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Abstract

It is imperative to develop better approaches to predict how antiarrhythmic drugs with multiple 

interactions and targets may alter the overall electrical and/or mechanical function of the heart. 

Safety Pharmacology studies have provided new insights into the multi-target effects of many 

different classes of drugs and have been aided by the addition of robust new in vitro and in 

silico technology. The primary focus of Safety Pharmacology studies has been to determine 

the risk profile of drugs and drug candidates by assessing their effects on repolarization of the 

cardiac action potential. However, for decades experimental and clinical studies have described 

substantial and potentially detrimental effects of Na+ channel blockers in addition to their well-

known conduction slowing effects. One such side effect, associated with administration of some 

Na+ channel blocking drugs is negative inotropy. This reduces the pumping function of the 

heart, thereby resulting in hypotension. Flecainide is a well-known example of a Na+ channel 

blocking drug, that exhibits strong rate-dependent block of INa and may cause negative cardiac 

inotropy. While the phenomenon of Na+ channel suppression and resulting negative inotropy is 

well described, the mechanism(s) underlying this effect are not. Here, we set out to use a modeling 

and simulation approach to reveal plausible mechanisms that could explain the negative inotropic 

effect of flecainide. We utilized the Grandi-Bers model [1] of the cardiac ventricular myocyte 

because of its robust descriptions of ion homeostasis in order to characterize and resolve the 

relative effects of QRS widening, flecainide off-target effects and changes in intracellular Ca2+ and 

Na+ homeostasis. The results of our investigations and predictions reconcile multiple data sets and 

illustrate how multiple mechanisms may play a contributing role in the flecainide induced negative 

cardiac inotropic effect.
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1. Introduction

While important progress has been made recently via safety pharmacology studies designed 

to screen drugs for pro-arrhythmia, the primary focus has been on determining the extent to 

which drugs cause repolarization abnormalities [1,2]. In particular, the emphasis has been 

on the proclivity for drugs to block the cardiac potassium channel hERG, an infamously 

promiscuous drug target [3-5]. More recently, studies have begun to take into account 

the simultaneous effects of drugs on multiple cardiac ion channel. These usually result in 

complex nonlinear emergent dynamics that can alter the electrophysiological behavior in the 

heart in unpredictable ways [2]. Computational modeling and simulation approaches have 

proven to be a useful complement to experimental studies in attempts to rationalize and 

predict the complex ion channel blocking drug effects on normal cardiac physiology and in 

pathological states associated with disease.

The focus on repolarization abnormalities in safety pharmacology screening has resulted in 

insufficient emphasis on closely related depolarization abnormalities and the potential side 

effects resulting from inhibition of sodium current, although some new technologies are 

emerging [6]. Such side effects include well-known conduction slowing, but in the ventricle 

other side effects are also recognized as important risk factors for drug safety [7-10]. 

One such example is the potential for some sodium channel blocking drugs to reduce the 

effective mechanical functioning of the heart via a reduction in inotropy, thereby resulting in 

substantial reduction in the effective pumping function of the ventricles [11,12].

Experimental data obtained from multiple species and from clinical studies have consistently 

demonstrated a significant negative inotropic effect of flecainide within the clinically 

relevant dosing range. This strongly contraindicated phenotype is heart rate dependent and 

exacerbated by rapid heart rate as well in the ischemic and failing heart [8,9,13-20].

Here we have developed a computational framework to predict Na+ channel drug effects 

on normal cardiac electrophysiology in the Grandi-Bers computational representations of 

ventricular [21] myocytes and tissue. We have revealed the effects of flecainide on key 

parameters that regulate cardiac inotropy resulting in new insights regarding Na channel 

blocker induced negative inotropy. Here we explore the reported plasma concentration 

ranges reported in humans to assess the physiological relevance and mechanisms of 

flecainide induced negative inotropy. The therapeutic plasma range of 0.5 to 2.4 μM 

Flecainide corresponds to administration of ~200 to 1000 ng/mL [22,23].
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2. Methods

We utilized the computational models based on the Grandi-Bers formulations for atrial [24] 

and ventricular [21] myocyte action potential and [Ca2+] homeostasis as well as the O’Hara-

Rudy ventricular human model [25]. The computational model for flecainide interaction 

with the cardiac Na+ channel is based on publications from the Clancy Group [26,27], with 

flecainide interaction with the RyR2, IKr, Ito, and ICaL informed by our simulation studies 

and experimental data [1,27-29].

