since the various CerS
enzymes have different acyl-CoA length preferences (Tidhar
and Futerman, 2013). From these dihydroceramides the enzyme
dihydroceramide desaturase-1 (DES1) forms Cer. The primary
sphingolipid Cer is subject to further metabolism and its levels
are tightly controlled in this manner, a necessity for cells since
Cer promotes concentration-dependently apoptotic processes,
and subsequent cell death (Zelnik et al., 2019). Cer may be
converted into sphingomyelin (SM; phosphocholine-ceramide)
or ceramide-1-phosphate (Cer1P). It may be also degraded by
neutral ceramidases to fatty acid and sphingosine (Wennekes
et al., 2009). A third metabolic route involves formation of
structurally diverse GSLs through distinct pathways. In tissues
like kidney and brain a large portion of newly formed Cer
molecules enter the ER where conversion to GalCer occurs,
catalyzed by the enzyme galactosylceramide synthase (CGT)
using UDP-galactose as sugar donor (Sprong et al., 1998; van
Meer et al., 2003). Sulfation of GalCer molecules may take place
to generate sulfatide (sulfo-GalCer). More commonly, the Cer
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transfer protein (CERT) transports newly formed Cer to the
cytosolic leaflet cis-Golgi membranes (Hanada et al., 2003, 2009).
Here, the enzyme glucosylceramide synthase (GCS; encoded by
the UGCG gene) may transform Cer to GlcCer using UDP-
glucose as sugar donor (Ichikawa et al., 1996). Some of the GlcCer
in the cytosolic membrane leaflet is metabolized back again to
Cer by the enzyme GBA2, a cytosol-faced β-glucosidase that also
shows transglucosylase activity (van Weely et al., 1993; Boot et al.,
2007; Marques et al., 2016). However, most newly formed GlcCer
enters the Golgi apparatus where it can be stepwise modified
by glycosyltransferases (Wennekes et al., 2009; Merrill, 2011;
Merrill and Sullards, 2017; Sandhoff and Sandhoff, 2018). The
addition of further sugars to GlcCer yields various types of GSLs
(Figure 1B). Increasing the vast diversity of GSLs is the sulfation
of particular lipids. After being modified in the Golgi apparatus,
GSLs end up in the outer leaflet of the plasma membrane. GSLs
may partly leave cells through incorporation in HDL-lipoproteins
(Van den Bergh and Tager, 1976).

Congenital human disorders of ganglioside biosynthesis
are very rare. Mutations in ST3GAL5 (encoding GM3
synthase) cause severe congenital infantile seizures. Mutations in
B4GALNT1 (encoding GM2/GD2 synthase) lead to hereditary
spastic paraplegia accompanied by intellectual disability (Li and
Schnaar, 2018).

Degradation
Glycosphingolipids are internalized via endocytosis and end up in
multi-vesicular bodies in endosomes. Next, their fragmentation
takes place in lysosomes (Cox and Cachón-González, 2012; Platt,
2014). Through endocytosis lysosomes acquire also exogenous
GSLs. These are components of phagocytosed senescent cells
and debris as well as endocytosed lipoproteins. In the acid
lysosomes, GSLs are fragmented by a series of glycosidases in
a stepwise manner (Ferraz et al., 2014; Breiden and Sandhoff,
2019). In this process, specific glycosidases remove terminal
sugar moieties from GSLs, the reverse of the biosynthetic
pathway. Many of the lysosomal glycosidases fragmenting GSLs
are assisted in their activity by specific accessory proteins (GM2
activator protein and saposin A–D) (Ferraz et al., 2014; Breiden
and Sandhoff, 2019). Cer, the lipid product of lysosomal GSL
degradation, is cleaved by the lysosomal acid ceramidase into
sphingosine and fatty acid. The degradation products (sugars,
fatty acids, and sphingosine) are exported to the cytosol. The
exported sphingosine may be next re-used in the salvage
pathway that generates again Cer molecules for the synthesis
of SM or GSLs. Alternatively, sphingosine is transformed
by sphingosine kinases (SK1 and SK2) to sphingosine-1-
phosphate (S1P). This may be subsequently degraded by S1P
lyase into phosphatidylethanolamine and 2-trans-hexadecenal
(Pyne et al., 2016).

Functions of Glycosphingolipids
Lipid Raft Signaling Platforms
Glycosphingolipids reside primarily in the cellular plasma
membrane with their sugar moieties exposed to the exterior.
At the cell surface, GSLs have multiple functions. Through
interactions among GSL molecules and cholesterol molecules

via hydrogen bonds and van der Waal’s forces semi-ordered
domains spontaneously form in the plasma membrane. In these
lipid rafts specific proteins involved in signaling events locate
(Mukherjee and Maxfield, 2004; Lingwood and Simons, 2010;
Sonnino and Prinetti, 2013; Figure 2A). It has become clear
that GSLs in lipid rafts may regulate the activity of some of
these signaling receptors. A particularly well studied example of
the impact of gangliosides on receptor signaling concerns the
epidermal growth factor receptor (EGFR). Well-established is
the inhibitory effect of GM3 on the receptor’s kinase domain
activation, a phenomenon abolished by conversion of GM3 to
lactosylceramide (LacCer) or the K642G amino acid substitution
in the EGFR (Coskun et al., 2011). Thus, GM3 modulates
the allosteric structural transition from inactive to signaling
EGFR dimer. Another example forms the insulin receptor whose
activity is influenced by local gangliosides (Kabayama et al., 2007;
Langeveld and Aerts, 2009). Obese mice genetically unable to
synthetize the ganglioside GM3 show better glucose tolerance
and insulin sensitivity than control obese animals (Tagami
et al., 2002; Yamashita et al., 2003). Pharmacological reduction
of GSLs, including that of gangliosides, improves markedly
insulin sensitivity and glucose homeostasis in obese rodents
(Aerts et al., 2007; Zhao et al., 2009). Of note, patients with
Gaucher disease (GD) (see section “Lysosomal Glycosphingolipid
Storage Disorders and Therapy” for a detailed description of
this inherited disorder) show elevated levels of the gangliosides
GM3 in cells and tissue and in parallel reduced insulin sensitivity
(Ghauharali-van der Vlugt et al., 2008; Langeveld et al., 2008).

