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Abstract: Nutritional compounds may have an influence on different OMICs levels,
including genomics, epigenomics, transcriptomics, proteomics, metabolomics, and metagenomics.
The integration of OMICs data is challenging but may provide new knowledge to explain
the mechanisms involved in the metabolism of nutrients and diseases. Traditional statistical
analyses play an important role in description and data association; however, these statistical
procedures are not sufficiently enough powered to interpret the large integrated multiple OMICs
(multi-OMICS) datasets. Machine learning (ML) approaches can play a major role in the interpretation
of multi-OMICS in nutrition research. Specifically, ML can be used for data mining, sample clustering,
and classification to produce predictive models and algorithms for integration of multi-OMICs
in response to dietary intake. The objective of this review was to investigate the strategies used
for the analysis of multi-OMICs data in nutrition studies. Sixteen recent studies aimed to understand
the association between dietary intake and multi-OMICs data are summarized. Multivariate analysis
in multi-OMICs nutrition studies is used more commonly for analyses. Overall, as nutrition research
incorporated multi-OMICs data, the use of novel approaches of analysis such as ML needs to
complement the traditional statistical analyses to fully explain the impact of nutrition on health
and disease.

Keywords: genomics; multi-OMICS; machine learning; data integration; nutrition

1. Introduction

In 2003, a new era of genomic studies began after the completion of the human genome
project (HGP). Genomics has affected all areas of health sciences and has enabled us to solve many
contradictory studies on human health, including nutrition research [1]. The role of various nutrients
in gene expression and regulation is considered a key in nutritional sciences. Specifically, nutritional
compounds may influence gene expression at different levels including transcription [2], maturing
and stability of RNAs, translation process, and post-translational modifications [3,4]. Additionally,
the response to the dietary intake depends on the genetic background of an individual which is
known as nutrigenetics [5]. For example, Genome-wide Association Studies (GWAS) have reported
the contribution of various single-nucleotide polymorphisms (SNPs) in the interaction with nutrients
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in the development of nutrition-related diseases such as obesity, diabetes, cardiovascular diseases,
and hyperlipidemia [6]. Recently, nutrition studies have included the integration of data from other
OMICs technologies which refers to the investigation using global analytical technologies, including
epigenomics, transcriptomics, proteomics, metabolomics, and microbiomics [7,8]. The interpretation
of these OMICs data with machine learning (ML) has made important advances in research [9].
ML is used for sample clustering and the classification of OMICs data as well as to generate a better
interpretation of phenotype–genotype relationships [10]. In general, only a few nutrition studies have
integrated multi-OMICs data (two or more OMIC datasets) with ML analysis to draw conclusions. There
are some challenges to multi-OMICS data together, including 1. the relative importance of changes
for given parameters (some genes have an impact even at low expression change while others have
a slight biological impact); 2. the relative importance (weight) of data in the analysis in a given
pathology (some variables are more critical like glycemia for diabetes); 3. the quality of measurement
in different variables used in the multi-OMICs analysis; 4. the proper handling of the missing data
in the analysis; 5. the removal of contaminating feature dependence affecting interpretation and
ranking (inherently linked clinical data like BMI (body mass index) and weight or composite indexes
like the Matsuda index dependent on glucose and insulin); 6. direct correlation (a type of dependence)
vs. complex dependence between parameters that cannot be discriminated and correctly interpreted;
and 7. strong interactions can mask main feature effects complexifying the interpretation.

The objectives of this review study are 1. to describe the various OMICs techniques; and 2. to
examine multi-OMICs analyses in nutrition research, including the supervised and unsupervised
ML methods. Furthermore, the advantages and disadvantages of each of the ML methods
for the integration of multi-OMICs data are scrutinized. Finally, future directions for integrative
analysis in nutrition studies with OMICs (also called nutri-OMICs studies) and its importance
in personalized nutrition are discussed.

2. OMICs in Nutrition Research

Genomics techniques have been used for many years now in nutrition research. Numerous
studies that incorporate one of the genomic technologies, such as genetics, epigenetics, gene expression,
proteomics, metabolomics, and microbiomics, can be found in the literature. In this section, each OMICs
and associated terms will be defined and described according to nutrition research.

Currently, it is well recognized that individual variability would be associated with the genetic
differences in a specific gene. Specifically, a single-nucleotide polymorphism (SNP) is a change
in the DNA sequence at a particular location in the genome that varies between individuals
in a population. In addition, the names of the SNPs are displayed in the format of rsxxxxxx.
For example, the association between Melanocortin 4 receptor (MC4R) locus and nutrient metabolism
has been studied in-depth in the literature. Indeed, a population-specific research study reported
that the heterozygous G/A genotype of MC4R rs2229616 and rs571312 were associated with higher
carbohydrate and energy metabolism; however, the homozygous C allele of rs17782313 contributed
to higher metabolism of lipids, carbohydrates and energy [11]. Similarly, a systematic review that
examined SNP, macronutrients and total energy intake, reported the association between FTO SNP
rs9939609 and MC4R SNP rs17782313 with lower and higher total energy intake [10]. Further,
Genome-Wide Association Studies (GWASs) which analyze a large number of SNPs (~0.5–1 million)
are of interest in nutrition research [12]. For example, individuals with low plasma triglyceride levels
following omega-3 fatty acids supplementation have a different GWAS profile compared to those who
did not change their plasma triglyceride levels [6]. Since nutrition interacts with genetic factors, studies
that investigate the differing genetic effects of a nutrient exposure provide important information
on diet recommendations on disease outcomes.