2.1. RyR2 – flecainide drug-channel interaction model

The Shannon-Bers Markov model formulation of the RyR2 [30] was modified to include a 

drug bound state DO with transitions kon = D* [Drug] and koff = D*IC50,Drug to and from 

the open state O. These represent the drug diffusing to the receptor, and then binding or 

dissociating from the channel, respectively, as described previously [27]. The diffusion rate 

of flecainide was estimated at 5500 M−1 ms−1 [31].

2.2. Simulation of IKr, Ito, or ICaL Blockade

To simulate the inhibitory effects of flecainide on IKr Ito, or ICaL currents, we decreased the 

peak conductance, GX of each of these independent channels in a concentration dependent 

fashion using a concentration response relationship with a Hill coefficient of 1 (n = 1) as 

follow:

GX = GX, max⋆ 1
1 + (Drug ∕ IC50)n

where GX,max is the nominal conductance value obtained from each ventricular myocyte 

model, and the IC50 is the concentration of drug that produces a 50% inhibition of the 

targeted transmembrane current or intracellular organelle.

IC50 values of drug to inhibit currents

Currents IC50 Reference

IRyR 20 μM [27]

IKr 1.5 μM [28]

Ito 15.2 μM [29]

ICaL 27.1 μM [1]

2.3. Fiber simulations

One-dimensional (1D) tissue was simulated as a fiber of 165 cells (1.65 cm) [32] with 

reflective boundary conditions. The diffusion coefficient Dx was set to 0.00154 cm2/ms to 

establish a conduction velocity of 60–73 cm/s in WT conditions [33]. Fibers were paced 

from 95 BPM to 150 BPM for 1500 beats. The last 100 beats of atrial or ventricular 

conducted action potentials of the middle cell and the major underlying ion currents were 

recorded for analysis.
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2.4. QT intervals

The fiber (5.5 cm) was paced at varying cycle length from 554 to 943 ms for 200 beats in 

order to match the clinical data [34]. Pseudo ECGs were computed from the transmembrane 

potential Vm using the integral expression as in Gima and Rudy [35]. Heart rate corrected 

QT (QTc) was computed using Bazett’s formula using the cubic root of RR interval [34].

QTc = QT
RR

Please see supplemental information for additional details about our previously published 

models used in this study. All source code to reproduce the simulated data here 

are freely available on the GitHub: https://github.com/ClancyLabUCD/Mechanisms-of-

flecainide-induced-negative-inotropy-An-in-silico-study

3. Results

Flecainide is a classic “dirty drug” in that it binds to and affects multiple cardiac ionic 

targets [36]. We developed a computational model of the effects of flecainide to assess and 

integrate its effects on 5 targets in the heart including: INa (IC50 is dependent upon voltage, 

state and rate dependent [26]), IRyR (IC50 = 20 μM [27]), IKr (IC50 = 1.5 μM [28]), Ito (IC50 

= 15.2 μM [29]) and IcaL (IC50 = 27.1 μM [1]). We then used the model to simulate the 

rate-dependence and dose-dependence of the effects of flecainide on key cardiac parameters, 

including the Ca2+ handling as a proxy for the effects of flecainide on inotropy.

In Fig. 1, shows the comparison of experimental data in Panel A from the rat with the 

indicated doses (Fernandes et al., [8]) as follows: black dot (no drug), purple (0.18±0.03 

μM), red (0.67±0.34 μM), gold (1.0±0.12 μM), and green (1.36±0.14 μM) and our 

simulations. In Panel B experimental data illustrating the effects of flecainide on canine 

hearts paced at 150±4 BPM is shown (plasma concentration at 5000 ng/mL, from van 

Middendorp et al., [13]). In Panel C, experimental data from the pig (4.8 μM, from Marum 

et al., [14]) is shown. Panels D, E and F show simulated data from the Grandi Bers human 

ventricular computational model indicating the relationship between the flecainide induced 

reduction in inotropy as a function of increased duration of the QRS complex. Panel D 

shows the dose dependent effect of flecainide (at 140 BPM with 2.5 (blue), 3.0 (green) 

and 4.8 (pink) μM) on peak intracellular Ca2+ transient and in Panel E these data are 

plotted as the integral of the Ca2+ transient (as a proxy for inotropy). The simulated QRS 

interval change as a function of flecainide reduction in peak INa is shown in Panel F. In 

Panel G the effects of flecainide from 0, 2.5 (left), 4 and 12 μM (right) on computed 

ventricular electrograms. Virtual myocytes were paced at 140 BPM. Note that conduction 

block developed at 4.8 μM flecainide in the simulation resulting in a dynamic timecourse 

shown during the last 7 beats of the simulation (pink symbols in Panels D, E and F). The 

simulations also revealed substantial rate-dependent effect of flecainide on QRS widening, 

as would be anticipated from the well-described use-dependent effects of flecainide in INa 

