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Abstract

Human iPS cells have been generated using a diverse range of tissues from a variety of donors using different
reprogramming vectors. However, these cell lines are heterogeneous, which presents a limitation for their use in disease
modeling and personalized medicine. To explore the basis of this heterogeneity we generated 25 iPS cell lines under
normalised conditions from the same set of somatic tissues across a number of donors. RNA-seq data sets from each cell line
were compared to identify the majority contributors to transcriptional heterogeneity. We found that genetic differences
between individual donors were the major cause of transcriptional variation between lines. In contrast, residual signatures
from the somatic cell of origin, so called epigenetic memory, contributed relatively little to transcriptional variation. Thus,
underlying genetic background variation is responsible for most heterogeneity between human iPS cell lines. We conclude
that epigenetic effects in hIPSCs are minimal, and that hIPSCs are a stable, robust and powerful platform for large-scale
studies of the function of genetic differences between individuals. Our data also suggest that future studies using hIPSCs as
a model system should focus most effort on collection of large numbers of donors, rather than generating large numbers of
lines from the same donor.
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Introduction

Induced pluripotent stem cells (iPSCs) are the subject of

tremendous interest as model systems for studying human disease

and development [1,2]. However, cellular reprogramming to

iPSCs is an inefficient process in which stochastic events during

clonal selection may fix a variety of alternative epigenetic and

transcriptional states[3]. Some reports have described significant

variation between iPS cells and ES cells, while others have

suggested that iPS cells retain a memory of the somatic tissue from

which they were derived that may negatively affect their

differentiation efficiency into certain cell lineages [4–10]. Howev-

er, comparisons between human iPS cells and ES cells are

confounded with differences in genetic background because the

lines are derived from different donors. Likewise, because

collection of multiple primary tissues from the same individual is

frequently impractical, studies of cellular memory in hiPS cells

have often confounded iPS source tissue type and donor genetic

background. This is important because many cellular phenotypes,

including transcription and methylation, are substantially impact-

ed by genetic differences between individuals [11–13].

In this study we set out to understand the basis of this variation

by establishing a set of iPS cells from a panel of tissues isolated in

parallel from several different donors. RNA-seq data sets from

these lines, the corresponding adult somatic cells and human ES

cells have been systematically compared. This has enabled us to

investigate patterns of expression, splicing and imprinting between

these iPS cells, their adult cell progenitors and compare these with

hES cells. Using a statistical model we estimated the relative

contributions of genetic background and tissue of origin to

transcriptional variability between human iPS cell lines.

Results

We established primary fibroblast, keratinocyte and endothelial

progenitor cell (EPC) somatic cell lines from three healthy male

organ donors, labeled S2, S5 and S7, and one healthy female

donor (S4). From each primary adult tissue cell line, we derived at

least three independent iPS cell lines for each donor. For the adult

cell cultures we extracted RNA following each of three passages to

give a total of 18 RNA samples from adult donor cells (6 fibroblast,

3 keratinocyte and 9 EPCs). We also extracted RNA from the iPS

cell lines derived from each of these tissues to give a total of 9 RNA

samples from fibroblast-derived iPSCs (F-iPSCs), 6 from kerati-

nocyte-derived iPSCs (K-iPSCs) and 10 EPC-derived iPSCs (E-

iPSCs). Finally, we also extracted 4 RNA samples from two ES cell

lines, H9 and Val9. Throughout our study highly standardized

conditions were used. This included the isolation, derivation and
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culture of primary cell cells as well as use of the same batches of

reprogramming viruses, serum and media. Each of the primary

cell lines were reprogrammed using the four Yamanaka factors to

generate a series of 25 iPS cell lines derived from each of the three

adult tissues (hereafter F-, K- and E-iPS cells). The differentiation

properties of our iPS cell lines were checked by differentiating a

subset to endoderm, mesoderm and neuroectoderm derived cell

types (Figure S1). Polyadenylated mRNA was prepared from each

iPS cell line after 10 passages, the somatic cell lines at passage 3

and from two human ES cell lines which was subjected to high-

depth RNA-seq (Fig. 1a). We checked a subset of lines for Sendai

virus persistence using RT-PCR with virus-specific primers, but

found no evidence for viral presence following passage (Figure S2).

For each sample, we performed 75 bp paired end sequencing on

the Illumina HiSeq2000 platform. In total we generated 7.3 billion

reads, with between 85.3 and 229.8 million reads sequenced in

each sample (Figure S3). We mapped reads to assembly h37 of the

human genome using Bowtie2 [14] and constructed spliced

alignments using Tophat2 [15]. Following read alignment and

QC filtering, between 49% and 89% of reads mapped uniquely to

the human genome (Figure S4).

Initially we examined the global pattern of transcription in the

different cell lines. Previous work has suggested that embryonic

stem cells are more transcriptionally active than differentiated cells

[16]. Within protein coding regions there was a clear bimodal

distribution of gene expression levels in all samples reflecting

abundantly expressed and transcriptionally repressed genes (Figure

S5). Adult cell lines exhibited more completely repressed and very

highly expressed genes compared with hiPS cells and hES.

Relative to differentiated lineages approximately twice as many

genes could be classified as coming from the repressed mode of

the distribution in the adult cell lines compared with hiPS cells

and ES cells (Figure S 5, inset). We also found that more

transcription appeared to be originate from repetitive elements in

pluripotent stem cells (Figure S6), although it is unclear whether

this arises from a slightly more relaxed chromatin structure in stem

cells, or is an artifact resulting from the slight excess of very

highly expressed genes in somatic cells relative to pluripotent stem

cells.

