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Physiologically based kinetic (PBK) modeling has been increasingly used since the
beginning of the 21st century to support dose selection to be used in preclinical and
clinical safety studies in the pharmaceutical sector. For chemical safety assessment, the
use of PBK has also found interest, however, to a smaller extent, although an internationally
agreed document was published already in 2010 (IPCS/WHO), but at that time, PBK
modeling was based mostly on in vivo data as the example in the IPCS/WHO document
indicates. Recently, the OECD has published a guidance document which set standards
on how to characterize, validate, and report PBK models for regulatory purposes. In the
past few years, we gained experience on using in vitro data for performing quantitative
in vitro–in vivo extrapolation (QIVIVE), in which biokinetic data play a crucial role to obtain a
realistic estimation of human exposure. In addition, pharmaco-/toxicodynamic aspects
have been introduced into the approach. Here, three examples with different drugs/
chemicals are described, in which different approaches have been applied. The lessons we
learned from the exercise are as follows: 1) in vitro conditions should be considered and
compared to the in vivo situation, particularly for protein binding; 2) in vitro inhibition of
metabolizing enzymes by the formed metabolites should be taken into consideration; and
3) it is important to extrapolate from the in vitro measured intracellular concentration and
not from the nominal concentration to the tissue/organ concentration to come up with an
appropriate QIVIVE for the relevant adverse effects.

Keywords: reverse dosimetry, risk assessment, toxicodynamics, toxicokinetics, new approach methodologies
(NAMs)

1 INTRODUCTION

Physiologically based kinetic (PBK) modeling has been increasingly used since the beginning of the
21st century to support dose selection of drugs to be safely applied in the first studies in humans
(Poulin and Theil, 2002). For chemical safety assessment, the potential use of PBK models is still less
frequently applied for refining animal-to-human or route-to-route extrapolations. Back in 2010, in
an IPCS/WHO document, most of the PBK models were based mainly on in vivo data. Recently, the
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OECD has published a guidance document which sets standards
for the characterization, validation, and reporting of PBK models
for regulatory purposes, which also emphasizes the use of in vitro
and in silico approaches in PBK model development (OECD,
2021). Currently, in the context of next-generation risk
assessment of chemicals, the application of new approach
methodologies (NAMs) together with PBK has been playing
an important role (Coecke et al., 2013; EFSA, 2014; SCCS,
2021). In order to improve the regulatory acceptance of NAM
data, the human relevance of the alternative test together with the
use of integrated approaches has become crucial for concluding
the safety assessment of chemicals. Indeed, in recent years, the
interest has focused on the potential of human cell-based in vitro
testing to provide an animal-free approach assessing the risk
arising from the exposure toward chemicals (Loizou, 2016; Punt
et al., 2018; Paini et al., 2019). Approaches able to extrapolate in
vivo doses from in vitro measured/estimated concentrations are
fundamental in order to exactly define relevant in vivo exposures
related to the observed in vitro adverse effects. The challenge of
this approach, named quantitative in vitro-to-in vivo
extrapolation (QIVIVE), is extrapolating from in vitro
concentration-response data to in vivo safe exposures and/or
to identify the exposure levels causing adverse effects (EFSA,
2014). Overall, such approaches will accelerate the future
implementation of NAMs at the regulatory level, following the
3R principle (replacement, reduction, and refinement). At
present, the in vitro non-observed and the observed adverse
effects are generally correlated with the nominal concentration
of the test item or at best with the concentration in the culture
medium. This is a shortcoming, and several examples exist in the
literature showing the difference between nominal and actual
concentrations (Groothuis et al., 2015; Kramer et al., 2015;
Pomponio et al., 2015a; Truisi et al., 2015). Furthermore, in
many examples for the application of QIVIVE, the underlying
assumption is that the relationship between in vitro extra- and
intracellular concentration is the same as the in vivo relationship
between blood/plasma and intracellular concentrations in the
relevant tissue; however, this might be erroneous (Mielke et al.,
2017; Algharably et al., 2019).

Fit-for-purpose QIVIVE analyses require consideration of
several key factors, including in vitro biokinetics, PBK
modeling, in vivo (human) exposure parameterization, and the
selection of adequate in vitro toxicodynamic assays to
characterize the toxicity profile of a chemical (Parish et al.,
2020). The selection of an adequate in vitro toxicodynamic
assay is really challenging in cases where the toxicological
profile is unknown. High-throughput data have been produced
with many measured endpoints; however, it is not an easy task to
select the relevant endpoints from a whole array of in vitro tests,
which indicate toxicity of the substance in the in vivo situation
without knowledge on the toxicological profile (Honda et al.,
2019).

The aim of this study was to present results and share the
experience gained in evaluating to which extent drug-induced
side effects or chemical-induced adverse effects could be
quantitatively predicted starting with in vitro data. For this
purpose, we selected examples from the literature in which

in vitro kinetics have been measured along with
toxicodynamic effects. Nevertheless, knowledge about the
mode of action (MoA) or the adverse outcome pathway
(AOP) of the measured in vitro effects was not a selection
criterion, being out of scope here. Indeed, for most of the
selected effects, an AOP is not presently available in the
OECD web page (https://aopwiki.org/oecd_page), and a
comprehensively established MoA is not defined. QIVIVE
predictions were subsequently compared with observed
adverse effects when the drugs were clinically used or with the
reported toxic effects by epidemiological data, following exposure
to the chemical. In the current article, we presented three
examples (ibuprofen, amiodarone, and chlorpyrifos) with
different kinetic and dynamic behaviors. In vivo human
concentration–time profiles of ibuprofen and amiodarone
available in the literature allowed for a validation of the
predicted concentration–time profiles. Chlorpyrifos
concentration-time profiles in non-pregnant women were
available, however not in pregnant women; the target
population for the toxicodynamic effect under investigation.
For all the examples, we could compare the extrapolated doses
from in vitro effect assays with doses which in humans were
associated with adverse health effects.

2 MATERIALS AND METHODS

2.1 Case 1 [Ibuprofen, IBU]
2.1.1 Scenario
Data from an in vitro biokinetic study (Truisi et al., 2015) were
the basis to perform a human QIVIVE (Mielke et al., 2017). In
this in vitro biokinetic study, the time course of IBU
concentration was measured in the cell culture medium and
in the cell lysate of in vitro long-term cultures of primary
human hepatocytes (PHH) after 14 days of repeated
administration of IBU. The measured concentration in the
medium and in the cells was considered to represent the
plasma/blood concentration and the bioavailable
concentration at the target organ for toxicity, that is, the
liver, respectively. The selected in vitro testing dose level
corresponded to the TC10, that is, the concentration at
which 10% cytotoxicity was observed and hence equivalent
to an in vivo human dose at which low degree toxicity
could occur.