A similar modulatory role for gangliosides has also been
noted for other receptors such as the T-cell receptor amongst
others (Inokuchi et al., 2018). Recently gangliosides were found
to also impact on the activity of the membrane embedded
protein NPC1L1, critically involved in intestinal cholesterol
absorption (Nihei et al., 2018). Another intriguing finding is
that the ganglioside GM1 prevents oligomerization of b-amyloid
oligomers, whilst SM promotes this (Amaro et al., 2016). This
finding may proof to be relevant to design strategies to ameliorate
Alzheimer’s disease (Amaro et al., 2016). LacCer-enriched lipid
rafts have been identified in plasma and granular membranes
of human neutrophils (see Nakayama et al., 2018 for a review).
The first report on LacCer-raft mediated neutrophil function
concerned superoxide generation (Iwabuchi and Nagaoka, 2002).
It was demonstrated that the incubation of neutrophils with
anti-LacCer antibody induced generation of superoxide. A key
role for activation of Lyn in the process was identified
(Iwabuchi and Nagaoka, 2002).

Glycosphingolipids have been found to also interact
other cells, either via protein-carbohydrate or carbohydrate-
carbohydrate interactions (Figure 2B). The proteins involved
in such interactions are three major classes of lectins: selectins
binding sialylated and fucosylated glycans; siglecs binding
galectins and sialylated glycans; and galectins binding glycans
containing terminal galactose (Schnaar, 2004).

In land animals, GSLs fulfill a special function in the outermost
skin, the stratum corneum. Here, extraordinary GlcCer molecules
with very-long-chain fatty acid (C30–32) and an ω-hydroxyl
group esterified to another fatty acid are obligate precursors
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FIGURE 2 | Lipid rafts and other functions of glycosphingolipids. (A) Glycosphingolipids are essential components of lipid rafts where signaling events occur in
response to extracellular triggers. Excessive GSLs (GM3) may interfere with signaling. (B) GSLs may interact with toxins, bacteria and trans-cellular lectins and
carbohydrates. Adapted from Feingold and Elias (2014).

to Cer that are locally required to build the desired protective
and permeability layer (Feingold and Elias, 2014; Van Smeden
and Bouwstra, 2016; Wertz, 2018). Disturbance in skin GlcCer
and Cer are associated with severe, even fatal, dysfunction of
the skin (Van Smeden et al., 2017). The presence of specific
gangliosides in neurons has multiple functions and proves to be
essential for optimal interplay with the insulating myelin (Lopez
and Báez, 2018). In particular, lack of specific gangliosides in
axons of neurons leads to disturbed interaction with myelin-
associated glycoprotein (MAG) in the innermost membrane
of myelin. This impairment is thought to underly the spastic
paraplegia during neuronal deficiency of specific gangliosides
(Schnaar and Lopez, 2009).

Exposed glycans of GSLs on epithelial cells contribute to the
protective properties of the glycocalyx of internal body linings.
A similar type of protective function of GSLs is envisioned for
lysosomes inside cells. Beside the outer leaflet plasma membrane,
the inner leaflet of the lysosomal membrane is rich in GSLs.
This membrane also contains integral membrane proteins that
are decorated with N-linked glycans. By the combined presence
of GSLs and membrane glycoproteins the lysosomal membrane
is thought to be protected by a sugar barrier against self-
degradation by the proteases and lipases present in the lumen of
the compartment (Schwake et al., 2013).

Specific GSLs at the surface of cells also undergo specific
interactions with the outside world. For example, some
GSLs contain the glycan-based ABO antigens, crucial in
self-recognition and of importance in transfusion medicine
(Kościelak, 2012). E-selectin mediated binding of tissue invading

leukocytes to endothelial cells is known to be dependent on
specific GSLs (Nimrichter et al., 2008).

Glycosphingolipids and Infection
Interaction With Pathogens and Toxins
Many viruses, bacteria, and bacterial toxins bind to carbohydrates
of GSLs on host cell surfaces (Figure 3). Recommended reviews
of the topic are Nakayama et al. (2018) and Hanada (2005).

Viruses
Some viruses are known to exploit GSLs in their life cycle
in hosts (Lingwood, 1996). One well studied example is the
human immunodeficiency virus (HIV) (Lingwood and Branch,
2011). HIV virions enter their host cells by the binding of
the viral envelope gp120 to the primary receptor CD4, an
essential interaction for viral fusion and entry. G protein-coupled
α- and β-chemokine receptors are required as “co-receptors”
together with CD4 for HIV-1 infection. GSLs display a complex
interaction with HIV gp120, with reports suggesting functions
as alternate entry receptors, facilitators for HIV infection, as
well as natural resistance factors for HIV infection. Several GSLs
(Gb3, GM3, GalCer, sulfatide) appear to bind the HIV adhesin
gp120 (Lund et al., 2009; Lingwood and Branch, 2011). Upon
binding, GSLs such as GalCer and GM3 facilitate subsequent
interaction of the virus with its chemokine co-receptor on the
cell surface (Lingwood and Branch, 2011). In contrast, Gb3 may
successfully compete for co-receptor binding, and prevent fusion
and viral entry (Lund et al., 2009; Lingwood and Branch, 2011).
Polyomavirus invades human erythrocytes via the gangliosides
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FIGURE 3 | Examples of direct interactions of glycosphingolipids with pathogens and toxins.

GD1a and GT1b (Schwake et al., 2013). GM1 has also been shown
to act as receptors for simian virus 40 (SV40) and polyoma virus
(Tsai et al., 2003).