Variance component analysis of transcription levels
Next, we sought to quantify the contribution of multiple

biological and experimental factors to transcriptional variation in

hiPSCs. Hierarchical clustering clearly placed adult somatic cells

and pluripotent cells in two distinct clades (Fig. 1b). However other

sources of variation, such as tissue of origin, were more difficult to

discern. To quantify the relative importance of different sources of

global transcriptional variation more precisely we employed a

variance component analysis. Here, transcriptional variation was

decomposed into five separate components. These components

comprised: (1) a random intercept term (2) a component to capture

variation in transcription between the three adult somatic tissues,

hESCs and hiPSCs (3) a component modeling differences between

F-, K- and E-iPSCs (4) a component capturing transcriptional

variation between different donors or genetic backgrounds and (5)

a component captures differences between the two sequencing

batches in our data set (see Text S1). We quantified the

contribution of each of the five components using intraclass

correlation, which measures the proportion of total transcriptional

variance explained (VE) by different experimental groups holding

other model factors constant. As such, the estimated VEs for

each component are not constrained to sum to 100%. Through-

out, we modeled the effect of sequencing batch to disentangle its

potential influence from the other variance components in the

model.

We found that inter-individual transcriptional variation in hiPS

cells (VE ,38%) is considerably larger than that between

somatic tissue of origin (VE,4%) with an even smaller fraction

of transcriptional variation (,1%) explained by differences

between iPSCs and ESCs (Fig. 1c). Strikingly, when we didn’t

correct for variation between individuals, transcriptional varia-

tion between iPSCs and ESCs and between different iPSC

tissues of origin appeared to be much larger (,1% vs 12.7%,

iPSCs vs ESCs, 4% vs 13.5%, iPSC tissue of origin, with versus

without individual included in the model, respectively) (Fig1c).

This suggests that some previous observations of cellular

memory and transcriptional differences between iPSCs and

ESCS may in fact arise from changing genetic backgrounds

rather than experimental effects. Confounding with donor

genetic background seems particularly plausible for comparisons

between iPSCs and ESCs where controlling for genetic

differences is often impossible [4,17], or in cases where iPSC

tissue of origin is confounded with donor genetic background

[9,18]. We found that fibroblast- and keratinocyte-derived iPS

cells (F- and K-iPSCs) were highly similar at the transcriptional

level with tissue of origin explaining ,1% of the transcriptional

variation in the between them. In fact, the majority of the tissue

of origin effect we observe arises from differences between F/K-

iPS cells and EPC-derived iPS cells (E-iPS cells). Some of this

signal could reflect transcriptional memory. However it is

possible that the reprogramming method could account for this

difference because the EPCs were resistant to Sendai virus

infection and were therefore derived using the retroviral

method. Individual transcriptional variation was slightly greater

in adult somatic cells (VE,42%) than in stem cells. We

speculate that this could potentially be explained by non-genetic

differences between individuals, such as varying methylation

status, which are present in somatic cells but erased during

cellular reprogramming.

We also examined the amount of residual transcriptional

variation that remained unexplained by any of the known factors

using a heteroscedastic model (Text S1). This extension of the

model allowed us to capture differences in residual variance

between different subsets of our data set. In our experiment, the

Author Summary

Human induced pluripotent stem (hiPS) cells are a
potentially powerful model system for studying human
disease and development, and a resource for personalized
medicine. However, it has been reported that hiPS cells
exhibit substantial heterogeneity which could limit their
use as model systems. Clearly, knowledge of the source of
heterogeneity is key for deeper understanding of the use
of human iPS cells for basic and therapeutic applications.
One source of this heterogeneity has been presumed to be
‘‘memory’’ of the adult somatic cell from which the hIPS
cells were derived, but the evidence to support this view is
scant. We have generated a set of human iPS cells from a
set of somatic cell types from different donors. Our study
shows that cell lines from different somatic sources but
from the same donor (i.e. with the same genome) are more
similar than cell lines isolated from the same tissue type
but from different donors. Once genetic changes are
accounted for, all aspects of gene expression, including
mRNA levels, splicing and imprinting are highly similar
between iPS cells derived from different human tissues.
Thus, most of the previously described transcriptional
variation between cell lines is likely to be genetic in origin.

Transcriptional Variation in Human IPSCs
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residual variance captures transcriptional variation between

different cell lines from the same donor, either as growths of

different IPS cell lines derived from the same donor, from different

growths of either the ESCs or as different passages of adult cells

from the same donor. We compared two heteroscedastic models

with a homoscedastic model, which contained a single error term

for the entire data set (Figure 1d, ‘‘All’’). Heteroscedastic model 1

(‘‘model 1’’) contained three terms representing variation between

biological replicates of adult cells, IPS cells and ESCs. The results

of this analysis illustrate that the residual variation between

replicates of IPS cells is lower than that in adult cells and ESCs

(Figure 1d: Heteroscedastic Model 1 ‘‘F/K/E-iPSCs’’ versus

‘‘ESC’’). Heteroscedastic model 2 further divided error into

components for each of the three different adult cell types, for each

of the three IPS cell types and for ESCs. This analysis

demonstrated that variation between biological replicates of IPS

lines derived from different tissues was relatively consistent

(Figure 1d: Heteroscedastic Model 2). Overall, our data suggest

that transcriptional variation between biological replicates of iPS

cells was not substantially, and may be somewhat lower, different

from that between passages of an established hES cell line or of

adult primary cells.