2.1.2 Model Structure and Physiological Parameter
Values
The human PBK (h-PBK) model was based on a structural model
with eight organs/tissues and arterial and venous blood, the most
important organ being the liver as the target for IBU toxicity. The
organs were connected to the systemic circulation via arterial
inflow and venous outflow; the circulation system was closed via
the lung and the heart. The physiological data (organ weights,
cardiac output, and organ blood flow) and characteristics of an
adult male were taken from Abraham et al. (2005) .

Ibuprofen is a nonsteroidal anti-inflammatory drug with a
low-molecular weight (206.27 g/mol), and tissue membranes do
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not represent a significant barrier to model the in vivo doses,
leading to the in vitro measured concentrations.

2.1.3 Drug-Specific Parameters
Physicochemical properties of IBU were retrieved from
PubChem, log PO/W = 2.23 (Hansch et al., 1995) and a
non–protein-bound fraction of 0.01 (Cristofoletti and
Dressman, 2014). Oral absorption was assumed to be 100%
(Cristofoletti and Dressman, 2014). The tissue/blood partition
coefficients were calculated according to Schmitt (2008a) and
Schmitt (2008b). A further calculation was performed for the
tissue/blood partition coefficient by using the experimental
in vitro data (concentration in the cell lysate/concentration in
the medium). Metabolism was assumed to be complete in the
liver, and drug clearance was assumed to be by hepatic metabolic
clearance only since the parent compound is not excreted by the
kidney and was taken from 1) an in vivo study in human male
volunteers (Greenblatt et al., 1984) and 2) the in vitro data in
PHH, as reported in Truisi et al. (2015). Relevant model input
parameters are summarized in Table 1.

2.1.4 Program
For the simulation of the whole body, all mass balance equations
were combined in a system of interdependent differential
equations. The rate of the change in concentration in every
tissue was described by a system of time-dependent differential
equations, with excretion by metabolism in the liver via constant
clearance. RBC/cell partition and microsomal protein binding
were not taken into account.

Distribution of the drug was modeled assuming drug uptake
into the organs to be limited by the organ blood flow rate and
organ capacity (i.e., organ volume and partition coefficient) and
not linked to permeability, assuming well-stirred organs/tissues.

The program code was written in MATLAB (code available on
request from the authors). Simulation was performed using
MATLAB (version R2015b). The aim of the modeling was
finding the in vivo dose in which in vivo dose corresponds to
the in vitro TC10 in the PHH cell culture.

As in vivo data were available, no formal validation was
performed. Instead, the predictivity of the h-PBK model was
evaluated by visually comparing the predicted

TABLE 1 | Selected physicochemical and physiological human PBK model input parameters for the three tested compounds.

IBU AMI CPF

Relevant physicochemical parameter

Molecular weight (g/mol) 206.29 645.31 350.57
LogPo: w 2.23 7.57 4.96
pKa 4.5 9.08 Non-dissociable
Solubility (mg/ml) 0.0684 0.00476 0.0014

Relevant pharmacokinetic input parameter

Absorption ka 2.1 h−1a; fa 100
a ka 0.323 h−1f; fa 0.3

f Peff 6.16 e−5 cm/sl; fa 0.32 (Calculated in
silico)

Distribution
fu 0.01 0.01–0.06 0.03
Tissue/blood partition
coefficient

Calculated in silicob and for liver/blood also from
in vitro datac

Calculated from rat in vivo datag Calculated in silicob

Clearance (hepatic)
In vivo (L/h) 4.38d Calculated in silico based on in vitro Vmax

and Km
m

In vitro Vmax/Km

6.5 (μm3/s)c
Vmax 4.12 (nmol/h/mg)h

Km 38.85 (μM)h
Vmax, Dearylation 14.04 (nmol/min/mg)
Vmax, Desulfuration 9.36 (nmol/min/mg)
Km, Dearylation 4.33 (μM)
Km, Desulfuration 28.5 (μM)

Scaled clearance 3.6 (L/h/kg bw)e CL to MDEA (main metabolite)
5.068 L/hi

Intrinsic clearance scaled in silicon

CL to other metabolites 0.096 L/hj

CL to MDEA 0.002 L/hk

Peff, specific intestinal permeability; CL, clearance; ka, first-order absorption rate constant; fa, fraction absorbed; fu, fraction unbound; MDEA, monodesethylamiodarone.
aTaken from Cristofoletti and Dressman, (2014).
bAccording to Schmitt, (2008a; Schmitt, 2008b).
cTruisi et al.(2015).
dTaken from Greenblatt et al. (1984).
eScaled using Barter et al. (2007).
fTaken from Kannan et al. (1982).
gTaken from Lu et al. (2016).
hTaken from Trivier et al. (1993).
iScaled with data taken from Trivier et al. (1993) using Barter et al. (2007).
jTaken from Chen et al. (2015).
kScaled with data taken from Pomponio et al. (2015a) using Barter et al. (2007).
lTaken from Cook and Shenoy, (2003).
mTaken from Zhao et al. (2019).
nAccording to Rostami-Hodjegan and Tucker, (2007).
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concentration–time profile in blood with plasma
concentration–time data, as reported by Greenblatt et al.
(1984) in an elderly volunteer after oral intake of a single dose
of 600 mg IBU. In this evaluation process, we used the results
obtained by using the hepatic partition coefficient calculated by
the algorithm of Schmitt (2008a) and Schmitt (2008b) and,
alternatively, the coefficient determined by using in vitro data
(Truisi et al., 2015). In the same way, we used the clearance taken
from in vivo data or calculated from the in vitro data (Truisi et al.,
2015).

2.1.5 Dose Finding by QIVIVE
To determine the in vivo dose which would generate the same
concentration–time profile as in vitro (concentrations in the
medium vs. the one in the cell lysate) after single exposure, we
simulated the concentration–time profile in blood vs. the liver in
an iterative process by varying doses in steps of 10 mg given to the
human. The decision for the optimized dose was made by
comparing the sum of squared (SSQ) differences, simulated vs.
observed and decided to take the dose, which resulted in the
lowest SSQ. In a second series, we determined the dose which best
fitted the concentrations and measured in the cells because this
was the relevant metric related to hepatic toxicity.

2.2 Case 2 [Amiodarone, AMI]
2.2.1 Scenario
We used the available in vitro biokinetic data on AMI (Pomponio
et al., 2015a; Pomponio et al., 2015b) and applied the QIVIVE
approach in two scenarios related to 1) hepatotoxicity (Algharably
et al., 2019) and 2) neurotoxicity (Algharably et al., 2021) as the
two main possible adverse reactions elicited by AMI.

Scenario 1: using the data from an in vitro biokinetic study in
PHH (Pomponio et al., 2015a), QIVIVE was performed to predict
the in vivo AMI dose in man, leading to the same
concentration–time profile obtained in the in vitro study in
both the medium and hepatocytes after single and repeated
exposure to a nominal concentration of 2.5 μM (concentration
at which 10% cytotoxicity was observed). The aim of this
simulation was to evaluate the relevance of the selected
in vitro system and its power to predict the in vivo kinetics.