(Fig. 1G).
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Fig. 2 shows the comparison of human clinical data from [34] and model predictions from 

simulated human tissues under drug free conditions and following low dose of flecainide 

(0.2 μM) and high dose of flecainide (2.0 μM) with varying pacing cycle lengths. The 

simulated ranges compared to clinically obtained data from humans are in good agreement, 

thereby providing an indication of the validity and predictive value of the computational 

results to recapitulate the effect of a flecainide on the human electrophysiology parameters 

including QRS interval, JT internal and QT interval.

We next undertook a more detailed investigation into the rate-dependent and dose-dependent 

effects on the relationship between predicted widening of the QRS interval and drug-induced 

negative inotropy. In Fig. 3, the predicted dose-dependent effects of flecainide are shown 

systematically from drug free (black), 0.5 (red), 1.0 (yellow), 1.5 (purple), 2.0 (green) to 2.5 

(blue) μM. Rate-dependent (indicated heart rate from 95 to 145 BPM) widening of the QRS 

interval is shown in Panel A compared to peak INa. Panel B shows the widening of the QRS 

interval compared to the reduction in the peak intracellular Ca2+ transient and in Panel C as 

the reduction in the integral of the Ca2+ transient compared to widening of the QRS interval. 

Interestingly, the approximately linear correlation between the predicted increase in QRS 

duration and corresponding reduction in inotropy on Ca2+ transient did not significantly 

change with pacing frequency (Fig. 3D). Inotropy notably continued to decline at fast rates 

as QRS widening increased, indicated by the similar slopes of the relationships in panels B 

and C at faster pacing frequencies.

When the underlying ionic currents from a single virtual myocyte were examined in the 

tissue level simulations described above, we observed a profound slowing of the action 

potential upstroke (Fig. 4A), which is an expected consequence of INa block (Fig. 4B). 

In Fig. 4C-D, the mechanism of flecainide induced reduction in inotropy is revealed by 

the considerably reduced Ca2+ current (Panel C) and Ca2+ transient (panel D). The model 

predictions in a myocyte within a coupled tissue environment reveal the effect of flecainide 

to reduce the peak of L-type calcium current. This is due to slow conduction that allows the 

calcium channels to begin the inactivation process during slow depolarization [37].

As a result, the effect flecainide on a myocyte within coupled tissue (a syncytium) is not 

the same as what occurs in the single isolated myocyte. The predicted effect in a single 

simulated myocyte is shown in supplemental Fig. S1. In this case, the main effect of 

flecainide to reduce the upstroke velocity of the action potential results in a slowing of the 

depolarizing phase of the membrane potential, but the relative degree of slowing is much 

larger in coupled tissue. When sodium channels are blocked in the single isolated myocytes, 

the membrane voltage remains in a range that is favorable for calcium channel activation. In 

single myocytes shown in supplemental Fig. S1, the slowing of the AP upstroke results in an 

increase in calcium current at fast heart rates.

In order to further assess the mechanism underlying the negative inotropic effect of 

flecainide, we next conducted a series of “component dissection” simulations and ion 

monitoring to assess the primary effects of flecainide that lead to a reduction in the Ca2+ 

transient. The results are shown in Fig. 5. Our approach was to sequentially remove the 

effect of flecainide on individual ion current drug targets and then to assess the magnitude 
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of the effect on the changes in the Ca2+ transient. In doing so, we were able to reveal the 

relative contributions of flecainide effects on specific ion current targets to modification of 

the Ca2+ transient. In Fig. 5A from left to right, the effects of flecainide on all five simulated 

targets are shown for comparison on the peak INa, peak Ca2+ transient and the integral of the 

Ca2+ transient reduction.

When the effect of flecainide on the L-type Ca2+ current (IcaL) was eliminated (as in Fig. 

5B), but the effect on the other four ion current targets remained, the negative inotropic 

effect of flecainide was reduced, but still persisted as indicated by peak INa reduction, the 

reduction in peak [Ca2+] and integral of the Ca2+ transient (from left to right). Interestingly, 

as shown in Fig. 5C, when the effect of flecainide on the L-type Ca2+ current (IcaL) and the 

ryanodine receptor (RyR) were both eliminated, but the effect on the other three ion current 

targets remained, flecainide still resulted in a reduction in the peak Ca2+ transient and the 

integral of the Ca2+ transient at the rapid heart rate shown (150 BPM).