Given that our variance component analysis was based on

FPKM values, we also reanalyzed data excluding highly expressed

genes, as this may impact our results. We found that our

component estimates and correlation heatmap were qualitatively

very similar when the top 1 and 5% of genes were removed from

the data set (Figure S7, S8). We also attempted a similar analysis of

mitochondrial gene expression. We found similar proportions of

reads coming from mitochondrial genes in adult, IPS and ES cells

(Figure S9). However, the very low number of expressed genes (13)

resulted in extremely noisy estimates of the correlation between

sample gene expression profiles (Figure S10) and prohibited

variance components analysis, due to failure of the model to

converge. Our differential expression analysis classified all mito-

chondrial genes as ‘‘invariant expression’’ (data not shown). Our

experiment did not include multiple replicates from the same cell

line, and so we were unable to formally address the issue of variation

between lines from the same donor. Visual inspection of our read

coverage plots did suggest that some cell lines might be more

variable than others. Heatmaps of the differentially expressed genes

illustrate that while most cell lines were quite consistent, one cell line

derived from keratinocytes formed an outgroup (K-iPSC-S2-1) with

other keratinocyte cell lines (Figure S11).

Figure 1. Experimental design and variance components analysis of transcription in iPSCs, somatic progenitors, H9 and Val9
embryonic stem cells. (a) Schematic showing experimental design. (b) Heatmap of Pearson correlation coefficients of log2 FPKMs (fragments per
kilobase of exon per million fragments mapped) across all genes in all samples (N = 47). Complete-linkage clustering on the correlation coefficients
was performed to order samples by similarity. (c) Decomposition of transcriptional variation using a linear mixed model. Each bar shows the
percentage of transcriptional variance explained (%VE) by each of the components, holding all other factors constant (see Text S1 section 1.3 for
details). Bars show the percentage variance explained between iPS and ES cells d2

22/(d2
22+s2) (orange); between adult tissues d2

21/(d2
21+s2) (purple);

between iPSC somatic tissue of origin d2
32/(d2

32+s2) (pink); between individual (iPSCs) d2
41/(d2

42+s2) (red); between individual (adult tissues) d2
41/

(d2
41+s2) (green) and between sequencing batches d2

5/(d2
5+s2)(blue). d2 and s2 parameters are explained in section 1.3 of Text S1. Red text denotes

variance explained by a component in a model that excluded an individual component, black text denotes variance explained in a model including
an individual component. Panels show layered covariance matrices Zj Dj Zj for the variance components j (j = 2…5) of which the correlation heatmap
in Figure 1b consists. The color corresponds to each of variance components in the barchart of Figure 1c and white color corresponds to covariance
of 0. The sample order of the layered matrices is compatible with Figure 1b. (d) Bars show the estimate of residual variance parameters estimated
from a homoscedastic and two heteroscedastic models. ‘‘Homoscedastic model’’ represents a model with a single error term shared over all samples
in the data set, and the estimate of this error term is labeled ‘‘All’’. The heteroscedastic models 1 and 2 are described in the main text and in the
Supplement (Section 1.3.3. ‘‘Heteroscedastic Model’’. Each bar shows the estimate of a residual error parameter as outlined the Supplement section
1.3.3.
doi:10.1371/journal.pgen.1004432.g001
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Cellular memory and aberrant reprogramming are rare in
hIPS cells

Although our variance components analysis suggested relatively

small global effects of tissue of origin, this could mask effects at

individual genes. We next sought to identify those genes whose

expression in hiPS cells more closely resembled their somatic

progenitors or were improperly silenced or activated, relative to

ES cells (Fig. 2a). For each of the three somatic tissues in turn, we

performed a three-way comparison of expression levels in the

somatic tissue, in the hiPS cells derived from that tissue, and in the

hES cells. At each gene we tested for departures from a null

hypothesis of equal expression levels in the somatic cell, the iPS

Figure 2. Effects of cell type and tissues of origin on expression levels in iPSCs. (a) Schematic of hypothesis testing approach to identify
genes with invariant expression (IE) from genes that we defined as correctly reprogrammed (CR), aberrantly reprogrammed (AR), with transcriptional
memory (TM) and showing complex expression. Genes showing complex expression are further classified into partial AR (PAR) and partial TM (PTM)
according to the expression patterns. (b) Percentages of genes assigned to alternative differential expression groups based on a hierarchical model
(see Text S1 1.4.3). (c) Volcano plots of differentially expressed genes. Plots show log10 of minimum P-values among the four alternative hypotheses
against log2 fold change of average expression levels between iPSCs and ESCs. The colours of points indicate the differential expression categories
into which a gene was classified. Dashed lines show twofold enrichment of mean expression levels between iPSCs and ESCs. FDR thresholds were
calculated by permutation. (d) Read coverage depth in three examples of differentially expressed genes; SOX2, was categorised as correctly
reprogrammed in all three tissues (F-iPSCs: p,1610224; K-iPSCs: p,1.2610216;E-iPSCs: p,4.6610225), H19 was categorised as aberrantly
reprogrammed in all three tissues (F-iPSCs: p,1.261026; K-iPSCs: p,2.761024;E-iPSCs: p,1.5610216) and TYW3 gene was categorised as partial
transcriptional memory in E-iPSCs (p,7.161028), invariant expression in F-iPSCs (p.0.1) and correctly reprogrammed in K-iPSCs (p,1.461023).
Coverage depth was truncated at 1000 reads per bp.
doi:10.1371/journal.pgen.1004432.g002
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cells and the ES cells using a negative binomial generalized linear

model similar to that outlined in [19] (Text S1). When the null

hypothesis (‘‘invariant expression’’) was rejected we further

classified genes into one of four possible categories, ‘‘correctly

reprogrammed’’, ‘‘transcriptional memory’’, ‘‘aberrantly repro-

grammed’’ and ‘‘complex’’ by selecting the alternative with the

highest log likelihood ratio.