Toxins
Protein toxins show an AB structure, with a catalytic A domain
and a B domain encoding host receptor recognition (Zuverink
and Barbieri, 2018). Gb3, (a.k.a. CD77 or P(k) blood group
antigen) is known to bind to Shiga toxin and the closely
related Escherichia coli (E. coli) derived verotoxin B subunit (van
Heyningen, 1974). The globoside thus is mediating verotoxin
induced hemolytic uremic syndrome (HUS) (Lingwood, 1996).
The ganglioside GM1 serves as the primary receptor for cholera
toxin and the highly homologous E. coli heat-labile enterotoxin
(Hirst et al., 2002). Clostridium tetani neurotoxin and Clostridium
botulinum neurotoxin type A and B use several gangliosides
as receptors (Kitamura et al., 1999). The ganglioside GM2
acts as a receptor for delta-toxin of Clostridium perfringens
(Jolivet-Reynaud et al., 1989). Cholera toxin B subunit (CTB)
binds to GM1 enriched in lipid rafts (Cuatrecasas, 1973a,b).
GM1 on epithelial cells also binds E. coli enterotoxin (Hyun
and Kimmich, 1984; Masserini et al., 1992; Kuziemko et al.,
1996). The gangliosides present in human milk are thought to
compete the binding of Vibrio cholerae and E. coli enterotoxins
in the intestine and thus offer protection (Otnaess et al., 1983;
Newburg and Chaturvedi, 1992).

Bacteria
The ganglioside asialo-GM1 (GA1) at the surface of epithelial
cells binds Bifidobacterium bifidum, Pseudomonas aeruginosa,
and Lactobacillus (de Bentzmann et al., 1996; Mukai et al., 2004).

The ganglioside GM1 has been implicated in infections with
Brucella species (Naroeni and Porte, 2002; Martín-Martín et al.,
2010). Fimbriated E. coli bind to the globosides Gb3 and Gb4
(Leffler and Svanborg-Edén, 1981). Virulent strains of Bordetella
pertussis, a human respiratory pathogen, bind with high affinity
to sulfatide (Brennan et al., 1991). Mycoplasma pneumoniae
appears to exploit GSLs containing terminal Gal(3SO4)β1-
residues (Krivan et al., 1989).

The neutral GSL LacCer at the surface of intestinal epithelial
cells binds various microorganisms. These include Candida
albicans, B. pertussis, Mycobacterium tuberculosis, E. coli, Bacillus
dysenteriae, and Propionibacterium freudenreichii (Nakayama
et al., 2018). Possibly milk-derived LacCer protects the host
from invading pathogens. Interactions between the sugar
moieties of gangliosides and the polysaccharide moieties of
Shigella lipopolysaccharide were found to facilitate binding
of bacteria to human CD4+ T cells (Belotserkovsky et al.,
2018). There are indications that the adhesion of Helicobacter
pylori, causing chronic active gastritis, peptic ulcer disease and
gastric adenocarcinoma, depends on gangliosides in the human
stomach. The gangliosides Neu5Acα3-neolactohexaosylceramide
and Neu5Acα3-neolactooctaosylceramide mediate attachment of
H. pylori SabA (sialic acid binding adhesin) there (Mahdavi et al.,
2002; Benktander et al., 2018).

Immune System
The role of GSLs in immune cell functions receives increasing
interest and has been recently reviewed (Zuidscherwoude et al.,
2014; Zhang et al., 2019). Besides acting as entry point of
pathogens and toxins, GSLs also impact on the response of
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the immune system to pathogens. As such, GSLs themselves
can also transduce signals as revealed by the effect of their
crosslinking by multivalent binders such as bacterial toxins, or
alternatively IgM antibodies (Spiegel, 1989; Klokk et al., 2016).
Influx of calcium ions upon cell surface crosslinking of GM1
seems to be largely mediated by L-type calcium channels (Carlson
et al., 1994). As another example, in human neutrophils LacCer
forms specific lipid rafts in the plasma membrane as well as
granular membranes. These rafts have been shown to interact
with β-glucan of C. albicans and lipoarabinomannan (LAM)
of Mycobacteria (Sato et al., 2006; Nakayama et al., 2016).
Such binding triggers signaling cascades involving Src family
kinases. The responses to this are chemotaxis, phagocytosis,
and phagolysosome formation. In neutrophils, M. tuberculosis
smartly targets the LacCer-enriched lipid rafts in phagosomes
to inhibit the maturation of phagosome to lytic phagolysosomes
(Nakayama et al., 2018).

Other direct and indirect interactions of GSLs with immune
cells affecting their activity have more recently come to light.
For example, the C-type lectin receptor Mincle (macrophage
inducible C-type lectin), contributes to innate immune responses
by recognition of lipids stemming from foreign pathogens like
glucose and trehalose mycolates and glycosyl diacylglycerols,
but also lipids from damaged cells (Williams, 2017). Among
the reported Mincle-interacting self antigens are sterols but also
GlcCer (Nagata et al., 2017).

In the case of dendritic cells, glycolipid antigens are presented
by MHC class I molecule (CD1d) of dendritic cells via T-cell
receptor recognition to activate natural killer T (NKT) cells which
control innate and adaptive immune responses (Kumar et al.,
2017). The marine sponge GSL α-GalCer is identified as potent
lipid antigen activating invariant NTK (iNKT) cells. These cells
are also activated by the endogenous iGb3Cer (Galα1-3Galβ1-
4GlcβCer) (Pei et al., 2012). More recently, excessive GlcCer
has also been proposed to act as an iNKT cell activator (Nair
et al., 2015). Of note, GlcCer synthase deficiency in mouse
cells was already earlier reported to impair CD1d-dependent
activation of iNKT cells, suggesting that GlcCer or its metabolites
might be endogenous ligands for CD1d-restricted iNKT cells
(Stanic et al., 2003).