Scenario 2: the same approach was used to predict the in vivo
doses that would result in the intracellular brain concentrations
corresponding to that obtained in an in vitro biokinetic study
(Pomponio et al., 2015b) after repeated AMI administration in rat
brain cell culture. In this study, 3D re-aggregating brain cells were
repeatedly treated for 14 days with AMI at two nominal
concentration levels, 1.25 and 2.5 μM, that were associated
with statistically significant changes in some markers of
neurotoxicity (e.g., neuronal insult, cellular stress, cytotoxicity,
and functional markers). For the dynamic effects, a dose-response
was studied with four nominal concentrations 0.312, 0.625, 1.25,
and 2.5 μM. In analogy to the first study, actual concentrations of
AMI and its main metabolite monodesethylamiodarone (MDEA)
were measured both in the medium and the cells. For QIVIVE, we
primarily used the area under the concentration–time curve
(AUC) over 24 h as the target metric for the reverse
dosimetry. Moreover, based on inhibition of choline acetyl

transferase (ChAT), the studied neurotoxic effect, we
performed benchmark dose (BMD) modeling with a
benchmark response (BMR) of one standard deviation and
selected the upper BMD for in the in vivo dose, for prediction
of neurotoxicity in humans. To assess the predictivity of the
QIVIVE approach and the used in vitro cellular model, the result
was compared to doses associated with neurotoxicity in patients,
as reported in the literature (Smith et al., 1986; Kerin et al., 1989;
Orr and Ahlskog, 2009).

2.2.2 Model Structure and Physiological Parameter
Values
A published rat kinetic model (Lu et al., 2016) for AMI was
parameterized for an adult human by incorporating standard
human physiological parameters including cardiac output, organ
weights, and blood flows (Brown et al., 1997). The model
consisted of 10 tissue compartments including the target
organs relevant for AMI adverse effects and the arterial and
venous blood supply. The circulation system was closed via the
lung and the heart. Elimination was by metabolism in the liver to
give MDEA as a primary metabolite, while other tissue
compartments, including the brain, were regarded as non-
metabolizing. Indeed, although some metabolic activity can be
assumed at the brain level as witnessed by the formation of
MDEA in the in vitro biokinetic study, it amounted only to
2.5–3% compared to 50–60% seen in liver cells. It was thus
deemed not to contribute to the overall body clearance. Drug
input was modeled by both intravenous (i.v.) and oral routes. The
model output was validated by comparing the model outcome
with kinetic data in human clinical studies after i.v. and after oral
administration of AMI.

2.2.3 Drug-Specific Parameters
Amiodarone is a poorly soluble, lipophilic compound (log PO/W,
7.57) (Avdeef et al., 1998) with high protein-binding capacity
(96%–99%) and shows extensive tissue distribution. Hepatic
clearance to MDEA was parameterized with Vmax (4.12 nmol/
mg/h) and Km (38.85 μmol/L) from an in vitro study in human
liver microsomes (Trivier et al., 1993) and was scaled to total organ
clearance to give an intrinsic hepatic clearance of 5.07 L/h using
physiological scaling factors, as described previously (Barter et al.,
2007). This value was close to the lower end of reported values in
the literature for AMI in vivo clearance, that is, 8–46 L/h (Riva
et al., 1982; Latini et al., 1984). The intrinsic hepatic clearance to
give other metabolites accounting for 10% of total clearance was
taken from Chen et al. (2015) and was, likewise, scaled to give a
clearance of 0.096 L/h. Protein binding was tested in a range of
96–99.9%. For the oral model, a first-order absorption rate
constant (ka) of 0.323 h−1 and a fraction absorbed (fa) of 0.3
were taken from Kannan et al. (1982). Relevant model input
parameters are summarized in Table 1.

2.2.4 Program Assumptions
Drug distribution into the liver was modeled by permeability
rate-limited kinetics, where vascular and extravascular spaces are
separated by a diffusional barrier which becomes the limiting
process. The permeability–surface area product (PS × tissue) and
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the tissue-specific unbound fraction of AMI (fu) described the
transport of molecules between the two sub-compartments. The
rat parameters were used to describe the AMI tissue-partitioning
properties in the human model, which could be justified by the
similarity of membrane and tissue composition in terms of water,
proteins, and lipoproteins. We used Berkeley Madonna software
for simulation (version 8.3.18).

Evaluation of the i.v. h-PBK model was performed by
comparing the simulation results with the plasma
concentration–time profile observed in patients with cardiac
arrhythmias after a single i.v. dose of 400 mg AMI (Andreasen
et al., 1981). Similarly, the output of the oral model was compared
with plasma concentration–time data after oral intake of AMI in
humans (Kannan et al., 1982). We also varied the fu of AMI in the
range of 0.06–0.001 during the evaluation while maintaining the
other model parameters unchanged. Alternatively, AMI clearance
was calculated by using Vmax and Km from the in vitro biokinetic
study and scaled to the total organ clearance.

The program code is available from Lu et al. (2016).
BMD modeling of the measured neurotoxic parameter was

performed using the R package PROAST (version 67.0).

2.2.5 Dose Finding by QIVIVE
Liver model: we modeled the in vivo doses starting from the
in vitro actual measured concentrations in the medium and in the
cell lysate. Performing QIVIVE, we used both the scaled
metabolic clearance parameters (Vmax and Km) from human
liver microsomes and the metabolic parameters taken from the
in vitro biokinetic data. We also set the protein binding at 0% for
the modeling, reflecting the conditions used in the in vitro study
due to the use of a protein-free in vitro culture medium. In those
conditions, the medium could not bind to AMI in contrast to the
in vivo situation, where AMI has a high affinity for plasma
proteins. In an iterative process, we increased the dose given
into the human system, and simulations for internal
concentrations in plasma and liver cells were performed. An
optimized dose was obtained by applying SSQ minimization
between the predicted and the in vitro experimental
concentrations.

Brain model: we used a validated h-PBK model to directly
perform reverse dosimetry (Algharably et al., 2019). Here, we
relied primarily on the calculated AUC0-24 for AMI
concentrations measured in the brain cell lysate on day 14
as a target metric to perform QIVIVE for the two nominal
concentrations, that is, 1.25 and 2.5 μM. We iterated the doses
in steps of 0.01 mg AMI given to the human system and
selected accordingly an optimized dose which had the
smallest difference between the in silico predicted AUC and
the in vitro observed value. Using the toxic effects measured in
the in vitro study but related to nominal concentration, we
were able to translate the in vitro concentration–response data
into in vivo dose–response curve in humans for ChAT activity,
for which we performed BMD modeling. The benchmark
response (BMR) was chosen as an effect size of one
standard deviation (SD) of the background response. The
upper bound for BMD (BMDU) was selected to predict a
dose able to elicit adverse effects on the CNS, which will be

subsequently used for comparisons with doses associated with
neurotoxicity from clinical studies.