In addition to SNPs, other common genetic variations modify structural DNA
by insertions/deletions, translocations, and copy number variations (CNVs). For example, a study
showed that a high genetic risk score, based on CNVs at three loci, was associated with a higher risk
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of obesity in Chinese children than a normal CNV [13]. The study also showed that a meat-dominant
diet can interact with the CNV at 10q11·22 to increase obesity risk [13]. Therefore, various types
of genetic variations may interact with the nutrients to modify the human phenotype and determine
dietary requirements.

Nutrient intake is also considered as a key factor to explain the gene–diet interaction
through epigenetic mechanisms. Epigenetic modifications are changes affecting DNA expression
unrelated to DNA sequencing. The main epigenetics modifications include microRNA (miRNA),
DNA methylation [11], and histone modifications [10]. Specifically, miRNAs are a group
of 19–23 nucleotide-long, non-coding, and endogenous RNA molecules. The miRNAs have mediatory
roles in RNA silencing and post-translational modifications in gene expression through their presence
and/or their levels of expression [14]. For example, the consumption of 1–4 servings/day (250 mL–1 L)
milk increased the expression of miR-29b-3p in healthy subjects [15]. Further, DNA methylation is
defined as adding a methyl group to DNA molecules to change the transcriptional activity of DNA [16].
For instance, a protein-restricted diet may decrease DNA methylation through methionine availability
limitations [12]. Lastly, histone modifications involve the addition of acetyl (histone acetylation)
or methyl (histone methylation), or phosphoryl (histone phosphorylation) groups to histone tails
that have key roles in chromatin remodeling of DNA [17]. Dietary bioactive compounds such as
organosulfur [18] and curcumin [19] can induce or suppress histone acetylation, respectively. In sum,
dietary intake can induce epigenetic changes that modify gene expression and regulation processes.

Gene expression is the process by which information from a gene is used in the synthesis
of a functional gene product. The importance of analysis of gene expression and transcriptome
(the complete set of RNA transcripts that are produced by the genome) in nutrition research is
the dynamic nature that can modify metabolic pathways such as carbohydrates, lipids, and energy
metabolism [20,21]. For example, after 50 mL/day olive oil for three days, up-regulation was found
in AKAP13 and USP48 genes related to inflammation and atherosclerosis, respectively [22]. These
post-transcriptional changes may eventually alter the function of the proteins in general.

Nutritional proteomics is defined as the interaction of food with proteins, which included the effect
of nutrients on protein expression, and the interaction of nutrients with proteins in post-translational
modifications or small-molecule protein interactions. For example, after a high-fat diet, 50 proteins
were differentially expressed between obese and lean mice, and most of those proteins were found
in brown adipose tissue [23]. In addition, weight loss resulting from energy restriction (800 kcal/day for
eight weeks), caused changes in the number of plasmatic proteins (decrease and increase of 63 and 30
of plasma proteins, respectively) [23]. Overall, proteomics data predict the individual requirements of
nutrients based on the protein interactions and enzymatic pathways. Metabolites are small biologically
active molecules involved in enzymatic pathways.

Metabolomics refers to the monitoring of the levels of metabolites, which are modified
by genetics, environment, medication, or dietary intake [24,25]. Specifically, studies have identified
that metabolite concentrations have been changed after dietary intakes, such as fruits, red
meat, and beef [26,27]. A clinical trial study found that concentrations of tyrosine, lathosterol,
and pentadecanoic acid were increased after high-dairy intake (>4 servings/day for six weeks); whereas
the levels of 1,5-anhydrosorbitol, myo-inositol, 3-aminoisobutyric acid, and beta-sitosterol were
reduced compared to an adequate dairy intake (≤2 servings/day for six weeks) [28]. Furthermore,
the consumption of three boiled eggs, 140 g of beef, and fish as sources of choline for a single day
enhanced the circulatory plasma levels of choline [27]. The identification of metabolite biomarkers
plays a crucial role in the field of nutrition by reflecting the physiological/biological status.

Finally, microbiomics is one of the emerging disciplines of OMICs. The gut microbiome
communities have been shown complex functions, including the fermentation process, the production
of digestive enzymes, as well as the biosynthesis of vitamins and essential amino acids [25]. For instance,
low-fat intake (20% of total calories) was associated with increased abundance of Faecalibacterium and
Blautia while high-fat (40% of total calories) diets were associated with the abundance of Bacteroides and
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Alistipes phyla [26]. A rat study found that consumption of sourdough-leavened bread (four weeks,
15% w/w) and a low-protein diet, reduced the abundance of Alistipes and Mucispirillum in the gut [29].
Moreover, high intake of glucose, sucrose, and fructose found in fruits caused an increase or a reduction
of the abundance of Bifidobacteria and Bacteroides, respectively [30]. Clearly, dietary intakes may have
a role in microbial symbiosis to prevent disease or recover more effectively from illness.

3. Traditional Statistical Analysis in Nutrition Studies

Statistical analyses include organization, description, correlations, the discovery of the interaction
between factors, and interpretation of data [31]. Traditional nutritional data analysis consists
of two steps: 1, converting data into analytical variables; and 2. selecting an appropriate statistical
test according to the purpose of the study, study design, and nature of the data (continuous and
categorical) [32]. For instance, t-tests (paired t-test, independent sample t-test), analysis of variance
(ANOVA) or analysis of covariance (ANCOVA) and correlation (Pearson and Spearman) are considered
the common analytical methods for continuous variables (such as BMI) [33]. t-tests are very easy and
interpretable tests that compare differences between two groups; however, t-tests are used for sample
size less than 30 to have enough reliability and accuracy [34]. Moreover, multiple comparisons are
impossible through the paired data t-test [35]. Unlike t-tests, the ANOVA test is used to compare
differences between multiple groups; however, using a one-way ANOVA may be difficult to determine
which group varies from other groups [36]. For instance, differences in bone density between three
visfatin genotypes (GG, GT, TT) were assessed by ANOVA test in a nutrigenomics study on obese
and overweight healthy adults [37]. However, a t-test was used to examine the differences in lipid
profile, inflammatory parameters between two vitamin D-binding protein (polymorphism, rs4588)
genotypes (CC, AC + AA) [38]. Furthermore, s two-way ANOVA is used to measure the effect of two
different categorical variables on one continuous variable. For example, an animal study indicated that
interaction of categorical variables, including high-protein (45% protein) and high physical activity
was associated with reduced total cholesterol and low-density lipoprotein among mice [39]. Besides,
ANCOVA has efficiency and power to find and estimate the interactions and the ability to deal with
the measurement errors in the covariates, although ANCOVA is inappropriate for large data [40].