A summary of the effects of flecainide during the elimination of selected flecainide targets is 

shown in the bar graphs in panel D, where the magnitude of the changes in the peak INa, the 

predicted peak Ca2+ transient and the integral of the Ca2+ transient are shown by the change 

in steepness of the relationships in the left, middle and right columns of panels A, B and 

C. For peak sodium, we computed the slope by calculating the change from the condition 

without drug to the point with the highest drug concentration to estimate the rate of change 

over the therapeutic plasma range. As expected, changes due to the reduction in peak INa 

is minimal as the effect of flecainide on INa is always included. These results suggest that 

the effect of flecainide to result in a negative inotropic outcome results in part from direct 

effects of the drug on proteins key for Ca2+ handling, consistent with earlier reports [38]. 

Both effects of flecainide on the L-type Ca2+ current (IcaL) and on the IRyR contribute to 

negative inotropy.

We also investigated the effect of disruption to ion homeostasis under the conditions of 

rapid pacing in the presence of flecainide. As expected, shown in Fig. 6, simulations from 

ventricular myocytes indicate that the reduction in peak INa resulting from Na+ channel 

block has the effect to reduce intracellular [Na+] by ~1 mM.

To determine whether the reduction in intracellular [Na+] contributes to flecainide-induced 

widening of simulated QRS and reduction in the Ca2+ transient, we paced the cells at 150 

BPM within the therapeutic plasma range of 0.5 to 2.5 μM (red dots) with resulting reduced 

Ca2+ and compared this setting to the condition where intracellular sodium concentration 

was fixed at 9.7 mM (black asterisks). The results are shown in Fig. 7. There were minimal 

differences in the predicted effects of flecainide on 5 targets, (B) effects of flecainide on 4 

targets and (C) effects of flecainide on 3 targets on the peak INa, peak Ca2+ transient and 

integral of the Ca2+ transient reduction from left to right. These simulations suggest that 

the reduction in intracellular Na+ has a minimal effect to promote negative inotropy. Not 

surprisingly, the ~1 mM reduction in Na+ most affects the amplitude of the Na+ current and 

consequently the QRS interval, the effect is very small.
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Here, we opted to utilize the Grandi-Bers computational model of the cardiac ventricular 

action potential because it has a well-characterized representation of [Ca2+]i dynamics and 

homeostasis. However, to ensure that our findings were not dependent on the Grandi-Bers 

model, we also carried out simulations using the O’Hara-Rudy model, again focusing 

on assessing the relationship between flecainide-induced widening of simulated QRS and 

reduction in peak INa, peak Ca2+ transient, and integral of the Ca2+ transient at 150 BPM 

from drug free to 2.5 μM flecainide (Supplemental Fig. S2). The predictions generated by 

the O’Hara-Rudy model at drug doses greater than 1 μM were qualitatively similar to the 

predictions in the Grandi-Bers model.

It is important to note that while the modeling and simulation results in the prediction 

of the negative inotropy as assessed by a reduction in intracellular calcium in ventricular 

myocyte simulations, the effects predicted may constitute an underestimate. This is because 

additional hemodynamic effects are to be expected and likely exacerbated in disease states 

like atrial fibrillation [14,39-43].

We tested this in model simulations. We applied the flecainide effects on 5 ion current 

targets in simulated Grandi-Bers atrial cells INa ([26]), IRyR ([27]), IKr (IC50 = 1.5 μM [28]), 

Ito (IC50 = 15.2 μM [29]) and IcaL(IC50 = 27.1 μM [1]). We tested the rate-dependence and 

dose-dependence of the effect of flecainide (0.5 and 1.0 μM) on the P wave duration and on 

the peak intracellular Ca2+ transient (Fig. 8A), and the integral of the Ca2+ transient (Fig. 

8B), as a proxy for atrial inotropy. The flecainide effect on all targets results in an increase 

in the P wave duration a surrogate for the slowing of conduction in atrial tissue. However, 

when the effect of flecainide on the L-type Ca2+ current (IcaL) were eliminated, but the effect 

on the other four targets remained, the negative inotropic effect of flecainide persisted, but 

the AP upstroke was enhanced and the APD was prolonged with restoration of the Ca2+ 

current (Fig. 8C and D).