2.3 Case 3 (Chlorpyrifos, Algharably et al., in
Preparation)
2.3.1 Scenario
Data from an in vitro biokinetic and toxicodynamic study (Di
Consiglio et al., 2020) were the basis to perform a human
QIVIVE. In this study, the time courses of CPF and its toxic
metabolite CPF-oxon (CPFO) concentrations were measured in
the medium and in the cell lysate of human-induced pluripotent
stem cell-derived neural stem cells (hiPSC-NSCs) undergoing
differentiation and repeatedly exposed for 14 days to CPF. The
selected in vitro concentration (nominal: 21 μM) corresponded to
IC5 (concentration causing 5% reduction of viability). The
measured concentration in the medium was considered to
represent the plasma/blood concentration, and the
concentration in the cells was considered to represent the one
bioavailable at the target organ. The Open Systems Pharmacology
(OSP) suite was used to build the model of a pregnant woman at
the end of the first trimester, also including the fetus as a tissue
representing the target organ for toxicity. This model has been
used to perform simulation of concentrations in the fetus
enabling comparing concentrations measured in the cells
in vitro with concentrations in the fetus.

In a second step, we evaluated the in vitro effects related to
developmental neurotoxicity and measured in hiPSC-NSCs, after
14 days of repeated treatment. The differentiation status of the
cell cultures characterized by neurogenesis, gliogenesis, neurite
outgrowth, and synaptogenesis would correspond to the
development of a human fetus at the end of the first trimester
(Douet et al., 2014). The in vitro concentration—effect data were
used to perform a BMD analysis to determine the BMDU with a
BMR of one SD of the measurements in the control. The in vitro
BMDU was converted into in vivo concentration in the human
fetus by using the established kinetic model of the pregnant
mother and her fetus.

We then assessed data from human epidemiological studies in
which both the effects measured in the offspring of pregnant
women and the blood concentration values in the mothers were
available (Rauh et al., 2006; Silver et al., 2017; Chiu et al., 2021).
Using the kinetic model, we simulated the concentrations in the
fetus, corresponding to the concentrations measured in the
mothers taken from the publications, and compared them
with the BMDU, converted from nominal to actual
concentrations, for the in vitro observed effects. In this model,
our aim was also to investigate possible MoA for the
developmental neurotoxicity elicited by CPF other than the
well-known inhibition of acetylcholinesterase (AChE).

2.3.2 Model Structure and Physiological Parameter
Values
We used the OSP suite to build a model for a pregnant woman
and her fetus. A reference h-PBKmodel for CPF for an adult non-
pregnant woman was first developed in PK-Sim® incorporating
the PK-Sim® standard model structure comprising 18

Frontiers in Toxicology | www.frontiersin.org July 2022 | Volume 4 | Article 8858435

Algharably et al. Lessons Learned With QIVIVE

https://www.frontiersin.org/journals/toxicology
www.frontiersin.org
https://www.frontiersin.org/journals/toxicology#articles


compartments (Krauss et al., 2012) and then was extended to a
pregnant woman in MoBi®. Some of the physiological parameters
were retrieved from the literature and by expert opinion. Drug
input was modeled by the oral route as single-dose exposure,
whereas for elimination only the hepatic clearance was
considered, using CYP-specific Vmax and Km from an in vitro
study with human hepatic microsomes (Zhao et al., 2019). In this
model, the RBC/plasma ratio and blood–brain barrier that are
both relevant to CPF were calculated as partition coefficients
according to the different tissue/plasma partition coefficient
algorithms implemented in the software (Schmitt 2008b).

2.3.3 Drug-Specific Parameters
Physicochemical properties of CPF (molecular weight, 350.57 g/
mol; log PO/W, 4.96; and solubility, 1.4 mg/L) retrieved from
PubChem and a non-protein-bound fraction of 0.03
(Timchalk et al., 2002) were implemented in the molecule
building unit. For parameterizing absorption, we used a
specific intestinal permeability for CPF taken from an in vitro
study that assessed the intestinal uptake of CPF using the single-
pass intestinal perfusionmethod in rats (Cook and Shenoy, 2003).
Relevant model input parameters are summarized in Table 1.

2.3.4 Program Assumptions
The software used for PBK modeling was PK-Sim®. The
structure of the model was similar to that used in the other
examples where compartments represent organs/tissues, and
the different organs were connected by the arterial blood flow
and venous blood flow. The compartments are composed of
sub-compartments, representing the vascular space which is
sub-divided into plasma and (red) blood cells, the non-vascular
space which is sub-divided into interstitial space and
cellular space. The system of time-dependent differential
equations is solved numerically. PBK simulations deliver
concentration–time courses of the compound in the various
compartments, which are addressed in the equations. It is
explicitly said, in the information package, that PK-Sim® is
designed for use by non-modeling experts and that it only
allows for minor structural model modifications. For further
details, see program description (https://www.open-systems-
pharmacology.org/).

2.3.5 Comparison of the In Vitro Effect Concentrations
With In Vivo Effect Concentrations in the Fetus
Among the several publications in the open literature in which
isolated single plasma or cord blood concentrations in
epidemiological studies were measured in pregnant women,
although with unknown “external” exposure to CPF, we
selected the studies in which the offspring showed adverse
neurodevelopmental effects later in life (Rauh et al., 2006;
Silver et al., 2017; Chiu et al., 2021). We compared the in vitro
upper concentration (BMCU) converted from nominal to actual
concentration from the BMD modeling for the in vitro
observed effects with the modeled concentrations in the fetus.
This allowed assessing the suitability of the selected in vitro
experimental system and the endpoints tested to predict the
neurodevelopmental effects in quantitative terms.

3 RESULTS

3.1 Case 1 (IBU)
3.1.1 Kinetic Model Evaluation
When using the tissue/blood partitioning coefficient calculated by
the algorithm of Schmitt (Schmitt, 2008a; Schmitt, 2008b) of 3.01,
the non-protein-bound (fu) IBU of 0.01, and the in vivo clearance
of 0.06 kg bw (L/h) (corresponding to 79 ml/min), the simulated
concentration–time profile in blood and the in vivomeasured one
matched very well, confirming the validity of the h-PBK model
and the applied parameters. In this respect, model predictions
were checked visually and the differences between the predicted
data compared to observed data were within an order of
magnitude, which is considered acceptable in previous
publications (Abdullah et al., 2016; Pletz et al., 2020; Punt
et al., 2021). In contrast, when using the ratio of the in vitro
concentration in the hepatic cell lysate and in the medium to
calculate the partition coefficient liver tissue/blood, which was
11.1, the simulated concentration–time profile did not fit well
with the experimental data. However, comparing the SSQs for the
distance between experimental and simulated data demonstrated
clearly that the simulation with the calculated liver tissue/blood
partitioning coefficient fitted the experimental data better.