In addition, correlation tests such as bivariate correlation (measure the association between two
continuous variables) and partial correlation (determine the relationship between two continuous
variables while adjusting for one or more continuous variables), are an association test which does
not imply cause and effect relationship, and may not determine which variable is considered to have
the most influence [41]. Further, Chi-square and regression (logistic regression and multinomial
regression) are recognized as the major analyses for categorical variables [42]. The Chi-square is
sensitive to sample size (n < 20) since by increasing the sample size the difference becomes smaller
and less precise [43]. The logistic regression is a method to predict the association between binary
dependent variables and one or more independent variables. The logistic regression may provide
perfect algorithms to avoid overfitting but this method is not flexible enough for multiple data (such as
multi-OMICs data) with a large number of variables and complex associations [44]. The multinomial
regression is a predictive analysis used when the dependent variable is nominal (two or more
levels). Moreover, the General Linear Model (GLM) is a multivariate regression method with
the purpose to compare the association between dependent variables and continuous/categorical
independent variables. Moreover, the dependent variable must have a normal distribution in general
linear regression. For these reasons, the generalized linear mixed model (GLMM) is preferred
for the non-normal distribution of residues since it allows for more options in the type of distribution
used to fit the model. For example, a GLM was used to compare the variation in sugar balance between
individuals with acceptable sugar (≤10% of total energy) and excess sugar (>10% of total energy)
through different food groups and subgroups [45]. Overall, regression analysis is commonly used to
examine the association between two or more variables (categorical or continuous) in nutrition research.
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4. Machine Learning in Nutrition Studies

Based on the large volume of data in the nutri-OMICs studies, ML may be the best approach to
identify the association between nutrient intake and OMICs pathways. ML is one of the major fields
of artificial intelligence that provides powerful computer systems to characterize, learn, and perform
algorithms and models with unique precision. A major advantage of ML is the ability to learn and
make algorithms without human intervention. In addition, the accuracy of ML analysis improves with
the addition of training data. Further, the analysis should be conducted according to the hypotheses
of the study to minimize the disadvantages of the procedure.

In the process of multi-OMICs analyses, first, the features (variables) with the greatest
contribution to the prediction output are selected. Second, the selected features are analyzed by different
methods of ML to integrate all of them to make a prediction model. In the next section, this review will
examine the different methods of data integration in supervised and unsupervised ML.

4.1. Supervised Machine Learning

Supervised ML considers the learning function that provided output based on input data
through the training data including a set of training examples [46]. The feature selection process is
defined to select a subset of relevant features (variables) to predict a model construction. The feature
selection influences the performance of the model by reducing overfitting and improving accuracy [47].
For example, in a human study of a calorie-restricted diet, the selection was performed to find
the most related features to insulin sensitivity, such as metabolites, gut microbiota, food groups,
and the nutrients [48]. Overfitting is a modeling error that occurs when functions are fitted to a limited
or a particular set of data. The aim of integrative models and algorithms is to find and select relevant
variables that can accurately predict and estimate the risk of disease with the simpler model [48].

4.1.1. Data Preparation

The goal of supervised ML is to produce predictive models and extraction of algorithms by
technical data mining. In the nutrition context, data mining is characterized by the extraction of patterns
and identification of key features (markers) to find correlations within the genomics, proteomics,
metabolomics, and gut microbiota data sets. One of the major data mining methods to study biological
networks is Weighted Correlation Network Analysis (WGCNA) that is used to perform pairwise
correlations between variables [49]. In addition, various ML feature selection algorithms exist to
exclude uninformative features from OMICs data.

4.1.2. Classification Methods in Supervised Machine Learning

The supervised ML for classification includes Naïve Bayes (NB), Support Vector Machines
(SVM), k-Nearest Neighbor’s algorithm (k-NN), and Random Forest (RF). One of the simplest
algorithms is the NB which is considered as a probabilistic classifier based on different attributes in data.
In a childhood study using the NB method, toddlers’ anthropometric status was categorized into three
groups with different accuracy including 88% of the weight-for-age index; 64% for the height for age
index; and 68% for the weight-for-height index [50]. Consequently, based on anthropometric standards,
the nutrition status of a toddler is measured. The SVM is a supervised classifier to analyze data sets
related to learning algorithms that are used for classification and regression analysis [51]. The SVM
method was used to predict a model in the relationship between metabolized energy and dietary
chemical profiles (crude protein, ether extract, crude fiber, and starch (g/kg)) [52]. The k-NN and RF
models are recognized as two methods of regression trees in dietary pattern extraction [53]. The k-NN is
a supervised method for estimation and pattern recognition which classifies cases based on the number
of nearest neighbors (k) to a majority features space. The RF is used to perform classification and
regression using a multitude of decision trees at training time [54]. Overall, the supervised classification
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will be used to illustrate the differences between classifiers. The second category of supervised ML is
regression. Many regression algorithms are able to perform classifications [55].