4. Discussion

In the study, developed and applied a human cardiac action potential modeling and 

simulation approach to reveal the mechanisms of negative inotropic affects that have been 

reported following application of flecainide and other similar sodium channel blockers. A 

reduction in the capacity of the heart to contract optimally after Na channel block has 

been described in a variety of species [8,38,44,45]. Understanding the ionic mechanisms of 

flecainide induced negative inotropy, may allow for the development of new or modified 

therapeutic approaches for diseases like atrial fibrillation that maintain the beneficial effects 

of flecainide as an antiarrhythmic drug target to normalize atrial dysrhythmia [46,14].

Indeed, conduction disturbances and mechanical dysfunction are aspects of safety 

pharmacology that have received relatively little attention. Most drug safety assessments 

associated with block of repolarization currents and consequent repolarization abnormalities. 

Even though more recent investigations into repolarization related safety pharmacology and 

its hallmark, the prolongation of the QT interval, have taken into account multi-channel 

block by drugs, there has not been a defined assay to consider the effects of depolarization 

abnormalities and mechanical dysfunction arising from ion channel block.
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This important area of translational research is ripe for renewed investigation 

[6,37,10]. By assessing and revealing the fundamental ionic mechanisms associated with 

electrophysiological effects of flecainide and the resulting mechanical alterations, insights 

into promising development of new therapeutic interventions, or combinations of existing 

drugs used in appropriate doses may allow for minimization of unwanted side effects 

[47,48]. This may be critical for optimization of new methods for managing prevalent 

cardiac diseases like atrial fibrillation. Flecainide has been shown to be effective to convert 

atrial fibrillation to sinus rhythm. The most likely mechanisms for the antiarrhythmic effect 

is slowing of conduction and concomitant rate-dependent shortening of atrial refractoriness 

that sufficiently impact the fibrillatory wavelength to extinguish the arrhythmia [49].

A variety of mechanisms have been proposed as primary drivers of the negative inotropic 

effect of flecainide [38,50,51]. However there have been no experimental studies that 

systematically considered all plausible mechanisms and their individual contributions to 

negative inotropy. Moreover, these studies largely utilize drug concentrations that are not 

therapeutically relevant and so the application of findings to interpret clinical mechanisms is 

limited. Our findings bridge this gap by taking advantages of the strengths of computational 

modeling and simulation approaches that are well suited for such investigations. Modeling 

and simulation can also take into account the therapeutically relevant concentration of 

flecainide in order to establish the clinical relevance of our findings [52,53]. Moreover, 

modeling and simulation is uniquely suited to consider pharmacodynamic and kinetics, 

multi-channel effects and to assess the contributions of drug effects on individual targets to 

the overall drug efficacy [54-57].

The effects of flecainide on the L-type Ca2+ current [38,50] have been reported in many 

previous studies and this effect has been suggested as the likely mechanism for the negative 

inotropy promoted by flecainide. In the study by Kihara et al., the authors examined the 

differences in negative inotropy induced by flecainide and pilsicainide, both of which are 

classified as 1C anti-arrhythmic drugs. These two drugs block sodium channels similarly, 

but flecainide has more potent block of the L-type calcium channel. Indeed, the authors 

reported that with 10 μM application of flecainide, there was ~25% reduction in peak L-type 

Ca2+ current when measured in dog ventricular trabeculae [38]. They attributed the larger 

effect of flecainide to reduce inotropy as resulting from substantial block of the L-type Ca2+ 

current. The authors postulate that the reduced L-type Ca2+ current then reduced the calcium 

transient amplitude.

Other studies have reported flecainide to be less potent for inhibition of the L-type calcium 

current [1]. In the present study, we adopted a conservative approach and selected an IC50 = 

27.1 μM [1] for flecainide inhibition of the L-type calcium current. Even the highest doses 

of clinically relevant flecainide are considerably lower (by an order of magnitude) and so 

any anticipated effect on the L-type calcium channel is likely to be very small. However, 

we did observe some rate dependent inhibitory effects presumably due to the build-up of 

flecainide in the L-type calcium channel and the related rate dependent reduction in the 

upstroke velocity of the action potential, due to use-dependent Na+ channel block.
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It is important to note that the effect of flecainide on the L-type calcium channel measured 

“in isolation” does not reflect what we observed in a more physiological setting. The effect 

of flecainide to reduce the upstroke velocity of the action potential results in a slowing of 

the depolarizing phase of the membrane potential (Fig. 4A). What this means practically is 

that when sodium channels are blocked the membrane voltage remains in a range that is 

favorable for calcium channel activation. Indeed, this effect in single simulated myocytes 

(shown in Supplemental Fig. S1) actually results in an increase in calcium current at fast 

heart rates. However, in simulated tissue under the same conditions assessed in the single 

simulated myocytes, the model simulations predicted the opposite. As shown in Fig. 4, the 

predictions in a model myocyte within a coupled tissue environment suggest a substantial 

effect of flecainide to reduce the peak of L-type calcium current. Part of the effect results 

from slow conduction that allows the calcium channels to begin the inactivation process 

during slow depolarization.