The major difference about the in vitro and the in vivo
situation was the low protein content of the culture medium
(Williams’ E medium and the Geltrex™) used in the in vitro
experiment. Hence, we evaluated the influence of the non-
protein-bound fraction (fu) on the in silico predicted liver/
blood partition coefficient by using the in silico prediction
algorithm by Schmitt (2008a) and Schmitt (2008b). We
found out that with increasing fu, the liver/blood partition
coefficient increased. Hence, because the free fraction of IBU
in the in vitro medium was much higher than that in the blood
in vivo, a higher in vitro partitioning into the human hepatic
cells did result.

Because the clearance values from the in vitro and in vivo
studies were only differing about 10%, the results of the
simulations did not differ when using the same partition
coefficient, calculated by the Schmitt algorithm, for simulation.

3.1.2 Dose Finding
In the first approach, the in vitro clearance and the in vitro
partition coefficient (cell lysate: medium) of 11.1 were used in the
simulation, in order to estimate whether in vivo concentrations in
humans in plasma and the liver were similar to the in vitro
experiment in the medium and cell lysate. The
concentration–time profile up to 3 h was in line with the
experimental in vitro data. In the second step, we optimized
the dose based on the concentration in the cell lysate by using the
same parameters as in the validation step, that is, the tissue/blood
partitioning coefficient calculated by the algorithm of Schmitt, fu
= 0.01 and the in vivo clearance. A lower dose of 1,790 mg
resulted from the first step than from the second step, which
resulted in a dose of 3,560 mg (Figure 1). We assumed that both
doses were predicting low oral toxicity because the in vitro
concentration used corresponded to TC10. The difference
between the two doses is explained because using the higher
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in vitro partition coefficient for liver/blood in the modeling
results in higher predicted in vivo liver concentrations than in
the calculations using the predicted in silico partition coefficient
for liver/blood. Thus, the in vitro prediction for the dose is 1.54-
fold lower than the prediction with the calculated partition
coefficient which, however, is in agreement with human post-
mortem partitioning between the liver and blood (Table 2).

3.1.3 Comparison of the Outcome of Modeling With
Clinical Data
A MoA for hepatotoxicity is not established, and data are not
available to allow describing a MoA according to Boobis et al.
(2008). However, data on therapeutic doses and case reports on
liver toxicity allow in assessing the relevance of the predicted
doses. The daily therapeutic dose of IBU is up to 2,400 mg,
indicating that frank toxicity is not expected at 1,790 mg, the
QIVIVE dose, resulting from simulations with the partition
coefficient of 11.1, calculated from in vitro measured data
(Table 2). In the literature, two cases were reported on
suicidal attempts with detailed information on the IBU doses
ingested. In one case, a dose of 9,600 mg (Laurent et al., 2000) led
to severe liver toxicity, requiring liver transplantation. In the
second case, acute liver toxicity occurred, following the ingestion
of 20,000 mg IBU (Lee and Finkler, 1986). Hence, the dose of
1,790 mg is within the therapeutic range and too low to predict
liver toxicity in vivo in humans. The dose of 3,560 mg is one-third
of the dose in the case reported by Laurent et al. (2000) with
severe liver toxicity and might be considered as an estimate for a
low toxic dose (Table 2). This dose was simulated using an in
silico calculated partition coefficient for the liver of 3.01, which
was in accordance with the partition coefficient for liver/blood of
2.7, calculated from post-mortem data in a human subject having
committed suicide with IBU (Kunsman and Rohrig, 1993).

3.2 Case 2 (AMI)
3.2.1 Comparison of the Outcome of Modeling With
Clinical Data
Liver model: when using the clearance value based on the in vitro
data from human liver microsomes (Trivier et al., 1993), the
simulated plasma concentration–time profile was in good
agreement with that observed in an in vivo study after i.v.
(Andreasen et al., 1981) as well as oral administration
(Kannan et al., 1982), thus validating our h-PBK model. The
output of the model was sensitive to variations in protein binding,
which was the most important variable affecting the goodness of
fit. In contrast, when the clearance was based on the metabolic
parameters obtained from the in vitro biokinetic study in PHH
(Pomponio et al., 2015a), corresponding to an intrinsic hepatic

FIGURE 1 | Optimized dose in reverse dosimetry with optimization for
concentrations in the target organ of toxicity (liver). Condition/scenario a:
hepatic tissue: blood partition coefficient of 3.01 calculated by the algorithm of
Schmitt, (2008a; Schmitt, 2008b). Condition/scenario b: hepatic tissue:
blood partition coefficient of 11.1 derived from the in vitro data (concentration
in human hepatic cells/concentration in the supernatant) calculated from the
in vitro concentration–time data (Truisi et al., 2015). Orange color:
concentrations in arterial blood; blue color: concentration in the liver. Orange
line and dashed-dotted blue line: condition (a); orange dashed line and blue
dotted line: condition (b). Modeling using the hepatic tissue: blood partition
coefficient calculated by using the in vitro measured concentration in the cell
lysate and the concentration in the medium fits the in vitro data well; however,
the resulting dose related to beginning liver toxicity is within the therapeutic
range. Modeling using the hepatic tissue: blood partition coefficient calculated
by the algorithm (Schmitt, 2008a; Schmitt, 2008b) did not well describe the
concentration in the medium when optimized for the liver concentration;
however, the resulting dose related to beginning liver toxicity is in accordance
with the clinical observations.

TABLE 2 | Case 1—IBU-: Relevant data and results.

Parameter In vitro data Human data

fu Not measured, protein-free medium 0.01
Partition coefficient 11.1 2.7a

3.01b

Clearance (L/h) 3.6 4.2
Simulated daily dose (mg) with low toxicity 1,790c 3,560d

Therapeutic daily dose (mg) up to 2,400
Dose (mg) with severe intoxication requiring liver transplantation 9,000

fu, fraction unbound.
aPost-mortem data (Kunsman and Rohrig, 1993).
bCalculated according to (Schmitt, 2008a; Schmitt, 2008b).
cOptimized dose in reverse dosimetry with optimization for concentrations both in the medium and in the human hepatic cells using the in vitro parameters for hepatic tissue/blood partition
coefficient and clearance.
dOptimized dose in reverse dosimetry with optimization for concentrations in the human hepatic cells (target of toxicity) using the in vivo parameters for hepatic tissue/blood partition
coefficient and clearance.
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clearance of 0.002 L/h, the predicted in vivo plasma
concentration–time profile was not comparable with that
observed in the in vivo clinical studies (Figure 2). This was
attributed to the extremely low clearance observed in the PHH
culture. We explained the low in vitro clearance by the fact that
the concentration of the metabolite MDEA, known for its
inhibitory effect (Ki 12.1 μM) on CYP3A4, the relevant CYP
enzyme for AMI metabolism, accumulated inside the cells
(Pomponio et al., 2015a) and slowed down the rate of AMI
metabolism.