4.1.3. Regression Method in Supervised Machine Learning

Linear regression is used to predict the independent variable value based on the dependent
variable. Furthermore, the linear regression is used for continuous variables and may not be appropriate
enough for data with non-linear associations or a large number of variables (n > 100) [56]. Overall,
regression supervised ML makes a model to explain the association between feature data set and
continuous dependent variables.

4.2. Unsupervised Machine Learning

The unsupervised ML goal is to discover natural and hidden patterns or distributions in the data,
without output variables and previous training dataset. In addition, unsupervised ML needs an external
evaluation to be sure that the results are meaningful [57]. There are two unsupervised ML methods.
First, the clustering method, as the most important unsupervised method, is performed to determine
inherent clusters based on the natural structure and unlabeled data. Secondly, the K-means clustering
(K-cluster) is one of the simplest and most used clustering methods. In the K-cluster method, a cluster
is included in the collection of data with specific similarities. The K-cluster may not appropriate
enough for small sizes and density of clusters; however, this method is well-scaled for large data sets
and is considered the fastest technique of clustering [58]. Overall, unsupervised learning is mainly
used to find patterns and clustering data set which are not known before in the dataset.

4.3. Multivariate Analysis

ML also encompasses multivariate analyses (MVA) by nature, but supplementary statistical
approaches have been developed to estimate the association between more than two variables (data
are more than one type of measurement or observation) as well as to find patterns and associations
between outcome variables [59]. Still, ML and MVA are different since there are supervised learning
techniques in ML outside the regular MVA. MVA is an extension of bivariate regression but considers
two or more independent variables and has the advantage to reduce the dimensionality (reduce
the number of features) of a data set when numerous features exist and are uninformative. MVA is
divided into three categorizations, which mainly includes factor analysis (divided data to smaller
groups based on similar response patterns), cluster analysis (classification of a large data set to different
groups based on similar characteristics), and regression analysis (computing the association between an
independent variable and one or more dependent variables). However, MVA analysis requires a large
dataset; otherwise, the analysis becomes statistically meaningless due to the high standard error [49].
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4.3.1. Supervised Multivariate Analysis

Supervised MVA includes classification and regression analysis. Orthogonal Projections
to Latent Structures Discriminant Analysis (OPLS-DA) is a powerful modeling tool to identify
the difference between two groups and the variable with larger discriminatory power [60]. Whereas,
partial least squares discriminant analysis (PLS-DA) is defined as an MVA extension of a paired
t-test and used when data has different levels such as multi-OMICs data [60]. In a nutri-OMICs study,
to compare the metabolite profile after consumption of 10.4 g/day arabinoxylan-oligosaccharides,
OPLS-DA was used [61]. Furthermore, partial least square regression (PLSR) is considered a linear
regression MVA with the ability to analyze large redundant features to construct predictive models [62].

4.3.2. Unsupervised Multivariate Analysis

Unsupervised MVA includes factor and clustering analysis. Multivariate analysis of variance
(MANOVA) is an MVA analysis and is very similar to ANOVA, which used to examine the association
between two or more dependent variables and one or more independent variables. For example,
Principal Component Analysis (PCA) as a factor analysis method, have been used to investigate dietary
patterns in nutrition studies [63]. The PCA analyzes the correlation and covariance between quantitative
variables. The Principal Coordinate Analysis (PCoA) is a method to explore the similarities or
dissimilarities between variables. For instance, by using PCoA analysis the dissimilarities and sample
clusters of gut microbiota were visualized after consumption of high-fat (60% of total energy) and
low-fat diets (10% of total energy) [64]. Overall, all MVA are used to identify the correlation or
covariance between multiple phenotypes of disease and OMICs to provide enhanced biological
pathway models [65].

Overall, ML has a crucial role in multi-OMICs studies through feature selection and data mining.
Further, the regression and classification methods are used to find the relationship and interaction
between features. Studies have used ML analysis through web servers, dedicated software, and
tools to integrate OMICs data in various disorders [66–68]. Furthermore, pathway analysis is used to
associate OMICs data with the dietary intake (food frequency questionnaire, three-day food records,
and 24 h dietary recalls) in nutri-OMICs studies. Therefore, ML has the capacity to predict more
complex and complete models compared to classical statistical methods to explain the association
between multi-OMICs with dietary variables (Figure 1). Nutrigenomics researchers are beginning to
incorporate multi-OMICs analytical approaches and using ML seems necessary due to the complexity
as well as advances in molecular nutrition. In the next section, the ML analysis performed in nutritional
genomics studies is reviewed.
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Figure 1. Traditional statistical, and machine analysis (supervised, unsupervised machine learning and
multivariate analysis) were used in nutri-OMICs studies. Analysis of variance, ANOVA; k-nearest
neighbor’s algorithm, k-NN; Support vector machine, SVM; Regression random forest, RF; Naïve ayes,
NB; Partial least-squares regression, PLSR; Orthogonal projections to latent structures discriminant
analysis, OPLS-DA; Partial least squares discriminant analysis, PLS-DA; Principle component analysis,
PCA; Principal coordinate analysis, PCoA; Multivariate analysis of variance, MANOVA.

5. Multi-OMICs Studies in Nutrition Research

As described above, studies have examined the link between OMICs and nutrients in predicting
individual responses to dietary intake. Now, given the accessibility of multi-OMICs, nutrition scientists
can enhance their research by incorporating various OMICs data in their studies. The objectives
of nutri-OMICs studies are to report: 1. the variations in nutrients and OMICs; and/or 2. the correlations
and interactions between the variables or factors to draw conclusions, from the observational or
experimental studies. The requirement for advanced analytical strategies is needed to adapt to
the recent access to OMICs and multi-OMICs data [69]. To our knowledge, only 16 studies have
integrated nutrition data (such as food frequency or dietary recall) with multi-OMICs data (see Table 1:
Multi-OMICs in nutrition research) to explain the molecular mechanisms of diets and food supplements
on health.
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Table 1. Human and animal studies using multi-OMICs approaches for the investigation of dietary intake on health and disease states.