Other studies have suggested the importance of the Na/Ca exchanger in promoting the 

negative inotropic effect of flecainide [51]. Ito and coauthors reported that inhibition of 

Na+ channels can result in changes to the Na+/ Ca2+ exchange current and ultimately leads 

to a decrease in the Ca2+ content in both the sarcoplasmic reticulum (SR) and Ca2+ entry 

through the exchanger. Fig. 6 shows the results of our simulations of these effects. Indeed, 

as suggested by Ito et al., we identified a substantial impact of Na+ channel inhibition by 

flecainide to reduce intracellular [Na+] levels. We therefore tested the effect of preventing 

the reduction in intracellular [Na+] by clamping it to maintain drug free levels as shown 

in Fig. 7. The graphs in Fig. 7 indicate a small effect of the change in intracellular [Na+] 

that affects the magnitude of the Na+/ Ca2+ exchange current. Meme et al., [58], suggest 

under conditions of reduced intracellular [Na+], Ca2+ entry into the myocyte is likely to 

occur during diastole Na+/ Ca2+ exchange current rather than in systole via the L-type Ca2+ 

current. In our study, we primarily examined the effects of flecainide to reduce intracellular 

[Na+] during rapid pacing. In this setting the diastolic interval is short and does not allow 

time for loading via during diastole Na+/ Ca2+ exchange.

In summary, our human action potential and intracellular Ca2+ model simulations predict 

an interaction of multiple mechanisms that combine to result in the flecainide mediated 

reduction in cardiac contractile performance. In single isolated simulated myocytes, the 

reduction in INa acts to slow the upstroke velocity of the action potential and this can favor 

an increase in L-type Ca2+ current during the depolarizing phase. However, the modest 

increase in L-type Ca2+ current is offset by a reduction in outward NCX current that brings 

in notably less Ca2+ during the early phases of the action potential. Direct block of the RyR 

and L-type Ca2+ current by flecainide results in a reduction in both of these currents relative 

to the drug free condition. The net effect is a reduction in the peak and the integral of the 

Ca2+ transient which in turn results a reduction in inotropy. In the tissue level simulations, 

conduction of the depolarizing excitatory wave is hampered by flecainide block of INa that is 

exacerbated by electronic effects. In the tissue setting, simulated cells in the tissue exhibited 

a reduction in peak L-type Ca2+ current because the action potential upstroke was slow 

enough to allow channel inactivation. This effect is added to the reduction in outward NCX 

current and small amount of block of RyR by flecainide. Together, these effects lead to a 

substantial reduction in the predicted peak and the integral of the Ca2+ transient (Fig. 4).
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We further applied a modeling and simulation approach and examined the relationship 

between flecainide application and the Ca2+ transient in computational atrial myocytes. 

Because of the different morphology of the atrial action potential, the dose and rate 

dependent reduction in the atrial Ca2+ transient following application of flecainide was more 

profound than in the ventricular simulations. The effect of the reduced capacity to carry out 

mechanical “squeeze” by the atria in the presence of flecainide would be expected to reduce 

ventricular filling and preload and consequently reduce dP/dtmax [59-61].

There are several limitations present in our study. Here, we tracked the peak of the Ca2+ 

transient (CaT) that has been linked to maximum contractile force [62], and the integral of 

the CaT as a more comprehensive indicator of the time course of the force of contraction 

over the entire cardiac cycle [63,64]. Clearly, the myofilament calcium sensitivity is a 

critical parameter that can affect the specific correlation of the relationship between CaT 

and contractile force. A limitation of our current model is that we do not explicitly account 

for the myofilament calcium sensitivity although it could be extended in a future state to 

include this and other features relevant to disease states [65]. Moreover, we do not explicitly 

represent stochastic phenomena such as calcium sparks that have shown to be inhibited by 

flecainide [66,67], although we and others have developed detailed models based on these 

data previously [27,68,69].