Brainmodel: the original model developed and validated in the
rat was ascertained to predict internal concentrations in the brain
by comparing the model predictions to published studies with in
vivo tissue concentrations in the rat before we used the
parameterized human model for QIVIVE. A MoA for
neurotoxicity is not established, and data are not available to
allow building a MoA according to Boobis et al. (2008). However,
data from clinical studies reporting on neurotoxicity allow in
assessing the validity of the predicted doses.

3.2.2 Dose Finding
Liver model: when the h-PBK model was parameterized with
in vitro validated parameters (clearance 5.068 L/h; fu 0.06), we
noticed large discrepancies between the simulated
concentration–time profile in the plasma and the liver and
the in vitro data in both the medium and hepatocytes,
respectively.

Notably, the predicted concentrations, particularly in the liver,
mismatched with those observed experimentally in vitro showing
initially high concentrations and then dropping to lower values,
thus rendering dose predictions by QIVIVE difficult to perform.
Accordingly, an in vivo dose of 7 mg/kg bw could be obtained for
the medium whereas an in vivo dose at least 10-fold higher was

necessary to reach the intracellular liver concentrations. This
could be due to an initial higher in vitro intracellular drug
concentration due to lower protein binding, resulting in a
higher free fraction of AMI, thus available for and partitioning
into hepatocytes. Model prediction could only be improved when
we parameterized the model with metabolic parameters from the
same in vitro study (Pomponio et al., 2015a), thus with an
extremely low clearance (0.002 L/h) and when protein binding
was not accounted for. In these “unphysiological” conditions, that
is, 0% protein binding; fu = 1, the obtained profiles were in
agreement with in vitro experimental data.

Brain model: the AUCs in the brain cell culture resulting
after 14-day repeated dosing of the AMI nominal
concentrations (1.25 and 2.5 μM) were 1.00 and 1.99 μg h/
ml, respectively. The corresponding doses calculated by
QIVIVE were 3.83 and 7.68 mg/kg, respectively. Notably,
dose predictions based on using the Cmax as a kinetic metric
were also comparable, amounting to 3.76 and 7.12 mg/kg,
respectively. The selection of BMDU enabled us to model a
dose that is associated with adverse effects in vivo
(Supplementary Figure S1). Consequently, an i.v.-modeled
BMDU of 5.28 and 5.09 mg/kg based on the AUC and Cmax

approaches, respectively, were obtained. Applying a
bioavailability of 65%, taken from the literature (Pourbaix
et al., 1985), these corresponded to oral doses of 593 and
571.6 mg for a 70 kg person using AUC or Cmax as the
respective relevant metric. In contrast, the i.v. BMDU based
on the nominal concentration was found to be 0.058 mg/kg,
which gave an oral dose of 6.5 mg for a 70 kg adult human.
However, the nominal concentrations should be corrected
since they are to be regarded as AMI free fraction.
Therefore, after adjusting by a correction factor for
unbound fraction [multiplying by 100/unbound fraction (fu
= 0.06)], it resulted in an oral dose of 10,833.3 mg.

3.2.3 Validation of the Effect Outcome by Clinical Data
Liver model: we did not compare the results of QIVIVE since the
relevance of the in vitro system for undertaking dose predictions
was questionable, considering the stark differences in protein
binding and drug clearance capacity between the in vitro system
and the in vivo situation. This has special importance for highly
protein-bound drugs such as AMI.

Brain model: the obtained BMDU and subsequently the total
oral doses predicted to cause neurotoxicity were concordant with
AMI doses reported to be associated with neurological adverse
effects in clinical studies. As such, oral doses of 400–500 mg were
associated with neurotoxicity with variable symptoms, including
muscle weakness, fatigue, tremor, ataxia, peripheral neuropathy,
and cognitive impairment/encephalopathy (Smith et al., 1986;
Kerin et al., 1989; Orr and Ahlskog, 2009). In contrast, dose
prediction based on the nominal concentrations resulted in an
oral BMDU of 10,833.3 mg that exceeded the clinical doses which
are in use and already eliciting adverse effects to such an extent
that they would be highly toxic if not lethal. This highlights the
inadequacy of using the nominal concentrations to predict in vivo
toxicity.

Table 3 captures the most relevant data and results of this case.

FIGURE 2 | Simulated (lines) and observed (points) plasma
concentration–time profiles of amiodarone following i.v. administration of
400 mg. Conditions: fu of 0.06 and hepatic clearance calculated from in vitro
data (Trivier et al., 1993) (blue line) or alternatively obtained from in vitro
data (Pomponio et al., 2015a) (red line), compared with the average plasma
concentration–time data of seven patients with cardiac arrhythmias
(Andreasen et al., 1981).
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3.3 Case 3 (CPF)
3.3.1 Kinetic Model Evaluation
To validate the PBK model, the predicted plasma concentrations
of CPF were compared with the reported in vivo data. In humans,
robust data on the kinetics of CPF, the parent compound, are
scarce. In a controlled study by the US EPA (Brzak, 2000)
applying oral doses of 1–2 mg/kg bw in male and female
volunteers, serum CPF detected in some of the subjects ranged
from 1.1 to 5.6 ng/g and 1.3–18 ng/g in the 1.0 mg/kg and in the
2.0 mg/kg, respectively. The model-predicted plasma
concentrations of CPF with 1 and 2 mg/kg oral doses in
female and male adult humans were in good agreement with
concentration–time data observed in the human studies. On the
other hand, no kinetic studies in pregnant women exposed to
defined doses of CPF are reported in the literature. Only the
plasma concentration in pregnant women from biomonitoring
studies was available. Hence, validation of the pregnant model
was not feasible. However, the observed small differences to the
non-pregnant concentration–time profile are explained by the
physiological changes in pregnancy, in accordance with the

changed physiological parameters which we implemented
(Figure 3).

3.3.2 Comparison of the In Vitro Effect Concentrations
With In Vivo Effect Concentrations in PregnantWomen
The tested nominal concentrations were between 18.45 and
37.1 μM (Di Consiglio et al., 2020). We performed BMD
modeling and assessed the results by considering the intervals
between the BMDL and the BMDU and the distance of the BMDL
from the lowest experimental concentration. In only two
measured effects, that is, the number of neurites/neuron and
those of synapses, the intervals were acceptable, and the distance
was small. We selected the BMDU as the relevant metric to
account for the fact that we would compare an adverse effect-
inducing in vivo concentration with the corresponding in vitro
concentration. Hence, the BMDU is the relevant concentration.
For the endpoint neurites/neuron the nominal BMDU was
29.5 μM (corresponding to 10.3 μg/ml), converted to an actual
intracellular concentration of 11.7 μg/ml, and for the endpoint
synapses, the nominal BMDU was 25.7 μM (corresponding to

TABLE 3 | Case 2—AMI - : Relevant data and results.