In addition to modulating innate immunity, GSLs also
appear to play critical roles in adaptive immunity. For
example, gangliosides influence T cell receptors (TCRs) on
CD-4 positive (CD4+) and CD-8 positive (CD8+) T cells,
respectively (Nagafuku et al., 2012). Here it is thought that
the precise ganglioside composition of lipid rafts in specific T
cell populations is a prerequisite for their associated specific
effector functions. This regulatory aspect of gangliosides in T
cell biology seems highly relevant for allergic and autoimmune
diseases and has been topic of excellent reviews (Inokuchi et al.,
2018; Nakayama et al., 2018).

In some specific autoimmune neuropathies affecting the
nervous system the autoimmune attack is due to antibodies
reactive with gangliosides. Anti-ganglioside antibodies occur
for example with Guillain–Barré syndrome. These antibodies
may be induced by infections with pathogens containing
glycan components that are structurally similar to gangliosides.

The most important example of this is Campylobacter jejuni
whose surface lipo-oligosaccharide mimics GD1a, GT1a, GM1,
and other gangliosides (Goodfellow and Willison, 2018). Binding
of autoantibodies on gangliosides activates locally complement
and recruits macrophages, causing local impairment of nerve
conduction in these patients.

Sphingomyelin and Infection
Sphingomyelin is the most abundant cellular sphingolipid. Like
GSLs, SM is also implicated in infections and the immune
system’s response to these (Wu et al., 2018; Li et al., 2019).
For example, mice with deficiency of acid sphingomyelinase
(ASMase; Sphingomyelin phosphodiesterase 1), the enzyme
hydrolyzing SM to Cer and phosphorylcholine, are strongly
susceptible to Citrobacter rodentium-driven colitis (Meiners
et al., 2019). Mice overexpressing ASMase in T cells show
increased T cell activation and reduced parasitemia in upon
infection with Plasmodium yoelii (Hose et al., 2019). Two forms
of ASMase are encoded by the SMPD1 gene: a lysosomal
form (L-ASMase) and a secretory form (S-ASMase). Although
ASMase has an acid pH optimum for activity, the same enzyme,
when secreted, also catalyzes the hydrolysis of SM in the
circulation and on the plasma membrane (Smith and Schuchman,
2008; Schuchman, 2010). ASMase deficiency results in the
accumulation of SM in lysosomes and causes the neuropathic
(type A) and non-neuropathic (type B) variants of Niemann-
Pick disease (Schuchman, 2010). Generation of Cer molecules
on the cell surface by ASMase leads to formation of Cer-
enriched domains, distinct from traditional lipid rafts, that act
as platforms governing signaling events (Li et al., 2019). Cer-
enriched platforms occur in cells upon diverse receptor or
non-receptor stimuli, including CD95, FcγRII, CD40, platelet-
activating factor receptor (PAF), viral infection, P. aeruginosa,
Neisseria gonorrhoeae, Staphylococcus aureus, cisplatin, Cu2+,
irradiation and UV-light (Li et al., 2019). The interaction of
Cer-enriched platforms with CD95, the death receptor Fas,
is the best understood. CD95 induces an increased ASMase
activity on the cell surface, thus generating Cer-enriched
platforms amplifying CD95 signaling (Gulbins and Grassmé,
2002; Grassmé et al., 2007).

The ASMase/Cer system has been implicated in infections
with pathogens. P. aeruginosa is a gram-negative bacterium
commonly affecting immune-compromised patients and patients
with chronic wounds, sepsis, or chronic emphysema. Patients
with cystic fibrosis (CF) have a particular risk for chronic
P. aeruginosa infections. The infection of mammalian cells with
different strains of P. aeruginosa induces the rapid activation
of ASMase and translocation to the plasma membrane (Li
et al., 2019). Generated Cer-rich rafts by ASMase mediates
the internalization of P. aeruginosa, which is prevented by
inhibitors of the ASMase or by ASMase-deficiency. Amitriptyline,
a tricyclic antidepressant (TCA), is a functional ASMase
inhibitor. Administration of amitriptyline to CF mice normalizes
pulmonary Cer levels and abolishes pathological outcome,
including susceptibility to infection (Becker et al., 2010).
Amitriptyline might therefore offer in the future a novel medicine
to treat CF patients.
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ASMase appears critical in the regulation of host interactions
with other bacteria as well, including S. aureus, Mycobacteria,
Listeria monocytogenes and Neisseria species. S. aureus,
is a commensal opportunistic bacterium that colonizes
approximately 30% of human populations. It may cause life-
threatening endocarditis, diseases, sepsis, toxic shock syndrome,
and pneumonia (Li et al., 2019). S. aureus is the primary cause
of sepsis and lethal lung edema. Mice treated with the ASMase
inhibitor amitriptyline show reduced lung edema upon S. aureus
exposure. The effect on sepsis of various ASMase inhibitors
(imipramine, desipramine, and amitriptyline), is presently
studied in animal models (Chung et al., 2018; Xia et al., 2019).

Lysosomal Glycosphingolipid Storage
Disorders and Therapy
Inherited defects in lysosomal enzymes fragmenting GSLs lead
to accumulation of the accompanying substrate in lysosomes.
Several inherited lysosomal glycosphingolipid storage disorders
(glycosphingolipidoses) occur in humans, see Figure 4 (Cox
and Cachón-González, 2012; Ferraz et al., 2014; Platt, 2014;
Breiden and Sandhoff, 2019).