We used a hierarchical model (Text S1), similar to that in [20],

to estimate the true proportion of transcribed genes in each category

without setting a threshold on statistical significance or effect size.

Our results suggested that transcriptional memory is very uncom-

mon, occurring at 0.06, 0.06 and 0.20% of all expressed genes in F-,

K- and E-iPS cells (Fig 2b). Aberrant or complex expression

patterns were also infrequent, although aberrant expression

appeared slightly more often in E-iPSCs (0.15% of genes) than in

the other two tissues. The fractions falling into the complex category

were similarly low (0.10, 0.02 and 0.74% of genes, respectively). The

remaining genes either showed invariant expression or were

classified as correctly reprogrammed (99.83, 99.92 and 98.92%).

Core pluripotency markers, including Sox2, Nanog and Oct4, were

all classified as correctly reprogrammed (Figure S12). Our analysis

suggested that the fraction of correctly reprogrammed genes is

approximately 30-60% of expressed genes. Although comparison

between different studies and methodologies difficult, this is not

dissimilar to fraction of genes that are differentially expressed in

reprogramming found by other studies [21]).

Next we identified individual loci that were differentially

expressed at a genome-wide false discovery rate (FDR) of 5%

(estimated from permuted data), and that exhibited a 1.5-fold or

greater change in expression level between hiPS cells and hES

cells. Using these criteria we identified a total of 61, 5 and 103

transcribed regions that showed some form of differential

expression in F-, K-, or E-iPS cells respectively (Table 1), the

majority of which exhibited either complete or partial transcrip-

tional memory (‘‘TM’’ or ‘‘PTM’’). Most genes we identified were

very weakly expressed in IPS cells, with mean FPKMs 74–79%

lower than the average (Figure S13). The most enriched gene

ontology (GO) terms in the TM and PTM gene sets were for

mesodermal migration in F-iPS cells (enrichment q-value ,

0.002;), for hemidesmosome development in K-iPS cells (q,0.03)

and for inflammatory and defense response in E-iPS cells (q,

361025) (Figure S14). Aberrantly expressed genes were less

frequent than genes exhibiting transcriptional memory. One

interesting exception to this was the long noncoding RNA, H19,

which was highly expressed in the majority of hiPS cells in our

data set relative to the hES cells (Fig. 2d). Our differential

expression analysis also suggested that aberrant activation occurs

more often than aberrant silencing (21 versus 6 genes at FDR 5%),

and that transcriptional memory more frequently involves

memory of an active rather than a silenced gene (101 versus 19

genes at FDR 5%) (Table 1). However, this may simply reflect

better power to detect differential expression when a gene is highly

expressed rather than silenced. Removal of highly expressed genes

had almost no impact on our differential expression analysis

(Figures S6, S7). Finally, differential expression analysis of

mitochondrial genes classified all 13 genes we found be expressed

in any of our samples as ‘‘invariant expression’’. Overall, our

results suggest that, although transcriptional memory and aberrant

reprogramming do occur occasionally, relatively few genes are

involved, those that are affected are weakly expressed.

RNA splicing patterns in hIPS cells resemble ES cells
Although whole gene expression levels appeared to be relatively

stable across different tissues of origin, cellular memory could also

manifest at the level of RNA splicing. Using the statistical

framework we developed for gene expression levels, we next tested

whether isoform abundance ratios showed evidence of memory of

their cell type of origin (Text S1). In this analysis, we tested the null

hypothesis that the ratio of the top two most abundant isoforms

was equal in adult tissues, iPS cells and ES cells. We computed

abundances using two popular approaches, Cufflinks2 and MISO

[22,23], and analysed the subset of genes where the ranking of

isoform abundances agreed between the two methods (Figure

S15). We found no significant memory of adult cell splice patterns

or aberrant alternative splicing in IPS at an FDR of 5% estimated

from permuted data (Figure S16). This suggests that transcrip-

tional memory of cellular splice patterns or aberrant splicing

induced during reprogramming is a relatively weak effect, smaller

than that observed at the level of whole gene expression, and

potentially masked by larger technical and genetic effects.

Imprinting is conserved between iPS cells and their
somatic cell of origin

Previous studies have suggested that imprinted gene expression

patterns may be unstable in hES cells and hIPS cells [24]. We

genotyped the four individuals from whom our hIPS cell lines were

derived using an Illumina Omni2.5 genotyping chip. Genotypes

were phased, and SNP genotypes were imputed using Beagle [25].

Using the phased haplotypes, we computed estimates of allele-

specific expression for the paternal and maternal chromosomes of

each individual. We began by investigating whether patterns of

imprinting observed in the adult somatic tissue remained

conserved in the iPS cells that were derived from them in a set

of 210 putatively imprinted genes obtained from the http://www.

geneimprint.com/database. We found that many genes were

expressed at a low level or lacked sufficient coverage of

heterozygous SNPs, which were subsequently excluded. The

remaining genes (26, 23 and 23 in donor S2, S4 and S7,

respectively) exhibited allelic expression patterns in adult cells that

were conserved in their derived iPS cell lines (Pearson r2 = 0.46;

p,6.3610210), Fig 3. Many genes did not demonstrate the

characteristic mono-allelic expression of imprinted genes in either

adult or pluripotent cells (Fig 3). In a small number of cases, such

as the paternally expressed zinc finger gene, ZDBF2, we observed

a loss of imprinting and reversion to bi-allelic expression in many

IPS lines. We note that, in the cases where we observe loss or

alteration of imprinting, the genes involved are relatively weakly

expressed in either the adult or the IPS cell, making ascertainment

of imprinting status more difficult.