References Type of Study Population Omics Methodology Main Analysis Strategy Main Finding

Berry SE. et al.,
2020 [70]

Cohort study
(multi-national study)

N = 1002 healthy adults (UK)
N = 100 healthy adults (USA)

Nutrition assessment:
Food frequency questionnaires

Biochemical measurement:
GCM, ADVIA chemistry

triglyceride and glucose oxidase
method

Genomics:
Illumina Infinium HumanHap610

Microbiomics:
16S rRNA and arrays

Multilinear ANOVA
(Hierarchical Bayes models)

Random forest regression
(Unsupervised ML)

PCA (Unsupervised ML)

Medium-fat and
-carbohydrate lunch

showed a less impact on
postprandial lipemia compared

to gut microbiome while
genetic had a modest influence
on glycemic and lipid profile.

Wu W. et al.,
2020 [71] Animal study

N = 12 (pigs)
6 pigs (case): a maize-soybean

meal diet containing 5% a
high-fermentable

fiber (Inulin)
6 pigs (control): a 5%
low-fermentable fiber

(cellulose) control

Metabolomics:
GC-TOF-MS method

Microbiomics:
16S and whole metagenome

PERMANOVA (Multivariate
analysis- unsupervised ML)

PLS-DA (Multivariate
analysis-supervised ML)

Integrative analysis: mixOmics
package of R software

Inulin intake has effects on the
increasing the diversity of

microbiota composition in the
cecum along with a decrease of
the circulating of metabolites

including branched-chain
amino acids, L-valine,

L-isoleucine and an increase in
the level of

indole-3-propionic acid.

Sundekilde
U.K. et al.,
2020 [64]

Animal study

N = 20 mice (C57Bl/6J), males,
6-week old

Group 1: 60% fat (high-fat
diet; HFD)

Group 2: 10% fat (low-fat diet;
LFD)

Genomics:
(RNA extraction, Illumina, Qiagen)

Metabolomics:
NMR Spectroscopy, LC-MS

analysis on urine and plasma,
LC-MS analysis on tissue samples,

GC-MS analysis
Microbiomics:

16S and whole metagenome

PCoA (Multivariate
analysis-unsupervised ML)

Increase in malate, succinate
and oxaloacetate levels were

associated to down-regulation
of gene expression of malate
dehydrogenase together with

gut microbiota enrichment
(Lachnospiraceae,
Ruminococcaceae,
Streptococcaceae,

Lactobacillaceae) in HFD
compared to LFD mice.
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Table 1. Cont.

References Type of Study Population Omics Methodology Main Analysis Strategy Main Finding

Tremblay B.L.
et al., 2020 [72] Observational study

N = 48 healthy
Parents = 22, age, 42.3 year

Children = 26, age, 11.3 year

Nutrition assessment:
carotenoid measurements
High-performance liquid
chromatograph (HPLC),
ChemStation software

Biochemical measurement:
Enzymatic assays,

Friedewald formula,
the rocket

immunoelectrophoretic method
Genomics:

DNA and RNA extraction
(microarray platform, Illumina)

Epigenomics:
Methylation; Infinium Human

Methylation 450 array

One-Sample Wilcoxon Signed
Rank Test

Linear regression
Clustering method
(Unsupervised ML)

Correlation based analyses
WGCNA (Data mining method)

Genes expression in lipid
metabolism and inflammatory
pathways together with DNA
methylation have a mediatory
role in the association between

total carotenoids and lipid
profile in plasma.

Benitez-Paez A.
et al., 2019 [61]

Randomized
crossover study

N = 15 overweight subjects
Duration: 4-weeks for

each phase
10.4 g/day AXOS
(Arabinoxylan-

oligosaccharides)

Biochemical measurement:
plasma and fecal bile acids

(LC-MS/MS)
fecal lipid species (LC-MS/HRMS)

Microbiomics:
16S and whole metagenome

Metabolomics:
NMR Spectroscopy

Paired and one-sided t-test or
Wilcox signed-rank test

Logistic regression model
PCA (Unsupervised ML)

OPLS-DA (supervised ML)

Increase in the abundance of
Actinobacteria,

Bifidobacteriaceae,
Bifidobacterium and change the

host metabolism including
glucose homeostasis (reduction

in fasting insulin and
HOMA-IR) after consumption

of AXOS.

Wang F. et al.,
2019 [73] Preliminary study

N = 36, age = 28.1
Duration of study = 6 months

Vegan = 12
Lacto-ovo vegetarian = 12

Omnivorous = 12

Nutrition assessment:
3-day food records

Metabolomics:
Gas chromatography coupled to

time-of-flight mass
spectrometry system
Metatranscriptomic:

Illumina HiSeq 4000, KEGG,
using BLASTP
Microbiomics:

16S and whole metagenome

Chi-square and t-test for
PCoA (Multivariate

analysis-unsupervised ML)
Clustering method
(Unsupervised ML)

Decrease concentrations of
BCAAs, the abundance of

Prevotella and Bacteroides were
increased and decreased,

respectively, among vegetarians
compared with omnivores.
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Table 1. Cont.