Gaucher Disease
A prototype glycosphingolipidosis is GD, named after Ernest
Gaucher who published the first case report (Beutler and
Grabowski, 2001). GD is a recessively inherited disorder
stemming from mutations in the GBA gene. This codes for
an acid β-glucosidase, better known as glucocerebrosidase
(GCase; EC. 3.2.1.45) (Brady et al., 1966; Beutler and Grabowski,
2001). The 497 amino acid glycoprotein cleaves GlcCer to
Cer, the penultimate step in lysosomal breakdown of most
GSLs. Prominent GlcCer accumulation characteristically
occurs in tissue macrophages (Gaucher cells) of GD
patients. The clinical presentation of GCase deficiency is
very heterogeneous, from severe neonatal complications to a
virtually asymptomatic course. Non-neuronopathic (type 1),
acute neuronopathic (type 2), and sub-acute neuronopathic
(type 3) GD phenotypes are discerned. A complete deficiency
of GCase causes fatal skin pathology causing abnormal
permeability properties (Beutler and Grabowski, 2001). It
has recently been recognized that individuals with a mutant
GBA allele are at increased risk, about 20-fold, to develop
Parkinson disease (Siebert et al., 2014). Although some
mutations in the GBA gene are associated with a benign
GD disease course, e.g., the amino acid substitution N370S,
the GBA genotype proves to poorly predict actual disease
presentation in GD patients. Considerable variability in
symptoms and general disease severity is documented for
several GBA genotypes, even among monozygotic twins (Ferraz
et al., 2014). The molecular basis for the interindividual
variability in outcome of GCase deficiency among GD patients is
not identified yet.

Putative advantage of GD heterozygotes
Another intriguing aspect of GD forms the high incidence among
Ashkenazim with a disease allele frequency at approximately
0.03–0.04, around 10-fold higher than in non-Jewish populations

(Beutler and Grabowski, 2001). The elevated incidence of
GD in Ashkenazi Jews is due to four common mutations
(Koprivica et al., 2000). The elevated incidence of GD (and other
lysosomal storage disorders in glycosphingolipid metabolism
such Niemann-Pick disease type B and Tay-Sachs disease) in
Ashkenazi populations has led to a great deal of speculation
about its cause, ranging from founder effects to a heterozygote
advantage. A founder effect as cause seems very unlikely
given the small size of the founding Ashkenazi populations in
Eastern Europe (Diamond, 1994). The origin of the common
N370S mutation in Ashkenazi Jews is thought, based on
haplotype data, to have arisen too recently, a mere thousand
years ago, to explain the current allele frequency as the
result of genetic drift alone (Boas, 2000; Colombo, 2000). The
increased allele frequencies of four GBA mutations in Ashkenazi
Gaucher patients makes this additionally statistically improbable
(Diamond, 1994; Diaz et al., 2000). It therefore has been
speculated that GD carriers may be less vulnerable to infectious
diseases that cause many victims in city-dwelling populations
such as bubonic plaque or tuberculosis. Macrophages are key
players in GD and Niemann-Pick disease type B and these
cells host M. tuberculosis. Evidence for the appealing carrier
advantage hypothesis is still missing. Of note, in a zebrafish model
of tuberculosis (M. marianum) deficiency of several lysosomal
hydrolases increases vulnerability for the infection, however,
interestingly not that of GCase (Berg et al., 2016; Meijer and
Aerts, 2016).

Gaucher cells and their secreted markers
Characteristic lipid-laden macrophages accumulate in the spleen,
liver, bone marrow, lymph nodes, and lung of GD patients. These
Gaucher cells are metabolically active, alternatively activated,
macrophages (Boven et al., 2004). GD patients develop low-
grade inflammation and coagulation, and show activation of the
complement cascade (Hollak et al., 1997; Vissers et al., 2007).
Gaucher cells over-express and secrete specific proteins into the
circulation of which some are presently employed as biomarkers
of body burden of storage macrophages (Ferraz et al., 2014).
Examples are chitotriosidase, the human chitinase (Hollak et al.,
1994; Bussink et al., 2006), the chemokine CCL18/PARC (Boot
et al., 2004) and a soluble fragment of gpNMB (Kramer et al.,
2016). Interestingly, increased levels of plasma chitotriosidase
also occur with some infectious disease involving macrophages
such as Leishmaniasis, tuberculosis, malaria, and leprosy (Hollak
et al., 1994; Aerts et al., 2008; Iyer et al., 2009; Di Rosa et al.,
2016).

Metabolic Adaptations to GCase Deficiency for
Better or Worse
Striking metabolic adaptations occur during GCase deficiency
(Ferraz et al., 2014). Firstly, increased anabolism of GlcCer
to gangliosides takes place, contributing to insulin resistance
(Langeveld and Aerts, 2009). Another adaptation involves
the cytosol-faced retaining β-glucosidase GBA2. Increased
activity of this enzyme during GCase deficiency leads to
increased formation of pro-apoptotic Cer from GlcCer. Reducing
GBA2 activity, genetically or by means of small compound
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FIGURE 4 | Metabolism of glycosphingolipids. (A) Lysosomal degradation by glycosidases assisted by activator proteins. Indicated are common lysosomal storage
disorders stemming from inherited defects in lysosomal hydrolases. (B) Therapeutic reduction of glycosphingolipids by inhibition of glucosylceramide synthase
(GCS). Shown are two clinically registered GCS inhibitors (Miglustat, N-butyl-deoxynojirimycin) and Eliglustat (N-[(1R,2R)-1-(2,3-Dihydro-1,4-benzodioxin-6-yl)
-1-hydroxy-3-(1-pyrrolidinyl)-2-propanyl]octanamide), and AMP-DNM (N-(5-adamantane-1-yl-methoxy-pentyl)-deoxynojirimycin) commonly employed in research.

inhibitors like the iminosugar AMP-DNM, has remarkable
beneficial effects in Niemann Pick type C (NPC) mice with
a defect in the lysosomal protein NPC1 mediating efflux of
cholesterol from lysosomes and secondary GCase deficiency
(Nietupski et al., 2012; Marques et al., 2015). AMP-DNM
treatment also exerts a neuro-protective effect in mice with
Sandhoff disease, another glycosphingolipid storage disorder
(Ashe et al., 2011). Of note, GBA2 can act as transglycosylase,
transferring the glucose from GlcCer to cholesterol and forming
glucosyl-β-cholesterol (GlcChol) in the process (Marques et al.,