Parameter In vitro data In vivo human data

A. Kinetic
Clearance (L/h) 0.002 5.07
Fraction unbound not measured, protein-free medium 0.06
Agreement with in vivo concentration–time profile poor good

B. Dynamic
QIVIVE dose (mg) Doses in patients with neurological side effects (mg)
BMDU based on measured in vitro intracellular AUC0-24 593 400–500
BMDU based on nominal concentration 10,833.3

FIGURE 3 | Simulated plasma CPF concentration–time profile in non-pregnant (black line) vs. pregnant (red line) population (n = 100) after a single oral dose of
2 mg/kg.
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9.0 μg/ml), converted to an actual intracellular concentration of
10.2 μg/ml (Table 4).

In Silver et al. (2017), the CPF blood concentrations in the
exposed pregnant women were between 0.56 and 7.33 ng/ml. In
the infants, the motor function was assessed at 6 weeks and 9
months, and the scores were significantly lower for exposed vs.
unexposed infants. In Chiu et al. (2021), the CPF blood
concentrations in the exposed pregnant women ranged
between 0.13 and 5.29 ng/ml, and a concentration-dependent
statistically significant poorer performance in the cognitive and
language domains was observed at the age of 2 years. The lowest
blood concentrations related to adverse neurodevelopmental
effects were reported by Rauh et al. (2006), where attention-
deficit/hyperactivity disorder problems were observed in
children; differences comparing high (above 0.011 ng/ml) vs.
low exposed children were statistically significant. When we
simulated the plasma CPF concentration in the fetus as the
mother was exposed to the same dose that we estimated from
those studies by reverse dosimetry (data not shown), the resulting
simulated concentrations in the fetus were 0.82–10.7 ng/ml
(Silver et al., 2017), 0.19–7.75 ng/ml (Chiu et al., 2021), and
0.02 ng/ml (Rauh et al., 2006) (Table 4). As we compared the
blood concentrations in epidemiological studies showing
neurodevelopmental effects with the BMDU concentrations of
in vitro studies showing subtle effects related to
neurodevelopment, a difference of several orders of magnitude
was evident. These findings are interesting since the model and
the measured parameters are considered a fair representation of
the developing brain (Bal-Price et al., 2018; Pistollato et al., 2020).

4. DISCUSSION

4.1 Toxicokinetic Aspects
4.1.1 Protein Binding
In two of the reported examples with highly protein-bound drugs
(i.e., IBU and AMI), it is obvious that the protein content in the
media used for the in vitro cell culture is an important
determinant for the dose/concentration, which causes a toxic
effect. Here, the difference in the protein content in plasma and in
the media is remarkable. For IBU, the influence of a lower protein
binding in plasma/medium on the partition coefficient was
demonstrated with the theoretical calculations using the
Schmitt algorithm, resulting in an increasing tissue/cellular
concentration with decreasing protein binding. Recently, the
influence of plasma protein binding was addressed not with

respect to implications for the partitioning into the tissue (as
we did) but with respect to influencing the QIVIVE of hepatic
clearance, in particular, considering plasma protein-mediated
uptake (Bteich et al., 2019; Francis et al., 2021; Poulin and
Haddad, 2021). In the example with IBU, although being a
highly protein-bound drug, the partitioning into the tissue is
strongly affected, we observed only a 14% lower predicted in vitro
clearance than in vivo, which is within the normal variability.
Hence, in this case the indicated influence of plasma protein on
the hepatic clearance seemed not to have an impact.

4.1.2 In Vitro Clearance
In the example of AMI, the in vitro clearance differed from the in
vivo clearance despite the use of PHH as a relevant human cellular
model and the measurement of both AMI and its metabolite
MDEA. The most probable explanation is the fact that the
metabolite of AMI is known to inhibit the metabolism of the
parent compound. A similar case was observed in the study of
Schug et al. (2013). The lower in vitro clearance compared to the
in vivo clearance resulted in effects in the in vitro primary rat
hepatocyte culture that were not observed in the liver of a
corresponding in vivo study in rats, most probably because of
prolonged in vitro exposure of the hepatocytes (Schug et al.,
2013). This example shows the interplay between in vitro kinetics
and the related dynamics.

4.1.3 Nominal Concentrations
In vitro benchmark concentrations, like EC20 values, are
routinely derived from dose-response curves, which are based
on a range of nominal treatment concentrations. When these
nominal parameters are directly applied to a QIVIVE, the
approach inherits a relatively high amount of uncertainty.
Indeed, the nominal concentrations do not account for the
distribution of compounds within the in vitro test system,
which determines the true free concentration of the tested
compound, responsible for the induction of the measured
toxicological effect. This is mainly important in the case of
compounds with high-binding affinity to serum constituents
(Groothuis et al., 2019). Nominal concentrations are
nonetheless in use for screening purposes, for example, in the
US EPA ToxCast/ExpoCast project (Wetmore et al., 2015;
Wambaugh et al., 2019). In the example of AMI, it was
demonstrated that using the nominal concentration for BMD
modeling would result in a predicted dose for toxicity several
folds higher than the dose calculated when using the intracellular
measured concentration. In this case, the outcome of the in vivo

TABLE 4 | Case 3—CPF-: Relevant data and results.

Epidemiological study with
neurodevelopmental effects in
infants from mothers
exposed during pregnancy

Concentration in blood
measured in exposed

pregnant women (ng/ml)

Simulated concentration in
the fetus (ng/ml)

BMDU from the
in vitro study for

two neurodevelopmental-related endpoints
(ng/ml)

Silver et al. (2017) 0.56–7.33 0.82–10.7 10,200 and 11,700
Chiu et al. (2021) 0.13–5.29 0.19–7.75
Rauh et al. (2006) 0.011 0.02
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human dose–response modeling resulted in a BMDU of 593 mg
based on AUCmetric and 572 mg based onCmax metric, the doses
being in excellent agreement with the results of clinical studies, in
which doses of 400–600 mg were associated with the signs of
neurotoxicity. The dose prediction based on nominal
concentrations resulted in a BMDU of 10,833.3 mg, which is
clearly an extreme over-prediction. Measurements of intracellular
in vitro concentrations as well as in the media are generally
workload intensive; however, in silico distribution models have
been developed to estimate the in vitro free concentration and
in vitro cell–associated concentrations. An extensive review has
been recently published, discussing the predictivity and potential
application domains of the different approaches published so far
(Proença et al., 2021). However, the application of in silicomodels
becomes challenging when specific in vitro conditions apply, for
example, short acute exposure or exposure to rapidly metabolized
or slowly permeable chemicals.