References Type of Study Population Omics Methodology Main Analysis Strategy Main Finding

Tang Z.Z. et al.,
2019 [4] Cross-sectional study

N = 150 healthy
(55 M, 95 F)

Age 18–50 year

Nutrition assessment:
3-day food records

and food frequency questionnaires
Metabolomics:

(untargeted LC-MS)
Microbiomics:

16S and whole metagenome
sequencing from stool

Correlation based analyses
Sparse Linear Log-Contrast

Model (Supervised ML)
Network analysis-WGCNA)

(Data mining method)

Mediatory role of
Ruminococcaceae in the

association of plant-derived
food and artificial sweeteners

with bile acids in stool.

Guirro M.
et al., 2018 [74] Animal study

N = 24 male Sprague-Dawley
rats (8-week old)
Duration: 9-week

Two groups:
N = 12, cafeteria (CAF)

N = 12 standard chow (STD)
After intervention (8-week):

Each diet group
supplemented:

1. Low-fat condensed milk
(n = 6)

2. Hesperidin dissolved with
low-fat condensed milk

(n = 6)

Metaproteomics:
NanoLC-(Orbitrap)

MS/MS analysis
Microbiomics:

16S and whole metagenome
sequencing from stool

Univariate statistical analysis
(Student’s t-test)

PCA (Multivariate
analysis-unsupervised ML)

Increase the abundance of
Bacteroidetes and Firmicutes,

which are related to
down-regulation of proteins in
energy metabolism pathways
such as the tricarboxylic acid

cycle or ATP-binding pathways
after CAF diet.

Dao M.C. et al.,
2018 [48] Cohort study

27 F (24), M (3) overweight or
obese adults

6-week calorie
restriction (CR):

1200 kcal/day (F)
1500 kcal/day (M)

Nutrition assessment:
7-day food records

Genomics:
DNA

(microarray platform, Illumina)
Transcriptomics:

Microarray platform (Illumina)
Metabolomics:

Gas chromatography system
(GC–MS) and H-NMR

Spectroscopy

Nutrition analysis (Profile
Dossier v3 & Profile

Dossier x029)
PLSR (Supervised ML)

Increase in insulin sensitivity
and BCAA after CR associated

with gut microbiota,
metabolomics and adipose

tissue genes in both genders.
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Table 1. Cont.

References Type of Study Population Omics Methodology Main Analysis Strategy Main Finding

Piening B.D.
et al., 2018 [75] Case-control study

13 Insulin resistance (IR)
participants

F (7), M (6)-age: 58, BMI: 30.5
10 Insulin sensitivity

(IS) participants
BMI 25–35 kg/m2,

F (7), M (3)-age: 56, BMI: 28.5
First, hypercaloric diet for a

period of 30-day (increase 880
kcal per day)

Second, iso-caloric diet for
7 days

Third, a caloric-restricted (CR)
diet 60-day period

Proteomics:
Untargeted liquid

chromatography (LC-MS)
Metabolomics:

Untargeted LC-MS
Microbiomics:

16S and whole metagenome
sequencing from stool)

Correlation and
regression-based analyses

Random forest classification
(Supervised ML)

Interaction model: generalized
linear models (GLMs)

Dysregulation of antimicrobial
response (CAMP, LFT, and
defensins) was reflected in
proteome and circulating

cytokines in IR compared to
IS participants.

Mardinoglu A.
et al., 2018 [76]

Short term
intervention study

N = 10 (NAFLD), F (2)–M (8)
BMI: 34.1, age: 47

Intervention: Isocaloric,
low-carbohydrate diet (23–30
g/day) with increased protein
(24% of total energy)-14 days

Transcriptomics:
Microarray platform (Illumina)

Metabolomics:
Untargeted Analyses
UPLC/MS/MS-GC/MS

Correlation based analyses
Linear mixed effect model

The multivariate analysis based
on mix DIABLO (Supervised

and unsupervised ML)

Increase in serum concentration
of β-hydroxybutyrate

concentrations, mitochondrial
β-oxidation, and folate

producing Streptococcus and
serum folate after intervention.

Ishii C. et al.,
2018 [77] Case-control study

Mice (C57BL/6J)
52 weeks:

Normal diet (n = 6)
American diet (n = 5)

Metabolomics:
(Ultrafree MC)
Metagenomics:

(microarray platform, Affymetrix)

Correlation based analysis
PICRUST software analyses

(Supervised and unsupervised
ML)

Abundance of genes associated
with butyrate metabolism is

positively correlated with
butyrate producing bacteria

(Oscillospira and
Ruminococcus).

Kieffer D. et al.,
2016 [78] Animal study

45% kcal from fat +
high-amylose-maize resistant

starch type 2 (HAMRS2),
Case, N = 14 5-week old male

(C57BL/6J mice)
Digestible starch,

Control, N = 15 5-week old
male C57BL/6J mice
Duration: 5 weeks

Metabolomics:
Untargeted GC-MS

Microbiomics:
16S and whole metagenome

sequencing from stool, analyzed by
QIIME

Correlation and
t-test-based analyses

PLS-DA (Multivariate analysis-
supervised ML)

Changes in hepatic metabolism
and gene expression related to
fatty acids metabolism together

with increases in Tenericutes,
Bacteroidetes, Verrucomicrobia
and decrease in Proteobacteria

and Firmicutes phyla after
HAMRS2 diet.
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Table 1. Cont.

References Type of Study Population Omics Methodology Main Analysis Strategy Main Finding

Zhang C. et al.,
2015 [79] Case-control study

N = 17, Prader–Willi
syndrome (PWS), duration

90 day
N = 21, heathy obese,

duration 30 days
Intervention: WTP diet

(whole grains, traditional
Chinese medicinal foods,

and prebiotics)

Nutrition assessment:
24-h dietary record

Biochemical analysis:
Serum glucose, CRP, total

cholesterol, triglycerides, free fatty
acids, ALT and AST (automatic
biochemical analyzer (ADVIA®

1800 Clinical Chemistry
System), Insulin

(immunochemiluminometric
assays), HbAlc (HPLC)

Metabolomics:
NMR Spectroscopy

Microbiomics:
16S and whole metagenome

sequencing from stool

Wilcoxon matched-pairs signed
rank test (two-tailed)

Independent Mann–Whitney U
test (two-tailed)

OPLS-DA

Balance of gut microbiota
composition which contributes
to the alleviation of metabolic

deterioration in obesity among
children with Prader–Willi

syndrome after consumption of
a diet rich in fermentable

carbohydrates.