There are notable differenced in the results from the Grandi-Bers (GB) and O’Hara-Rudy 

(ORd) model predictions of the dose-dependence of flecainide effects on inotropy. Unlike 

the results predicted in Grandi-Bers, where we observed a dose-dependent reduction in 

inotropy, over the full range of simulated dose response in ORd, we observed a biphasic 

response. Whereas lower doses of flecainide caused an increase in the peak CaT in the ORd 

model, higher drug doses (1.5 μM and above) resulted in a decrease in contractility related 

parameters as shown in Supplemental Fig. S2. Indeed, the model described by Tomek et al. 

in the ToR-ORd model was developed in part to address the observed increase in Ca2+ in 

response to Na+ channel block [70].

In addition to the differences in the representation of the Na+ current in earlier models, 

the GB and ORd models have different approaches to of Ca2+ handling and incorporate 

different local subspaces. The GB model predicts separate Na+ and Ca2+ concentrations 

in the junctional cleft, sub-sarcolemma (SL) and cytosol as well as accounting for the 

concentration of Ca2+ in the sarcoplasmic reticulum (SR). However, the ORd model 

included two compartments representing separate cytosol and junctional cleft concentrations 

for Na+ and Ca2+, along with junctional and network SR Ca2+ concentrations. ICaL is also 

distributed differently in the GB model, with 10% of channels in the SL and 90% in the 

junctional cleft (in close proximity to the T-tubules and RyR Ca2+ release channels). In the 

ORd model, the ICaL was located only in the junctional cleft, and INaCa was distributed as 

20% in the junctional cleft and 80% in cytosol. In addition, in the GB model, the ICaL peak 

was broader than in the ORd model, and the decay rate of CaT was slower in the Ord model 

compared to GB model.

The ToR-ORd model [70] includes additional modifications and represents an updated 

version that includes ICaL, INa, Ikr (replaced by a Markov model), and Ik1. ICaL was 
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particularly revised in terms of its driving force, activation curve, and location – 20% of 

ICaL was placed in cytosolic space. The calcium-sensitive chloride current and background 

chloride current from GB model were also added into the ToR-ORd model. Other changes 

in ionic conductance parameters included Ito, IkKs, INaCa, INaK, IKb, INab, ICab, IpCa, Jrel, and 

Jup.

We recognize that all models have strengths and weaknesses and that models continue to 

undergo continuous development. Indeed, a potential perceived weakness of the model used 

to represent the interaction of flecainide with the Na+ channel in this study is complex. 

However, despite having recently constructed a reduced simplified Hodgkin-Huxley model 

of lidocaine interaction with the Na current where we show that we can reproduce the basic 

properties of lidocaine block (arXiv:2102.02342), we were not able to similarly develop a 

reduced model of the Na+ channel interaction with flecainide. We were unable to reduce 

the model and still reproduce the slow complex time course of recovery from block and the 

voltage dependence of use-dependent block, which we have shown in earlier studies is the 

signature of flecainide interaction with the Na+ channel [26,27]. In other words, we know 

that a simple reduction of the conductance of the Na+ channel will not yield realistic block 

of the Na+ current. In the case of flecainide, the rapid gating kinetics of the Na+ channel and 

the slow drug kinetics of flecainide create the complex dynamics of flecainide block of Na+ 

current.

Future studies could consider the impact of additional disease states, which may further 

complicate the interpretation of safety of Na+ channel blockers as effective antiarrhythmic 

agents [9,14,39-43]. Indeed, the study by Gao et al. revealed compromised contractility 

in heart failure, but also identified an altered response to pharmacological manipulation 

by a variety of agents, including flecainide. In de Antonio et al. the importance of rate-

dependence of disease can allow for selective atrial versus ventricular drug efficacy, a 

promising approach in atrial fibrillation [41]. A limitation of our results presented in this 

study is that they do not include predictions in the diseased heart. Future studies will be 

carried out to allow for study of disease states.
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Fig. 1. 
Correlation between flecainide-induced widening of a surrogate measure for the QRS 

complex and reduction in LV dP/dtmax in a (A) Langendorff rat heart with the indicated 

doses (Fernandes et al., [8]). (a: 0.18±0.03 μM, b: 0.67±0.34 μM, c: 1.0±0.12 μM, and d: 

1.36±0.14 μM) (B) Canine hearts paced at 150±4 BPM and reached a plasma concentration 

at 5000 ng/mL (van Middendorp et al., [13]). (C) Pig hearts paced at 140 BPM with 

IT administration of flecainide (1.5 mg/kg, bolus) and reached Cmax at 2000 ng/mL 

(approximately 4.8 μM - pink). Predicted effects in human ventricular computational tissue 

of flecainide on the relationship between the widening of QRS complex and (D) the peak 

intracellular Ca2+ transient, and (E) the integral of the Ca2+ transient, and (F) the peak INa at 