Detecting known genetic effects on gene expression in
hIPSCs

Finally we returned to the effects of the genetic background in

our hiPS cells. Extensive maps of genetic variants whose genotype

correlates with gene expression (expression quantitative trait loci,

eQTLs) have been generated in adult human tissues and cell lines

[26]. We investigated whether similar effects could be observed in

our iPS cells. Since the number of individuals in our data set was

small, a standard eQTL mapping experiment was not possible.

Instead, we tested whether genetic associations ascertained in

lymphoblastoid cell lines (LCLs), a model system for eQTL

detection in humans, were also detectable in iPS cells.

We reanalyzed an existing LCL RNA-seq dataset derived from

the same source population (162 GBR+CEU individuals) as our

hiPS cells (Figure S17) and identified 4,350 eQTLs at an FDR of

5% [27]. Variance component analysis revealed a greater amount

of variation between individuals in genes that were ascertained to

Transcriptional Variation in Human IPSCs
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have an eQTL in LCLs, than in genes where the null of no eQTL

could not be rejected (Fig 4a). A substantial fraction (17%) of this

variation could be explained by the lead eQTL SNPs (eSNPs). We

tested whether the direction of the genetic effect at the LCL eQTL

genes replicated in iPS cells by grouping the four individuals in our

data set according to their eSNP genotype. We found that the

expression level of genes with an eQTL ascertained in LCLs follows

the expected direction in hiPS cells (Fig. 4b). Likewise, for

individuals in our dataset that are heterozygous at the eSNP we

see a corresponding, highly significant allelic imbalance also in the

expected direction (Fig. 4c). The correlation between genotype and

expression level at ascertained eQTLs in hiPS cells was highly

significant (Pearson r = 0.44, p,9.8610268), as was the allelic

imbalance at heterozygous ascertained eSNPs (Student t, p,

1.361028). Although our data set is small, we do find convincing

examples where a correlation between genotype and gene

expression replicated a known eQTL identified in LCLs such as

the exonic eSNP, rs1059307, located within the noncoding RNA

gene SNHG5. At this gene, we also observe clear allelic imbalance

in iPS cells derived from S5 and S7 individuals, who are

heterozygous for this eSNP (Fig. 4e), which is in the same direction

as the eQTL effect in LCLs (Fig. 4f). These genetic effects on gene

expression in iPS cells were detectable across multiple independent

iPS cells from the same genetic background, despite the variety of

different tissues sources and reprogramming methods.

Discussion

We have shown that epigenetic memory of the adult progenitor

cell is a rare phenomenon in hIPS cells, and that cellular

heterogeneity between different hIPS lines is more likely to be

driven by changing genetic background. Our study has important

implications for future attempts to use iPSCs as cellular model

systems for drug discovery and other applications. Encouragingly,

our results suggest that genetic effects are readily detected in

hIPSCs and that cell phenotypes are highly reproducible within

individuals. Equally important, however, is the fact that the noise

introduced by genetic background could potentially obscure small

genetic signals of interest in small samples. A clear implication of

this result is that, in iPSC-based studies of genetic disease, most

effort should be expended on collection of samples from different

donors rather than generation of large numbers of lines from the

same individual. Collection of multiple individuals, perhaps with a

shared genotype at a single locus of interest, will allow the effects of

genetic background to be averaged over and separated from that

of the putatively causal locus.

Our study also highlights how the effects of genetic background

cannot be ignored when considering cellular variability between

pluripotent stem cell lines. Previous studies have attributed cellular

variability in IPS to a range of sources, including epigenetic memory

[5–10,17], inherent differences between IPSCs and ESCs [4,28],

artifacts of reprogramming [7] or lab environment [29]. Perhaps

surprisingly, the effects of genetic background have been less well

appreciated, although more recent work has highlighted its potential

importance in differentiation [30]. It seems likely that at least some

of variability previously reported to exist in IPS cells could in fact

have arisen from genetic differences. This is particularly true of

comparisons of IPS with ES that are typically derived from different

individuals. It is also notable that studies including larger numbers

of donors tend to find fewer transcriptional differences between IPS

and ES [29,31–33]. Studies that have not controlled for genetic

background when investigating epigenetic memory, such as by

confounding tissue of origin and donor, may also have mistakenly

attributed genetically driven differences in transcription to epige-

netic memory. Our study explicitly incorporates multiple tissues

from the same donors, allowing us to correct for the effects of

changing genetic background. This is likely to explain why we do

not find extensive apparent epigenetic memory. We note, however,

that other studies that have also explicitly controlled for genetic

background still report some variation in transcription, methylation

and differentiation efficiencies that appear to arise from cell type of

origin effects [5,8,10]. A possible explanation for the discrepancy

between the results of these studies and our own is that we have also

taken our samples from cells at between 10 and 13 passages and

epigenetic memory effects may be transient and disappear following

multiple passages [8].

An important caveat for our study is that influential cellular

differences may simply not manifest as transcriptional variation

but reside at, for example, the epigenetic level as changes in

methylation status or histone tail modifications. Such differences

may harbor a ‘‘hidden’’ functional role that only becomes

apparent upon differentiation into a specific cell lineage. Our

study suggests that epigenetic differences are likely to be more

plausible candidates as drivers of variation in IPS cell differenti-

ation ability. However, our results also illustrate that current iPS

cell technology is robust enough to enable detection of genetic

effects on important cellular phenotypes such as mRNA levels.

Although further technological hurdles remain, an exciting area

for future work will be detection of regulatory variation that

influences transcription during cell lineage specification and

differentiation, employing iPS cells as a model system.

Materials and Methods

Samples
All primary tissue samples and blood for this project were

obtained from adult cadaveric organ transplant donors referred to

Table 1. Numbers of significantly (FDR%) differentially expressed genes in each differential expression category.