2016). Another adaptation during GCase is the conversion
of accumulating GlcCer in lysosomes by acid ceramidase
to its sphingoid base, glucosylsphingosine (GlcSph) (Ferraz
et al., 2016). GlcSph reaches the circulation and plasma
GlcSph is on average 200-fold elevated in symptomatic
type 1 GD patients (Dekker et al., 2011). Measurement of
elevated plasma GlcSph has come into use for laboratory
confirmation of GD diagnosis (Mirzaian et al., 2015). Albeit
clinically distinct diseases, the glycosphingolipidoses show as
uniform response to lysosomal GSL accumulation, that is the
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conversion of storage lipid to its corresponding sphingoid
base. In Fabry disease (α-galactosidase deficiency), Krabbe
disease (galactocerebrosidase deficiency), GM2 gangliosidosis
(β-hexosaminidase deficiency), and Niemann Pick diseases types
A and B (acid sphingomyelinase deficiency) the corresponding
sphingoid bases of the accumulating substrates (lysoGb3,
galactosylsphingosine, lysoGM2, and lysoSM, respectively) are
formed and their plasma levels are markedly increased, offering
diagnostic possibilities (Ferraz et al., 2014; Mirzaian et al., 2017;
Marshall et al., 2019).

Pathophysiology
There is compelling evidence for a prominent role of Gaucher
cells in GD pathology. Excessive GlcSph stemming from these
storage cells is likely pathogenic. It is thought to contribute
to the common osteopenia (reduced bone mineral density)
in GD patients by impairing osteoblasts (Mistry et al., 2014),
to promote α-synuclein aggregation, a hallmark of Parkinson
disease (Taguchi et al., 2017), and to underly as auto-antigen
in the common gammopathies in GD patients that can evolve
into multiple myeloma, a relatively common leukemia in
GD patients (Nair et al., 2016). Antigenicity of GlcCer and
GlcSph has been postulated to lead to complement cascade
activation promoting local tissue inflammation and destruction
(Pandey et al., 2017). The diminished cerebral microvascular
density in a neuronopathic GD mouse has been attributed
to GlcSph based on the observed ability of the sphingoid
base to interfere with endothelial cytokinesis in vitro (Smith
et al., 2018). At present the impact of excessive glucosylated
metabolites, like GlcChol, generated by GBA2 activity during
GCase deficiency is unknown.

Therapies
A very successful therapeutic intervention of type 1 GD is
enzyme replacement therapy (ERT), an approach in which
patient’s macrophages are supplemented with lacking enzyme
by repeated intravenous infusion of therapeutic recombinant
GCase (Brady, 2003). To ensure the desired targeting to
macrophages, the therapeutic GCase has N-linked glycans with
terminal mannose groups to favor uptake by macrophages
via mannose-binding lectins like the mannose receptor at
the surface of these cells. Two-weekly ERT of type 1
GD patients spectacularly reverses visceral symptoms like
hepatosplenomegaly and corrects hematological abnormalities.
Unfortunately, ERT does not prevent neurological symptoms
due to inability of the enzyme to pass the blood brain
barrier. Substrate reduction therapy (SRT) is an alternative
registered treatment of type 1 GD. It aims to balance the
synthesis of GlcCer with the diminished capacity of GD
patients to degrade it (Platt et al., 2001; Aerts et al., 2006).
In SRT orally available inhibitors of GCS are employed.
Two drugs [Miglustat, N-butyl-deoxynojirimycin (NB-DNJ)
and Eliglustat (N-[(1R,2R)-1-(2,3-Dihydro-1,4-benzodioxin-6-
yl)-1-hydroxy-3-(1-pyrrolidinyl)-2-propanyl] octanamide)] are
presently approved for treatment of type 1 GD patients
(Figure 4B). Treatment with the more potent and specific
Eliglustat is found to result in visceral improvements in patients

on a par with ERT (Mistry et al., 2018). Unfortunately, Eliglustat
fails to penetrate the brain effectively and can neither be
applied to treat neuropathic GD. The design of suitable brain-
permeable inhibitors of GCS is investigated and pursued by
industry and academic researchers (Shayman and Larsen, 2014).
Venglustat (ibiglustat) is developed by Sanofi Genzyme for the
treatment of Fabry disease, neuronopathic GD and Parkinson
disease. A phase 2 clinical trial (NCT02228460) of Venglustat
has recently been conducted to assess short-term safety
and effects of the treatment in adult men with Fabry
disease. Miglustat is a relatively poor inhibitor of GCs (IC50
in the micromolar range) and inhibits off-target intestinal
glycosidases and in particular non-lysosomal GBA2 (IC50 value
in the nanomolar range). Albeit being brain permeable, it is
presently not registered as drug to treat neuronopathic GD.
Comparable, but superior, iminosugar inhibitors of GCS to
Miglustat, like AMP-DNM [N-(5-adamantane-1-yl-methoxy-
pentyl)-deoxynojirimycin] and its idose-configured analog, were
developed some decades ago (Wennekes et al., 2010). These
are orally available high nanomolar GCS inhibitors that have
impact on GSL metabolism in brain of mice and were found
to ameliorate the disease course in mice with NPC disease
and Sandhoff disease (Nietupski et al., 2012; Marshall et al.,
2019; Figure 4B). Through medicinal chemistry more potent
and specific GCS inhibitors have been designed using ido-
AMP-DNM as scaffold (Ghisaidoobe et al., 2014). It should
be noted that reduction of GlcCer formation by GCS results
in the reduction of GlcCer and the metabolically upstream
GSLs such as globosides and gangliosides. It therefore has
the potential to ameliorate lysosomal storage disorders in
which such compounds accumulate, such as GD, Fabry disease,
GM2 gangliosidosis, Tay-Sachs disease, Sandhoff disease, GM1
gangliosidosis, and NPC disease.