140 BPM with 2.5 (blue), 3.0 (green) and 4.8 (pink) μM. (G) Effects of flecainide of 0, 2.5 

(left), 4 and 12 μM (right) on computed ventricular electrograms. Myocytes were paced at 

140 BPM. Conduction block was observed when flecainide ≥ 4.0 μM.
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Fig. 2. 
Validation of the simulated drugs with human clinical data (A) QT intervals and (B) Heart 

rate corrected pseudo ECG (ΔQTC interval) was computed from a 1-dimensional strand of 

Grandi-Bers human cardiac ventricular myocytes for a range of flecainide concentrations 

(0.2 and 2.0 μM) compared to clinical data (black lines). (C) Comparison of human clinical 

data showing control and flecainide affected JT intervals (black lines) and simulated mean 

values under the same conditions ((yellow and red lines). (D) The clinically observed and in 

silico prediction of QRS intervals changes in a dose-dependent manner. Clinical data: n = 39 

for QT, QTc, and JT intervals; n = 47 for QRS.
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Fig. 3. 
Predicted effects of flecainide in human ventricular computational tissue on the relationship 

between the widening of QRS duration and (A) the peak INa, and (B) the peak intracellular 

Ca2+ transient, and (C) the integral of the Ca2+ transient, and (C) from 0 (drug free – 

black), 0.5 (red), 1.0 (yellow), 1.5 (purple), 2.0 (green) to 2.5 (blue) μM flecainide with the 

indicated heart rate from 95 to 145 BPM. (D) Slopes of correlation between the QRS, the 

peak INa, peak intracellular Ca2+ transient and integral of the Ca2+ transient as a function of 

heart rates.
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Fig. 4. 
Illustration of the ionic mechanisms of simulated effects of flecainide on human ventricular 

computational tissue on 5 targets: INa, IKr, Ito, IRyR, ICaL. Fibers of 165 cells were paced 

at 150 BPM for 1500 beats. (A) The last conducted action potential of the middle cell 

(cell #82) is shown. (B) 2.5 μM flecainide (blue) reduced peak INa and depressed cellular 

excitability (red arrow), as well as (C – D) reduced ICaL activation and the intracellular Ca2+ 

transient.
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Fig. 5. 
Correlation between flecainide-induced widening of simulated human ventricular 

computational tissue derived QRS and reduction in peak Ca2+ transient, and integral of 

the Ca2+ transient, and peak INa within the therapeutic plasma range of 0.5 to 2.5 μM (0.5 

- red, 1.0 - yellow, 1.5 - purple, 2.0 – green and 2.5 – blue). (A) Effects of flecainide on 5 

targets, (B) Effects of flecainide on 4 targets and (C) Effects of flecainide on 3 targets. (D) 

slopes of relationship between flecainide- induced widening of simulated QRS and reduction 

in peak INa (left), and peak Ca2+ transient (middle) and integral of the Ca2+ transient (right) 

for each case. Fibers of 165 cells were paced at 150 BPM for 1500 beats. The last conducted 

action potential of the middle cell (cell #82) is shown.
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Fig. 6. 
Grandi-Bers Human ventricular model: Ionic mechanisms of flecainide effects for 10 mins 

simulated time at 150 BPM with 2.0 μM flecainide (green) for (A) effects of flecainide on 

5 targets, (B) effects of flecainide on 4 targets and (C) effects of flecainide on 3 targets on 

ICaL, [Ca2+]i, [Ca2+]SR and [Na+]i.
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Fig. 7. 
Flecainide-induced widening of simulated QRS from human ventricular computational 

tissue and reduction in Ca2+ transient and INa at 150 BPM within the therapeutic plasma 

range of 0.5 to 2.5 μM (red dots) compared with intercellular sodium concentrations fixed at 

9.7 mM (black asterisks) for (A) effects of flecainide on 5 targets, (B) effects of flecainide 

on 4 targets and (C) effects of flecainide on 3 targets.
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Fig. 8. 
Correlation between flecainide-induced widening of P wave in human atrial computational 

tissue and reduction in the peak intracellular Ca2+ transient (blue), and the integral of 

the Ca2+ transient (red) at 80 and 100 BPM with flecainide 0.5 and 1.0 μM. (A) and 

(B) Simulated effects of flecainide on 5 targets: INa, IKr, Ito, IRyR, ICaL). (C) and (D) 

Simulated effects of flecainide on 4 targets: INa, IKr, Ito, IRyR). Notice that the * indicates 

that conduction block (CB) occurs at the indicated concentration.
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