AR PAR TM PTM Total

F-iPSC 9 1 8 43 61

K-iPSC 0 0 1 4 5

E-iPSC 4 15 5 79 103

Activation 6 15 9 92 122

Silencing 6 0 2 17 25

Total 12 15 11 109 147

AR: Aberrant reprogramming; PAR: Partial AR; TM: Transcriptional memory; PTM; Partial TM.
doi:10.1371/journal.pgen.1004432.t001
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Figure 3. Imprinting effects on transcription in adult and iPS cells. (a) Allelic imbalance between adult cells and iPS cells for each donor (S2,
S4 and S7). (b) The mosaic plots for each cell line show the allelic imbalance at multiple heterozygous SNP loci throughout the transcribed region.
Each row corresponds to a sample, and each box corresponds to a single heterozygous SNP. Box width is proportional to the total nucleotide count
at the heterozygous SNP, with the box bisected in proportion to the paternal and maternal nucleotide counts (blue and orange) based on the
phasing haplotype information. Examples show consistent loss of imprinting in iPSCs (ZDBF2) and in adult cells (IFG2).
doi:10.1371/journal.pgen.1004432.g003
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the Eastern Organ Donation Services Team (part of NHS Blood

and Transplant). Ethics approval was obtained from the local

Research Ethics Committee (REC No. 09/H306/73).

Derivation of fibroblasts and keratinocytes from skin
samples

For each subject included in this study, a sample of skin was

excised from the midline surgical incision. The skin was transported

to the lab and washed in iodine and ethanol and was cut into

approximately 1 mm3 pieces. These were dispersed evenly on a

90 mm plate and incubated with fibroblast media (Knockout

DMEM and 10% FBS). Outgrowths of fibroblasts and keratinocytes

from the skin explants were usually apparent at around 14 days. The

cells were separately harvested using 5 min treatment with Versene

(15040-066, Invitrogen), which detached the fibroblasts leaving the

keratinocytes on the plate. The fibroblasts were cultured on non-

coated plates using fibroblast media and keratinocytes were cultured

on plates coated with matrix (R011K, Invitrogen) and using EpiLife

media plus Defined Growth Supplement (M-EPI-500-CA and S-

012-5, Invitrogen).

Derivation of Endothelial Progenitor Cells (EPCs)
Endothelial Progenitor Cells were derived from 100 mL of

peripheral blood as previously described [11]. Briefly, the

mononuclear cells of the blood sample were separated using

Ficoll. The cells were cultured on collagen-coated plates using

EPC media (EGM-2MV supplemented with growth factors plus

20% Hyclone serum; CC-3202, Lonza and HYC-001-331G;

Thermo Scientific Hyclone respectively). Colonies of EPCs

appeared at around 10 days.

Generation of EPC-hiPSCs using retroviruses
Four pseudotyped Moloney murine leukemia retroviruses

containing the coding sequences each of human OCT-4, SOX-

2, KLF-4 and C-MYC were obtained from Vectalys (Toulouse,

France). A multiplicity of infection of 10 was used in all retroviral

reprogramming experiments. For each hiPS cell derivation, 16105

EPCs were transfected with the 4 viruses in the presence of 10 ug/

mL of polybrene (TR-1003-G, Millipore). After 24 hrs the viruses

were washed off with PBS and the cells were re-fed with EPC

media that remained for the next 4 days. On day 5 after

transduction, the cells were re-plated using trypsin onto a 10 cm

dish of fresh MEF feeders. After 2 days the media was changed

from primary cell-specific to hiPSC media (KSR + FGF-2). The

media was changed every 2 days until colonies emerged after

which the media was changed daily. Colonies were picked once

they had reached sufficient size, typically from day 25 following

transduction. The colony was split into quarters and the segments

gently lifted off the plate and transferred to one well of a 12 well

plate of fresh MEF feeders containing hiPS cell media (KSR +
FGF2) supplemented with ROCK inhibitor (Y-27632, Sigma).

Generation of F-hiPS cells and K-hiPS cells using Sendai
virus

Four Sendai viruses containing the coding sequences of each of

human OCT-4, SOX-2, KLF-4 and C-MYC were obtained from

Figure 4. Genetic effects on transcription in iPSCs. (a) Variance component of known eQTL genes showing primary eQTL SNPs being able to
explain 17% of FPKM variation on average. Top and bottom 3,000 eQTL genes and SNPs were determined by means of P-values using gEUVADIS
RNA-seq data [27]. (b) Box- plot of log2 FPKM aggregated across 462 eQTL genes (FDR 5%) stratified into high (+/+), medium (+/2) and low (2/2)
genotypes at the minimum p-value eQTL SNPs ascertained from [2] (FDR 5%). Pearson correlation r = 0.44, p,9.8610268. (c) Boxplot of allelic
imbalance at high-expression (+) and low-expression (2) haplotypes across all eQTL genes ascertained from [2]. The red line is at 0.5 indicating the
expected fraction under the null. Student t p,1.361028. (d) Mean RNA-Seq coverage depth in iPSCs, averaged across all iPSC lines from each
individual, at a putative example eQTL for the noncoding RNA SNHG5 gene. Individuals are grouped by their genotype at the putatively causal
variant rs1059307. Individual genotypes are shown with the number of RNA-seq samples in parentheses. (e) Average coverage depth of fragments
coming from the high-expression haplotype (allele T) and low- expression haplotype (allele G) at rs1059307. (f) eQTL association of SNHG5 gene at
rs1059307 in lymphoblastoid cell lines from [2] showing distributions of log2 FPKM against SNP genotypes at rs1059307. The red line shows the best-
fit linear regression line.
doi:10.1371/journal.pgen.1004432.g004