Pharmacological Modulation of GSLs:
New Avenue for Infection Control?
Therapeutic GCS Inhibitors
Given the demonstrated importance of GSLs in infection
and control thereof by the immune system (see section
“Glycosphingolipids and Infection”) and given the recent
application of well tolerated inhibitors of GSL biosynthesis in
GD patients (see section “Lysosomal Glycosphingolipid Storage
Disorders and Therapy”), it is here proposed to consider use of
such compounds to control and/or prevent specific infections.
We argue the hypothetical case that glycosphingolipid lowering is
feasible and tolerated and might be considered as new therapeutic
avenue for specific infectious diseases.

Supportive Findings
Experimental support for the use of GSL-lowering agent to
combat infection can be found in literature. For example,
P-fimbriated E. coli are pathogenic in uncomplicated
pyelonephritis. The P fimbriae of the bacterium bind the
globosides such as Gb3 and Gb4 (Källenius et al., 1980; Leffler
and Svanborg-Edén, 1981). When mice were fed with a high
dose of the GSL biosynthesis inhibitor NB-DNJ, they showed a
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decrease in levels of GSLs and less susceptibility for urinary tract
infection by P-fimbriated E. coli (Svensson et al., 2003).

Along the same line is the outcome of elegant studies
by Inokuchi et al. (2015, 2018). Studies with genetically
modified mice lacking specific gangliosides (GM3S-null
mice expressing o-series gangliosides, but not a- or b-series
gangliosides and GM2/GD2S-null mice expressing GM3
and GD3, but no other gangliosides) rendered new insights
regarding the importance of the presence of specific
gangliosides during allergic and autoimmune diseases. It
appears that reduction of specific gangliosides might offer
treatment for specific disorders of the immune system
(Inokuchi et al., 2015). One example in this direction is
allergic asthma, a type 1 hypersensitivity reaction, in which
CD4+ T cells mediate Th2 cytokine (IL-4 and IL-13)
production, stimulating B cells to produce IgE antibodies.
GM3S-null mice show striking reduction of allergic airway
responses normally induced by ovalbumin (OVA) inhalation
(Nagafuku et al., 2012).

Noteworthy are also the beneficial findings made with
GSL lowering agents for systemic lupus erythematosus
(SLE). This autoimmune disease manifests with chronic
inflammation and leads to damage of tissue (Tsokos, 2011;
Kidani and Bensinger, 2014). In SLE there is a prominent
T cell dysfunction: CD4+ T cells from patients have lipid
rafts with an altered GSL composition. Elevated GSLs
(LacCer, Gb3, and GM1) in SLE patients are linked to
increased expression of LXRb. The inhibition of GSL
biosynthesis with NB-DNJ has been reported to correct
CD4+ T cell signaling. In addition, it decreased anti-dsDNA
antibody production by autologous B cells in SLE patients
(McDonald et al., 2014).

Pharmacological reduction of GSLs is reported to exert
beneficial anti-inflammatory effects. GSL-lowering by oral AMP-
DNM treatment of mice with trinitrobenzene sulphonic acid
(TNBS)- and oxazolone-induced colitis reduced disease severity
and edema and suppressed inflammation (Shen et al., 2004).
Prominent anti-inflammatory effects of AMP-DNM treatment
were also noted for the liver and adipose tissue of obese
rodents (Bijl et al., 2009; van Eijk et al., 2009; Lombardo
et al., 2012). Non-Alcoholic Fatty Liver Disease (NAFLD)
develops during the metabolic syndrome. NALFD involves
liver abnormalities ranging from steatosis (fat accumulation)
to non-alcoholic steatohepatitis (NASH) including fibrosis and
inflammation. Treatment of obese mice with AMP-DNM
not only corrects glucose homeostasis and restores insulin
signaling in the liver but also reduces inflammation in the
tissue (Bijl et al., 2009). A subsequent study revealed that
a treatment with the GSL-lowering AMP-DNM is able to
significantly correct pre-existing NASH (Lombardo et al., 2012).
During obesity, inflammation of adipose tissue is thought
to significantly contribute to pathophysiology. AMP-DNM
treatment of obese mice improves the status of adipose
tissue in many aspects, including a prominent reduction of
inflammation (van Eijk et al., 2009). The treatment also leads
to decreased iNKT cell activation in adipose tissue of lean mice
(Rakhshandehroo et al., 2019).

Fungal GlcCer and GCS as Target
Fungal infections (cryptococcosis, candidiasis, aspergillosis, and
pneumocystosis) are clinically highly relevant. Shortcomings
of current anti-fungal drugs are toxicity and drug resistance.
Moreover, not all fungi respond to particular drugs. A recently
recognized universal target for combatting fungi is GlcCer
(Rollin-Pinheiro et al., 2016; Fernandes et al., 2018). This
lipid proves to be crucial for the virulence of pathogenic
fungi in plants and man. The latter include C. albicans,
Cryptococcus neoformans, and Aspergillus fumigatus. GlcCer
is in particular critical for survival of fungi in neutral and
alkaline environments. Indeed, antibodies to fungal GlcCer
were found to exert antifungal effects at such conditions.
More recently, desired lowering of fungal GlcCer can be
reached by reducing the biosynthesis of the lipid. Well
tolerated acylhydrazones have been identified as specific
inhibitors of fungal GCS, an enzyme that fundamentally
differs from the mammalian counterpart and that is not
inhibited by acylhydrazones (Lazzarini et al., 2018; Mor et al.,
2018). Pharmaceutical reduction of fungal GlcCer is now
envisioned as new opportunity to combat fungal infections,
including cryptococcosis.