Children genetically obese with
Prader–Willi syndrome shared
a similar dysbiosis in their gut
microbiota with those having

diet-related obesity.

Zeevi D. et al.,
2015 [80] Cohort study

N = 800 healthy, F (60%)–M
(40%)

54% Overweight
22% Obese

Nutrition assessment:
Dietary habits

(www.personalnutrition.org)
Biochemical analysis: Glucose was

measured for 7 days using the
iPro2 CGM with Enlite sensors

Genomics:
DNA extraction

(microarray platform, Illumina)
Microbiomics:

16S and whole metagenome
sequencing from stool

Correlation and
regression-based analyses

PCoA) (Multivariate
analysis-unsupervised ML)

Lower postprandial responses
are related to alterations

Proteobacteria and
Enterobacteriaceae based on the

ML algorithm.

www.personalnutrition.org
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Table 1. Cont.

References Type of Study Population Omics Methodology Main Analysis Strategy Main Finding

Takahashi S
et al., 2014 [81]

Case-control
Study

Mice (C57BL/6J)
5 groups (n = 8–9), (9 weeks)

Caffeine (2 g coffee
powder/140 mL)

-Normal diet group = 10% fat
-High-fat diet group = 60% fat
-Caffeinated coffee group = A

high-fat diet + 2% caffeine
-Decaffeinated coffee group =

A high-fat diet + 2%
decaffeinated coffee.

-Green unroasted coffee group
= A high-fat diet + 2%

unroasted caffeinated coffee

Biochemical measurement:
Hepatic lipid composition (the
Folch method (Folch, Lees, &
Sloane, 1957)), plasma liver

enzymes (The transaminase C
II-test WAKO kit)

Genomics:
(DNA microarray platform,

Affymetrix)
Proteomics:

two-dimensional electrophoresis
combined with MALDI-TOF mass

spectrometry
Metabolomics:

Millipore Ultrafree-MC PLHCC
HMT/CE-TOF-MS) analysis

PCA (Unsupervised ML)

Up-regulation of the iso-citrate
dehydrogenase, lipid

metabolism and ATP turnover
were related anti-obesity effects

of different types of coffee.

F, female; M, male; ANOVA, analysis of variance; GCM, general circulation model; CGM, continues glucose monitor; PERMANOVA, permutational multivariate analysis of variance;
HPLC, high-performance liquid chromatography; LC-MS, liquid chromatography-mass spectrometry; NMR, nuclear magnetic resonance; LC-HRMS, liquid chromatography-high
resolution mass spectrometry; HOMA-IR, homeostatic model assessment of insulin resistance; BLASTP, basic local alignment search tool; BMI, body mass index; CAMP, cyclic adenosine
monophosphate; LFT, liver function test; NAFLD, non-alcoholic fatty liver disease; UPLC, ultra-performance liquid chromatography; DIABLO, Data Integration Analysis for Biomarker
discovery using Latent variable approaches for ‘Omics studies; QIIME, quantitative insight into microbial ecology; CRP, c-reactive protein; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; WTP, diet containing whole grains, traditional medicinal foods, and probiotics; OPLS, orthogonal projections to latent structures discriminant analysis; MALDI-TOF,
matrix-assisted laser desorption—ionisation-time of flight mass spectrometry; ATP, adenosine triphosphate; GC-TOF-MS, Gas chromatography with a time of flight mass spectrometer;
PLS-DA, Partial least squares discriminant analysis; WGCNA, weighted correlation network analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; PLSR, partial least squares
regression; PCoA, Principal coordinates analysis; PICRUST, predicted microbial metagenomes using a script; PCA, Principle component analysis; OPLS-DA, Orthogonal projection to latent
structure-discriminant analysis; GC-MS, Gas chromatography coupled with mass spectrometry; CR, calorie restriction; BCAA, branched chain amino acid; HAMRS2, High-amylose-maize
resistant starch type 2; CAF, diet involves feeding experimental animals a choice of human food items to stimulate energy intake (diet-induced thermogenesis).
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MVAs are the most popular approaches used in nutri-OMICs studies. Supervised MVA
such as OPLS-DA, PLS-DA, and PLSR are used for data analyses in several nutrition studies.
A study showed that vegetarians compared with omnivorous adults have: 1. lower branched-chain
amino acid (BCAA) concentrations using OPLS-DA to compare the metabolome; and 2. a higher
abundance of Prevotella and a decrease in abundance of Bacteroides using PCoA to compare
the microbiota [73]. In another study by using OPLS-DA, a reduction in fasting insulin and
homeostatic model assessment of insulin resistance (HOMA-IR) were correlated to an increase
in the abundance of gut bacteria such as Actinobacteria, Bifidobacteriaceae, and Bifidobacterium after
consumption of arabinoxylan-oligosaccharides [61]. Furthermore, using PLS-DA, a recent animal
study found that intake of dietary inulin compared to cellulose, reduced the concentration of BCAA,
L-valine, and L-isoleucine together with an increased level of indole-3-propionic acid and an increase
in the abundance of Firmicutes and Bacteroidetes [71]. Cross-correlation using PLS-DA was conducted
in a study on mice which has reported that a high-fat diet (45% kcal from fat) supplemented
by high-amylose-maize resistant starch type 2 changed gene expression of fatty acid metabolism and
hepatic metabolism. The latter coincided with an increase in the abundance of Tenericutes, Bacteroidetes,
and Verrucomicrobia, and a reduction in the abundance of Proteobacteria and Firmicutes phyla [78].
Lastly, for supervised MVA using PLSR, a calorie restriction diet (low-fat (25% of total calories) and
high-protein (35% of total calories)) was shown to decrease serum BCAA levels together with enhanced
insulin sensitivity in overweight or obese participants [48].