Transcriptional Variation in Human IPSCs

PLOS Genetics | www.plosgenetics.org 8 June 2014 | Volume 10 | Issue 6 | e1004432



DNAVec (Ibaraki, Japan). The protocol for reprogramming was

identical to that of retroviruses with the exceptions that 56105

primary cells (fibroblasts or keratinocytes) were used at MOI 3 and

polybrene was not used.

hiPS cell culture
hiPS cells were grown on irradiated MEF feeders, using human

embryonic stem cell media (termed KSR + FGF-2): Advanced

DMEM (12634-010, Invitrogen) was supplemented a follows: 10%

Knockout Serum Replacement (10828028, Invitrogen), 2 mM L-

glutamine (25030024, Invitrogen, 0.1 mM b-mercaptoethanol

(M6250, Sigma-Aldrich) and 4 ng/mL of recombinant human

basic Fibroblast Growth Factor-2 (233-FB-025, R&D systems,

Minneapolis, MO, USA). Media was changed daily and the cells

were passaged every 5–10 days depending on the confluence of the

plates. To passage hiPS cells, the plates were washed in PBS and

colonies detached using collagenase and dispase (Collagenase IV

1 mg/mL, Invitrogen 17104-019; Dispase 1 mg/mL, Invitrogen

17105-041). The colonies were washed in media and mechanically

broken up before being re-plated onto fresh MEF feeders.

RNA extraction
Total RNA was extracted using the RNeasy Mini Kit protocol

(Qiagen, Hilden, Germany). RNA-seq libraries were constructed

according the manufacturers guidelines, with minor modifications,

using the Illumina mRNA-seq and TruSeq mRNA sample

preparation kits (Illumina, Inc., San Diego, CA). Briefly, mRNA

was enriched from total RNA using oligo dT beads before

fragmentation via zinc and heat hydrolysis. mRNA was subject to

first and second strand cDNA synthesis before end repairing and

A-tailing. Double-stranded cDNA was then adapter-ligated before

size-selecting fragments with inserts ranging from 200–300 bp

using a LabChipR XT (Perkin Elmer, Waltham, MA). Size-

selected material was then PCR-amplified using KAPA HiFi

polymerase (Kapa Biosystems, Boston, MA) before sequencing on

an Illumina HiSeq2000 (Illumina, Inc., San Diego, CA).

Computational and statistical analysis
We mapped reads to assembly h37 of the human genome using

Bowtie2 [14] and constructed spliced alignments using Tophat2

[34] with default settings. We also used known gene annotation

information given by Ensembl release 69 as a guide for the

alignment. Following read mapping, we selected fragments (read-

pairs) where at least one of mate-pairs had a quality score of .10,

aligned with no gaps, with three base mismatches or less. Any read

pairs with an insert size less than 150 bp or greater than 1 Mb, or

on different chromosomes, were excluded from subsequent

analyses. Computational analysis was carried out using a

combination of existing packages, such as DESeq [19] and our

own analysis tools. For the variance components analysis,

transcription level at each gene j was modeled as a linear

combination of five normally distributed random effects (b1–5) and

a single error term:

~yyj~Z1b1jzZ2b2jzZ3b3jzZ4b4jzZ5b5jz"j

where ~yyj is a vector of log normalized fragments per kilobase per

million reads sequenced (FPKMs) for gene j in each of the 46

samples in our data set, b1 is an intercept term, b2 models variation

in transcription between the three adult somatic tissues, hESCs

and hiPSCs, b3 models differences between F-, K- and E-iPSCs, b4

captures transcriptional variation between different donors, b5

captures differences between the two sequencing batches in our

data set, e is the error term and Z1-Z5 are design matrices. For full

details of computational and statistical analyses, see Text S1.

Data
Our raw sequence data are available from the European

Genotype Archive under study ID EGAS00001000367. A variety

of processed data, including raw read counts, log2 FPKMS and

the results of our differential expression analysis are available from

our lab website (http://www.sanger.ac.uk/research/projects/

genomicsofgeneregulation/) under the ‘‘Data’’ tab.

Supporting Information

Figure S1 Differentiation of iPSCs to endo-, meso- and

neuroectoderm. hIPSCs generated using Sendai Virus can

differentiate into cells expressing markers specific of the three

germ layers. hIPSCs (S5SF5) were differentiated into neurocto-

derm, endoderm and mesoderm using defined culture conditions

as described previously [13]. The resulting cells were analysed for

the expression of specific germ layers markers using immuno-

staining. Blue fluorescence shows DAPI staining. Similar results

were obtained with other hIPSCs lines used for this study. Scale

bar 100 mM.

(JPG)

Figure S2 RT-PCR for Sendai viral genome and transgenes in a

subset of lines. Gels show results of RT-PCR using viral primer

sets as described in the CytoTune-iPS reprogramming kit

(Invitrogen) in line S4SK4 (passage 3). Results are shown are for

Sendai virus genome (SeV: 181 bp amplicon), Sendai-derived

exogenous Oct3/4 (O: 483 bp amplicon), Sox2 (S: 451 bp am-

plicon), Klf4 (K: 410 bp amplicon) and cMyc (M: 532 bp

amplicon).

(PDF)

Figure S3 The number of sequenced reads for each sample.

Polyadenylated RNA was extracted from each cell culture and

multiplexed cDNA libraries were synthesized. For each sample, we

performed 75 bp paired end sequencing on the Illumina

HiSeq2000 platform. In total we generated 7.3 billion reads, with

between 85.3 and 229.8 million reads sequenced in each sample.