Neuraminidase Inhibitors as Anti-influenza Viral
Agents
In the 1990’s inhibitors of neuraminidase have been designed
for prophylaxis and treatment of influenza. The surface
envelope of the influenza virus contains the glycoproteins
hemagglutinin and neuraminidase. Hemagglutinin mediates
viral attachment to the cell surface receptor containing a
terminal N-acetylneuraminic acid residue attached α-(King,
1956; Merrill, 2011) or α-(King, 1956; Gault et al., 2010)
to a galactose. By a variety of techniques, like thin-layer
chromatography overlay assays and mass spectrometry, the
nature of lipid receptors has been identified (Meisen et al.,
2012; Hidari et al., 2013). The viral neuraminidase is essential
for timely release of the virus from the cellular anchor. The
neuraminidase inhibitors zanamivir, laninamivir, oseltamivir,
and peramivir have been shown to be effective against most
influenza strains, but resistance to specific drugs has developed
in some cases (Dobson et al., 2015; Laborda et al., 2016). Some
of the neuraminidase inhibitors are also employed as useful
research tools in investigations on ganglioside biology (Crain
and Shen, 2004; Moore et al., 2007). Total internal reflection
fluorescence microscopy has been recently successfully employed
to investigate the interaction of viruses with ganglioside
containing lipid bilayers, the importance of hemagglutinin and
neuraminidase in the process and the inhibitory action of
zanamivir (Müller et al., 2019).

FUTURE LIPIDOMICS CHALLENGES

The investigation of lipids has been historically complicated
by their intrinsic hydrophobic features and heterogeneous
nature. The recent progress in quantitative mass spectrometric
detection of lipids has, however, opened a new world for
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lipidomics. This field is rapid advancing (see Han and Gross,
2003 for an excellent review on the topic). In particular
ESI (electrospray ionization) and MALDI (matrix assisted
laser desorption/ionization) mass spectrometry methods are
nowadays successfully applied in lipidomics (Wang et al.,
2019). Besides targeted measurement of specific lipids with
MRM (multiple reaction monitoring), non-targeted approaches
like shotgun and multi-dimensional lipidomics are increasingly
employed (for a recent review on the topic see Bilgin et al.,
2016). Improvements have been made in lipid extraction
methods (Cruz et al., 2016; Löfgren et al., 2016) and internal
standards, such as isotope encoded analogs, become increasingly
available (Wisse et al., 2015; Mirzaian et al., 2016; Wang
et al., 2017). Derivatization or deacylation of specific lipids
may assist their quantitative detection (Mirzaian et al., 2017;
Ma et al., 2019). An important new development is the
availability of techniques to study the biology of lipids in
living cells. Fluorescent NBD and BODIPY tagged lipids have
been used in first generation cell biological investigations and
in recent times advances have been made in the generation
of photoactivatable, caged, photo-switchable, and tri-functional
lipid derivatives assisting the imaging of lipids (reviewed in
Laguerre and Schultz, 2018). The spatio-temporal detection
of endogenous lipids in cells and tissues still remains a
major challenge. QQImaging mass spectrometry (IMS) aims
to visualize the location and distribution of metabolites in
intact biological samples (see Parrot et al., 2018 for a recent
review). One of the ISM techniques employs desorption
electrospray ionization (DESI) (Parrot et al., 2018). Minimally
destructive DESI-IMS chemical screening is achieved at the
µm-scale resolution. Alternatively, MALDI-MS imaging is
used to detect locally lipids, including GSLs (Vens-Cappell
et al., 2016; Jones et al., 2017; Caughlin et al., 2018;
Hunter et al., 2018; Sugiyama and Setou, 2018; Tobias
et al., 2018; Enomoto et al., 2019). A new development
forms the technology for in situ visualization of enzymes
involved in glycosphingolipid metabolism. Designed have
been fluorescent activity-based probes that covalently label –
and visualize – active enzyme molecules through covalent
linkage to catalytic nucleophile residues. An example in this
direction is the enzyme glucocerebrosidase for which probes
have been developed allowing in situ monitoring of active
enzyme molecules (Witte et al., 2010; Kallemeijn et al., 2012;
van Meel et al., 2019).

PERSPECTIVES

Clinical and laboratory research over many decades has revealed
that various pathogens require GSLs of host cells for infection.
Thus, the modulation of such lipids in host cells could a priori
be considered as treatment for infection control. An obvious
provision for such approach is that it does no harm. Any
significant reduction of GSLs has been considered for a long
time to yield considerable side-effects, likely translating in
severe symptoms. The long-term outcome of treatment of
patients suffering from GD with agents that reduce GSLs

is, however, remarkably positive. No major side-effects are
observed in individuals treated for a number of years (Mistry
et al., 2018; Lewis and Gaemers, 2019). So far, the agents
used do not achieve significant reduction in GSLs in the
brain, however, a new generation of compounds aiming at
that is being tested at the moment. The near future will
learn whether it is feasible to safely reduce GSLs in cells
and tissues, including the brain. Next it will have to be
established whether such reductions are indeed effective for
infection control.

Enormous progress has been made in knowledge on
the role of GSLs in various kinds of infection and the
immune system’s response to this. At this moment much
of the knowledge is still descriptive and little translation to
preventing and/or treating infections has been accomplished.
Genetics and genomics may not provide answers to all
questions. It remains essential to acquire fundamental insight
on metabolism of GSLs in these gene-oriented times. Such
insight will essentially contribute to the design/development of
suitable agents than can subtly modulate GSLs as desired for
infection control.

This review focusses on pharmacological ways to reduce
GSL levels. A fundamentally different approach to target GSL-
pathogen interactions that has also been conceived is the design
of potent carbohydrate-type competitors of bacterial adhesion
(Schengrund, 2003; Pieters, 2011). Such approach copies more or
less the presumed protective effects of oligosaccharides in milk
during the colonization of the intestine.

In conclusion, the coming years should reveal whether GSLs
may act as valuable target in infection control.
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