Unsupervised MVA analyses such as PCA and PCoA are also often used in nutrition studies.
For example, with PCA, a mouse study has found that upregulation of iso-citrate dehydrogenase,
lipid metabolism, and adenosine triphosphate (ATP) turnover were related to anti-obesity effects
of different types of coffee (caffeinated coffee, decaffeinated coffee, and green unroasted coffee) when
combined with a high-fat diet (60% of total calories) [81]. Similarly, a PCA analysis between different
groups of proteins showed that the down-regulation of proteins related to energy metabolism was
associated with an increase in the abundance of Bacteroidetes and Firmicutes after an eight week
intervention with a cafeteria diet in rats (49% fat of total energy) [74]. Also, an animal study with
an American diet (50% carbohydrate, 15% protein, and 35% fat, for nine weeks) compared to a normal
diet (25–30% fat, for nine weeks), demonstrated that the amount butyrate in the stool (the difference
between metabolites in two diets measured by PCA) was positively correlated (by correlation test and
network analysis) with the abundance of butyrate-producing bacteria, Oscillospira and Ruminococcus
(differences between microbiota between two diets by PCoA) [77]. Furthermore, a greater impact of gut
microbiome compared to dietary intake (medium-fat and carbohydrate meal) was found on postprandial
lipemia using a PCA analysis [70]. Further, PCoA analyses were used to compare children with
Prader–Willi syndrome and healthy children, show an increase in gut Bifidobacteria and short-chain
fatty acid (SCFA) production (acetate) after a diet containing whole grains, traditional medicinal
foods, and probiotics [79]. Also using PCoA analysis, a study found an increase in gene expression
for liver enzymes after consumption of a high-fat diet (60% of total calories) compared to a low-fat
diet (10% of total calories), that was associated with gut microbiota composition in Lachnospiraceae,
Ruminococcaceae, Streptococcaceae, and Lactobacillaceae [64]. Finally, for unsupervised MVA studies,
the PCoA and regression-based analysis were used to show that lower postprandial glycemic responses
are correlated to alterations in the gut abundance of Proteobacteria and Enterobacteriaceae [80].

Supervised and unsupervised MVA based on mixDIABLO (Data Integration Analysis
for Biomarker discovery using Latent variable approaches for ‘Omics studies) demonstrated that
a low-carbohydrate diet (<30 carbohydrate gr/day for seven days) up-regulated the genes in various
metabolic pathways, including the peroxisome proliferator-activated receptor (PPAR) signaling
and fatty acids degradation in the blood circulation [76]. Concurrently, serum concentrations of
β-hydroxybutyrate and folate-producing bacteria (Streptococcus and Lactococcus) were increased
by the low-sugar diet [76].
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Other ML methods have also been incorporated in nutrition studies. A generational study
(parents and children as participants) on healthy participants demonstrated that serum lipid
profile and total serum carotenoids were closely related to the expression of genes associated with
metabolism and inflammatory pathways using weighted correlation network analysis (WGCNA) [72].
Further, the consumption of plant-derived nutrients (vitamins and phytochemicals) was correlated
with WGCNA to reduced plasma taurodeoxycholate among individuals with a low abundance
of Ruminococcaceae using PCoA analyses (4). Lastly, a study by Piening et al., 2018 [75] used the RF
to demonstrate that a high-caloric diet (increase 880 kcal per day for 30 days) deregulated the BCAA
metabolism in conjunction with the activation of inflammatory signatures including C-reactive protein
and the abundance of the Verrucomicrobiaceae family. In sum, the use of ML techniques contributes to
a better understanding of the molecular mechanisms of diets and foods on nutritional health.

6. Conclusions and Future Directions

The growing improvements in laboratory techniques have increased the complexity and a large
number of generated data. Furthermore, multi-OMICs studies compared to single OMICs have
provided new information to describe the role of nutrients in molecular pathways using together either
gene protein, metabolites and/or gut bacteria. However, there are a limited number of multi-OMICs
nutrition studies that used supervised and unsupervised ML so far; nonetheless, the number of studies
is increasing due to advances and researcher familiarization with ML. Various traditional statistical
methods and ML methodologies have been used to integrate nutri-OMICs data. These methodologies
are complementary, and the selection of the appropriate ML approach also depends on the coherent
conclusion draw by ML with the vast knowledge in biology and nutrition, the distribution, type
of data, and the aims of the study. Yet, MVA especially PCA, PCoA, OPLS-DA, and PLS-DA are
the most popular approaches used in nutri-OMICs studies (Table 1). The analysis of multiple layers
of OMICs presents a challenge that ML can realistically tackle in a less time-consuming manner than
with traditional statistical approaches. The integration of OMICs may increase progress in personalized
nutrition compared to the association between dietary intake and single OMICs category alone.
Further studies are needed to determine the most accurate algorithms and analytical approaches
in multi-OMICs studies. Nutrition studies should be performed to also compare the accuracy of ML
versus traditional statistical analyses for validation. Overall, the integration of multi-OMICs data
in nutrition research through ML techniques compared to conventional statistical analysis methods
may provide a robust contribution to the impact of nutrition on health and diseases.
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