(PNG)

Figure S4 The number of reads mapped onto the reference

genome for each sample. We mapped reads to assembly h37 of the

human genome using Bowtie2 and constructed spliced alignments

using Tophat2. Following read alignment and QC filtering,

between 49% and 89% of reads mapped uniquely to the human

genome.

(PNG)

Figure S5 Distribution of FPKMs in adult, IPS and ESCs.

Distribution of log10 (FPKM+1) for all known protein coding

genes from ENSEMBL. Each line shows the distribution for a

single sample, with the heavier line showing the mean for each cell

type. Inset shows the probability that gene is classified as coming

from the low/repressed mode of the FPKM distribution estimated

using a two component Gaussian mixture model to classify genes

into active or repressed. Left panel shows distribution for all genes,

right panel excluding the top 1% expression genes.

(PDF)

Figure S6 Percentage reads mapping to LINE and LTRs

elements Bars show the percentage of total mapped reads that

map to LINE and LTR repetitive elements outside known

transcribed regions as annotated in the UCSC repetitive elements
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track. Blue denotes adult cells, orange denotes IPS cells and green

denotes ESCs.

(PDF)

Figure S7 Variance component analysis and differential expres-

sion (DE) analysis excluding highly expressed genes (upper 1%-

tile). (a) Correlation heatmap without upper 1%-tile highly

expressed genes (b) Result of variance component analysis without

upper 1%-tile highly expressed genes. (c) P-value comparison with

original DE analysis. Each panel shows scatter plot of the DE

minimum P-values without upper 1%ile highly expressed genes

(X-axis) against original minimum DE P-values (Y-axis) for each

tissue. Gray vertical and horizontal lines show 5% FDR.

(PDF)

Figure S8 Variance component analysis and differential expres-

sion (DE) analysis with genes without highly expressed genes

(upper 5%-tile). (a) Correlation heatmap without upper 5%-tile

highly expressed genes (b) Result of variance component analysis

without upper 5%-tile highly expressed genes. (c) P-value

comparison with original DE analysis. Each panel shows scatter

plot of the DE minimum P-values without upper 5%-tile highly

expressed genes (X-axis) against original minimum DE P-values

(Y-axis) for each tissue. Gray vertical and horizontal lines show 5%

FDR.

(PDF)

Figure S9 Percentage of total fragments mapping to 13

mitochondrial protein coding genes. Bars show the percentage of

total reads mapping to known mitochondrial genes in all samples

in our data. Blue denotes adult cells, orange denotes IPS cells and

green denotes ESCs.

(PDF)

Figure S10 Mitochondrial gene expression. Correlation heat-

map of log2 FPKMs for 13 mitochondrial protein coding genes.

Map elements show Spearman correlation coefficients.

(PDF)

Figure S11 Heatmaps of log2 FPKMs for partial transcriptional

memory (PTM) genes deter- mined by the differential expression

analysis. (a) Partial transcriptional memory genes in F- iPSCs, (b)

K-iPSCs and (c) E-iPSCs. We note that, although patterns of

expression across most lines are broadly consistent with one

another, line K-iPSC-S2-1-1 forms an outlier from the other K-

iPSCs

(PDF)

Figure S12 Coverage depth plots of core pluripotency marker

genes. Plots show read coverage of three core pluripotency

markers, SOX2, NANOG and OCT4 from left to right.

(PDF)

Figure S13 Mean expression levels of differentially expressed

genes. Plots show the densities of log10(FPKM) in all genes (black

lines) and in genes that were detected as differentially expressed

(DE; either transcriptional memory, or aberrant reprogramming;

red lines) in our analysis.

(PNG)

Figure S14 Coverage depth plots of genes driving Gene

Ontology enrichments in F- and K-iPS cells. Plots show coverage

depth for four genes, KRT5, KRT14, MESP1 and MESP2, that

were annotated with the most significant Gene Ontology term

enrichments (‘‘hemidesmosome assembly’’ and ‘‘mesoderm mi-

gration involved in gastrulation’’) in K-iPS cells and F-iPS

cells, respectively. Coverage depth was truncated at 500 reads

per bp.

(PDF)

Figure S15 Scatterplot of transcript FPKMs between MISO and

Cufflinks. Plotted is the distribution of FPKMs of all known

annotated transcripts estimated by Cufflinks (X-axis) against

MISO (Y-axis). Overall, the FPKM estimation is consistent so

that many transcripts are seen on the diagonal line. However,

there are also a certain amount of transcripts only enriched in one

of the two methods.

(JPG)

Figure S16 Volcano plots of differential isoform expression.

Plots show log10 of minimum P-values among the four alternative

hypotheses against the maximum log2 fold-change of average

transcript expression levels between iPSCs and ESCs. The colours

of the points indicate the differential expression categories into

which a gene was classified. Dashed lines show twofold enrichment

of mean expression levels between iPSCs and ESCs. The FDR

threshold was calculated by the permutation scheme as in the

differential expression analysis.

(PNG)

Figure S17 Result of population stratification for our samples

(S2/S4/S5/S9) with 1000 Genomes Project data. Principal

component analysis was performed using Eigenstrat [35] with

genome-wide SNP genotypes of European populations obtained

from 1000 Genomes Project. All four samples are clustered with

GBR and CEU populations.

(PNG)

Figure S18 GC content influences inference of expression levels

from RNA-seq. Plotted is the log2 relative enrichment, Fil, against

the mean GC content of bin l for all samples. The red line shows

the fitted spline function, Fil (see Text S1 for details).

(JPG)

Figure S19 Relationship between precision and expression level.

Plotted is the distribution of log tj against average of log2

normalised FPKMs y˜j across all samples (j = 1,…, L).

(PNG)

Text S1 Supplementary methods.

(PDF)
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