4.2 Toxicodynamic Effects
4.2.1 Model Capability to Predict In Vivo Adverse
Effects
Concerning the results of toxicodynamics, we were able to
validate the predicted outcomes in all three cases by the
available effect data in humans. There are not many examples
in the literature in which predicted in vivo doses in humans are
compared with therapeutically used doses or doses which elicit
adverse side effects in humans. Kasteel et al. (2021) predicted
therapeutic doses of baclofen to treat spasticity, with the in vitro
IC50 as the reference point. Compared with the therapeutically
recommended doses, they were successful in predicting orally as
well as intravenously administered doses, however not intrathecal
doses, most probably because a more complex structural model
for drug distribution would be necessary tomirror the therapeutic
scenario. In two of the three cases we presented here, IBU and
AMI, the prediction from the in vitro effect matched well with the
clinical data on hepatic impairment (IBU) and on neurological
side effects (AMI). However, in case of CPF, the in vitro
prediction does not match with the exposures measured in
pregnant women and causing neurodevelopmental toxicity in
their offspring using the previously mentioned in vitro endpoints,
that is, synapses and neurite growth. For the quantitative
prediction of the in vivo dose which is eliciting adverse effects
in humans, three points are relevant. First, it is important to be
sure that the cell culture in which the effect was measured is
biologically similar to the in vivo target tissue and is reacting with
the same sensitivity. For IBU, the in vitro culture was PHH, and
they were more sensitive than primary rat hepatocytes or other
cells with different origin, for example, from skin [Table 2 in
Mielke et al. (2017)], making the PHH model relevant for the
primary target of IBU toxicity, the liver, in humans. For testing
AMI, the rat brain cell culture was used, and the dose predictions
matched well, indicating that in this case, the cellular model used
was predictive. In the case of CPF, the cellular model used was a
culture of human-induced pluripotent stem cell-derived neural
stem cells undergoing differentiation. This model is considered as
a fair representation of the developing brain (Bal-Price et al.,
2018; Pistollato et al., 2020). Second, it is important to know

whether the in vitro effect measured is related to the MoA in vivo.
For IBU, the in vitro effect is cytotoxic, which is an excellent
model for direct liver toxicity observed in cases of suicidal
attempts. The in vitro effect of AMI was inhibition of choline
acetyl transferase. Data in the literature make plausible that
inhibition of choline acetyl transferase might play a role in the
MoA for the observed neurological side effects (Algharably et al.,
2021). In case of CPF, the quantitative in vitro prediction does not
match with the exposures which were measured in pregnant
women and which caused neurodevelopmental effects in their
offspring’s later life. We used epidemiological studies which
reported neurodevelopmental effects in children after CPF in
utero exposure, using blood concentrations from biomonitoring
data in the mothers and applying reverse dosimetry, thus
predicting the external exposure dose, which was then used as
input to the model to further predict the would-be resulting fetal
concentrations. In this approach, much lower concentrations
were simulated in the fetuses than the concentrations, which
showed in vitro effects in neuronal cells. We applied this
approach due to lack of data on pregnant women.

Concerning the MoA of CPF toxicity, although acetylcholine
esterase (AChE) inhibition has been an established mechanism
for toxicity, it has been shown that other mechanisms might also
play a role in neurodevelopmental effects. For example, it has
been shown that non-cholinesterase-depending mechanisms
induced by CPF can alter synaptogenesis, neuronal network
formation, and BDNF signaling in differentiating PC12 cells
in vitro but also in young rats in vivo. It is also described that
neurite outgrowth is inhibited by CPF in the PC12 cells and in
primary cultures of embryonic rat sympathetic neurons. These
results were the reasons why we used the in vitro test battery
established for neurodevelopmental neurotoxicity, as described in
Di Consiglio et al. (2020). The aim of this study was indeed to
evaluate the quantitative predictive value for developmental
neurotoxicity of the in vitro model, which is assumed to be
promising in this respect (Pistollato et al., 2020).

4.3 Modeling Platforms
For the purpose of PBK modeling, a number of generic modeling
platforms (Berkeley Madonna, MATLAB, R, or almost any
programming language) and also a number of specialized PBK
modeling platforms exist. Concerning the latter, open-source
modeling platforms [IndusChemFate (Cefic LRI), high-
throughput toxicokinetics (httk)-R package, MEGEN-RVis,
PLETHEM, MERLIN-Expo, and PK-Sim®] and license-based
platforms (GastroPlus and SimCyp) can be used, requiring
varying degrees of expertise in PBK. We gained experience with
some of these platforms. When using a generic platform, all
equations and all parameters are part of the code. This is more
labor intensive at the beginning; however, it gives flexibility to
adapt to the model structure and its complexity to the situation,
taking into account the relevant physiological factors. In addition,
all relevant information is contained explicitly in the code. This
allows for maximum transparency and completeness of the model.
We had used this approach for case 1 and case 2 with MATLAB
and Berkley Madonna, respectively. When using specialized
software, there are predefined modules for anatomical entities
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or physiological processes (implicitly implying parameters and
equations). This is convenient, but transparency might become
a problem and it might be difficult to implement specific
physiological situations which require changes in the standard
parameters. We showed this with IBU fitting, comparing the
difference in modeling outcomes using the same input
parameters in PK-Sim® and in our original model in MATLAB
(Supplementary Figure S2). Although the model in PK-Sim® was
convenient to build, the model flexibility was lower when the
model outcome was fitted to the available clinical human study;
therefore, dose optimization by reverse dosimetry was not easy to
perform. Notwithstanding, the simulated plasma concentration
was in the same order of magnitude as those predicted from the
generic model in MATLAB.

4.4 Lessons learned
In summary, our work showed the applicability of QIVIVE and
that it can provide reliable results, when compared against in vivo
data. When performing reverse dosimetry, several points have to
be taken into consideration.

All modeling approaches can be applied, and we
experienced their pros and cons. In the three cases, we were
successful in predicting the in vivo concentration–time profile
and for CPF at least for non-pregnant women, thus
establishing confidence in the predictivity of the kinetic
model and the selected physiological and substance specific
data. Furthermore, the concentration–time profile in the case
of CPF for pregnant women was in accordance with the
expected differences due to pregnancy-related changes in
physiology with lower Cmax due to a higher volume of
distribution. The concentration time profile in the case of
CPF for pregnant women was in accordance with the expected
differences due to pregnant-related changes in physiology. For
meaningful quantitative effect extrapolation from in vitro to in
vivo conditions, it is essential to be aware of the potential
impact of the selected in vitro conditions, making differences
with the in vivo situation (e.g., the use of serum-free medium).
In this respect, clearance of the substance and protein binding
are specifically important. Care should be taken to avoid
in vitro conditions, which have influences on those
parameters to avoid non-intended differences in tissue
partitioning and in tissue exposure over time between
in vitro and in vivo. Predictions for IVIVE based on

measured intracellular concentrations in target organs
rather than nominal concentrations of the in vitro datasets
are critical for the validity of the predictions. In vitro observed
effects may predict potential in vivo effects with a better
predictivity if the in vitro effect can be considered being a
step in the AOP. For the purpose of PBK modeling, generic
modeling platforms might be preferable depending on the
scenario which has to be solved.
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